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ABSTRACT
There are several applications where understanding the uncertainty
of a neural network’s (NN) predictions is critical, andmeasuring this
in NNs is a difficult yet unsolved challenge. There are various exist-
ing methods for dealing with NN uncertainty. The Approximately
Bayesian Ensembling is one such strategy. The paper presented a
modification to the standard ensembling methodology that enables
the ensemble to execute Bayesian inference, leading to convergence
to the appropriate Gaussian Process when the overall number of
NNs and their sizes tend to infinity. In a simplified situation, the re-
covered posterior is correctly centered, but marginal variance tends
to have underestimated marginal variance and overestimated corre-
lation. Two circumstances, though, may result in precise recovery.
The paper illustrates out-of-distribution data with classification
through experiments and shows that the method is competitive
with variational approaches and has an advantage over traditional
ensembling. A theoretical analysis of the approach in a simpli-
fied situation indicates that the recovered posterior is correctly
centered but tends to have underestimated marginal variance and
overestimated correlation. Two circumstances, though, may result
in precise recovery. The paper illustrates out-of-distribution data
with classification through experiments and shows that the method
is competitive with variational approaches and has an advantage
over traditional ensembling.
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1 INTRODUCTION
With state-of-the-art results across domains, neural networks are
fast becoming the dominant approach in machine learning. How-
ever, the standard neural networks do not incorporate a mechanism
for determining individual predictions’ certainty (or uncertainty)
since they are not probabilistic. This is significant as uncertainty
quantification is essential for many real-world applications.
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The most widely used approach to dealing with uncertainty is
the Bayesian framework provided by Ghahramani [3], wherein
the weights are modeled as distributions and determined using
the Bayes rule. Although BNNs are a viable solution, modern NNs
typically have millions of parameters and data points, making them
costly and inefficient.

Ensembling is a non-bayesian method for handling uncertainty
that involves training a small ensemble of NNs, starting from vari-
ous initializations and occasionally using noisy training data. When
given new data to predict, there will be some variation in the ensem-
ble’s predictions, which can be seen as uncertain. The reasoning
behind this is straightforward: if the new data point is comparable
to the training data, all of the NNs should produce estimates similar
to each other, but if it is significantly different, there should be a
more considerable variance in the predictions.

Figure 1: An ensemble of NNs starting from various initial-
izations points.

Even though ensembling has provided good empirical results [4]
and is simple to scale and apply, the departure from the fundamental
Bayesian methodology is alarming.

The paper tries to combine the paradigms of Ensembling with
Bayesian Neural Networks by modifying the usual NN ensembling
procedure to align with Bayesian inference. The proposed modifica-
tion alters the loss function and adds 𝜃𝑎𝑛𝑐,𝑗 randomization, whose
value is equal to the prior distribution, in place of the L2 regular-
ization. This approach, known as anchored ensembling, belongs to
the family of methods known as randomized MAP sampling (RMS).

The methodology employed in the paper, the Randomized MAP
sampling, is described in the next section before its theoretical
analysis. The application of RMS to NNs—also known as anchored
ensembling—with a practical workaround is covered in Sections
3 and 4. The experiment results are covered in the fifth part. The
sixth section concludes the research, examines potential additional
analysis, and summarizes the key findings
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2 METHODOLOGY
2.1 Bayesian Neural Network
Specifying an acceptable model is a crucial step in the Bayes’ rule
framework for handling uncertainty. In NNs, however, there is
challenging to convert prior beliefs about a task into priors over
parameters. This paper contributes to previous work that discussed
the behavior of Gaussian Processes (GPs) and Bayesian Neural
Networks. For example, Radford Neal [6] noted that BNNs with un-
limited width would eventually converge to GPs. This relationship
is crucial to this study because it makes it possible to examine how
a BNNs parameter distribution translates into distribution across
functions. This is useful since it offers a more comprehensible space
for selecting priors for a BNN.

2.2 Randomized MAP Sampling
A novel approach to performing Bayesian inference is the Random-
ized MAP sampling method. It refers to the fact that a regulariza-
tion term added to the loss function yields a Maximum a posteriori
(MAP) estimate, which is nothing more than a point estimate of the
posterior. The key idea is to sample several times while adding the
noise. This noise can either be to the targets or the regularization
term. As a result, the distribution of estimates that closely resembles
the true posterior is produced.

Although this approach is simple, applying it to NNs or classifi-
cation settings seems challenging. Despite not reflecting the true
posterior, this method has had some empirical success from the
linear case to NNs but wrapping the optimization step in an MCMC
technique offers a more accurate and computationally costly solu-
tion. This group of schemes is known as randomized MAP sampling.

3 RMS THEORETICAL RESULTS
This section presents the original findings of the paper. First, given
the simplification that both the prior and the parameter likelihood
are multivariate normal distributions, we develop a general version
of RMS by analyzing the method in parameter space.

The RMS can be built to retrieve the true posterior if the param-
eter likelihood covariance is known beforehand. However, in most
cases, this will not be known; hence a helpful solution that requires
knowledge of the prior distribution is suggested.

This practical workaround prevents returning the true poste-
rior even in the case of normally distributed data. As a result, the
outcome is biased due to an overestimated correlation coefficient,
and an underestimated marginal variance. Nevertheless, under two
unique circumstances, a precise recovery can occur.

3.1 Parameter-Space derivation
Consider that the prior, 𝜃 ∼ N(𝜇𝑝𝑟𝑖𝑜𝑟 , Σ𝑝𝑟𝑖𝑜𝑟 ), and likelihood
𝑃𝜃 (D|𝜃 ) ∝ N (𝜃 ; 𝜇𝑙𝑖𝑘𝑒 , Σ𝑙𝑖𝑘𝑒 ) follows a multivariate normal dis-
tribution. Two types of likelihood are considered, data likelihood
and parameter likelihood, with a distinction between the two. Al-
though they are interchangeable and produce the same values when
given a data set D and parameter values 𝜃 , their forms are slightly
different. Data likelihood is the term used to describe the likeli-
hood of the data given the parameters. The parameter likelihood is
defined as the likelihood of the parameters in the parameter space.

The posterior, which is also normal, is given by the Bayes rule as

N(𝜇𝑝𝑜𝑠𝑡 , Σ𝑝𝑜𝑠𝑡 ) ∝ N (𝜇𝑝𝑟𝑖𝑜𝑟 , Σ𝑝𝑟𝑖𝑜𝑟 )N (𝜇𝑙𝑖𝑘𝑒 , Σ𝑙𝑖𝑘𝑒 ) .
The MAP estimate is the mean and is provided in closed form

as 𝜃𝑀𝐴𝑃 = 𝜇𝑝𝑜𝑠𝑡 and Σ𝑝𝑜𝑠𝑡 = (Σ−1
𝑙𝑖𝑘𝑒

+ Σ−1
𝑝𝑟𝑖𝑜𝑟

)−1. The resulting
equation is given by

𝜃𝑀𝐴𝑃 = Σ𝑝𝑜𝑠𝑡Σ
−1
𝑙𝑖𝑘𝑒

𝜇𝑙𝑖𝑘𝑒 + Σ𝑝𝑜𝑠𝑡Σ
−1
𝑝𝑟𝑖𝑜𝑟 𝜇𝑝𝑟𝑖𝑜𝑟 .

Noise must be added to the calculation above per RMS. Since the
modeler has complete control over this number, the paper suggests
employing the prior mean as a source of noise injection. By setting
𝜇𝑝𝑟𝑖𝑜𝑟 = 𝜃𝑎𝑛𝑐 , the above equation yields

𝑓𝑀𝐴𝑃 (𝜃𝑎𝑛𝑐 ) = Σ𝑝𝑜𝑠𝑡Σ
−1
𝑙𝑖𝑘𝑒

𝜇𝑙𝑖𝑘𝑒 + Σ𝑝𝑜𝑠𝑡Σ
−1
𝑝𝑟𝑖𝑜𝑟𝜃𝑎𝑛𝑐 .

Here, 𝑓𝑀𝐴𝑃 becomes a function that takes in the random variable
𝜃𝑎𝑛𝑐 and returns a MAP estimate. The tricky part is picking a
distribution for the anchor distribution 𝜃𝑎𝑛𝑐 so that the distribution
of functions closely resembles our real posterior. This can be done
by setting E [𝑓MAP (𝜃anc)] = 𝜇post and Var [𝑓MAP (𝜃anc)] = Σpost
in the following theorem in order to get 𝜇𝑎𝑛𝑐 and Σ𝑎𝑛𝑐 :

Theorem 1. If 𝑃 (𝑓𝑀𝐴𝑃 (𝜃anc )) = 𝑃 (𝜃 | D), then 𝜃anc also fol-
lows amultivariate normal distributionwith 𝑃 (𝜃anc ) = N (𝜇𝑎𝑛𝑐 , Σanc ),
where

𝜇anc = 𝜇prior

Σanc = Σprior + Σprior Σ
−1
like Σprior .

Figure 2 provides the 2D parameter space demonstration for the
RMS algorithm.

3.2 Practical Workaround: General Case
The method for creating a Randomized MAP sampling algorithm
that will exactly recover the real Bayesian posterior was demon-
strated in the preceding section. Unfortunately, the likelihood co-
variance parameter must be known to set the anchor distribution,
which is impossible for most models.

Theorem 1’s second term can be ignored as a workaround by
setting Σ𝑎𝑛𝑐 := Σ𝑝𝑟𝑖𝑜𝑟 . Although using RMS with this anchor dis-
tribution will not usually result in an accurate recovery of the true
posterior, the resulting distribution may be considered an approxi-
mation, which can be derived in Corollary 1.1.

Corollary 1.1 The RMS approximate posterior is given as -
𝑃 (𝑓𝑀𝐴𝑃 (𝜃𝑎𝑛𝑐 )) = N(𝜇𝑝𝑜𝑠𝑡 , Σ𝑝𝑜𝑠𝑡Σ−1𝑝𝑟𝑖𝑜𝑟Σ𝑝𝑜𝑠𝑡 ) by setting 𝜇𝑎𝑛𝑐 =

𝜇𝑝𝑟𝑖𝑜𝑟 and Σ𝑎𝑛𝑐 = Σ𝑝𝑟𝑖𝑜𝑟 . The proof uses a methodology similar
to Theorem 1, except we set 𝜇𝑎𝑛𝑐 = 𝜇𝑝𝑟𝑖𝑜𝑟 and Σ𝑎𝑛𝑐 = Σ𝑝𝑟𝑖𝑜𝑟 , and
solve for E[𝑓MAP (𝜃anc)] and Var[𝑓MAP (𝜃anc)] instead of setting
and solving for 𝜇𝑎𝑛𝑐 and Σ𝑎𝑛𝑐 .

Despite the covariances of the two distributions not matching,
this corollary demonstrates that their means do.

3.3 Practical Workaround: Special Cases
After outlining the covariance bias that typically exists in the RMS
approximation posterior, this section provides two unique circum-
stances in which there is no bias and the genuine posterior is pre-
cisely retrieved, as demonstrated in figure 3 (B, C).

The two special requirements are accurate recovery using extrap-
olation parameters and perfect correlations. Extrapolation param-
eters are model parameters that do not affect a training dataset’s
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Figure 2: (Exact) RMS in a 2D parameter space.

Figure 3: Examples of the RMS approximate posterior along
with MFVI.

data likelihood but may impact model predictions on a new data
point.

Theorem 3 and 4 in the paper provide proof for the extrapolation
parameters by deriving that the marginal RMS approximation pos-
terior equals the marginal true posterior when the extrapolation
parameters of a model are set to 𝜇𝑎𝑛𝑐 := 𝜇𝑝𝑟𝑖𝑜𝑟 , Σ𝑎𝑛𝑐 := Σ𝑝𝑟𝑖𝑜𝑟 .

The proofs in this section demonstrate that RMS performs an ac-
curate recovery if these two requirements hold. As these conditions
get closer, one would anticipate seeing an RMS approximation that
is more accurate.

4 RMS FOR NEURAL NETWORKS
This section focuses on using the RMS’s practical workaround for
NNs, known as anchored ensembling [7]. First, the RMS-corresponding
NN loss function that needs to be optimized is defined. Following
that, given the presumptions, the validity of the RMS process in
the context of NNs is examined. Finally, issues arising throughout
the scheme’s implementation are considered. The corresponding
algorithm is provided in figure 4.

Figure 4: Algorithm for Anchored Ensembles.

4.1 Loss Function
A NN with parameters, 𝜃 , making predictions(𝑦) with data points,
𝑁 , and 𝐻 hidden nodes are considered. Then, the prior distribution
is 𝑃 (𝜃 ) = N(𝜇𝑝𝑟𝑖𝑜𝑟 , Σ𝑝𝑟𝑖𝑜𝑟 ). Here, we assume that the prior and
likelihood follow a normal distribution. The MAP solution is as
follows:

𝜃𝑀𝐴𝑃 = argmax𝜃 𝑃 (𝜃 | D)
𝜃𝑀𝐴𝑃 = argmax𝜃 𝑃D (D | 𝜃 )𝑃 (𝜃 )
𝜃𝑀𝐴𝑃 = argmax𝜃 log (𝑃D (D | 𝜃 )) + log(𝑃 (𝜃 ))

𝜃𝑀𝐴𝑃 = argmax𝜃 log (𝑃D (D | 𝜃 )) − 1
2

Σ−1/2𝑝𝑟𝑖𝑜𝑟
(𝜃 − 𝜇𝑝𝑟𝑖𝑜𝑟 )

2
2

2022-07-31 20:58. Page 3 of 1–7.
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Standard L2 regularization occurs when 𝜇𝑝𝑟𝑖𝑜𝑟 = 0, but to apply
RMS, substitute 𝜇prior with 𝜃𝑎𝑛𝑐

The MAP estimate for the Regression task is given as follows:

Loss𝑗 =
1
𝑁

y − ŷ𝑗
2
2 +

1
𝑁

Γ1/2 · (𝜃 𝑗 − 𝜃𝑎𝑛𝑐,𝑗
)2
2
.

Here, homoskedastic Gaussian noise of variance 𝜎2𝜖 is assumed
for the task. The diagonal regularisation matrix, Γ is diag(Γ)𝑖 =

𝜎2𝜖 /𝜎2prior 𝑖 , and 𝑗 stands for an ensemble of 𝑀 NNs 𝑗 ∈ {1 . . . 𝑀}
each with a unique draw of 𝜃𝑎𝑛𝑐 .

Cross entropy is typically maximized for classification applica-
tions, assuming a multinomial data likelihood, and is given as

Loss𝑗 = − 1
𝑁

𝑁∑︁
𝑛=1

𝐶∑︁
𝑐=1

𝑦𝑛,𝑐 log𝑦𝑛,𝑐,𝑗 +
1
𝑁

Γ1/2 · (𝜃 𝑗 − 𝜃𝑎𝑛𝑐,𝑗
)2
2
,

. Here, the class label𝑦𝑐 for 𝑐 ∈ {1 . . .𝐶} classes andHere, diag(Γ)𝑖 =
1/2𝜎2prior 𝑖 .

4.2 Validity of RMS in NNs
The multivariate normal distribution assumptions are validated in
this section, along with the special conditions that lead to close
approximations of the actual posterior distributions.

4.2.1 Normal distribution. It was previously assumed that param-
eter likelihoods follow a multivariate normal distribution. Two
reasons are provided for using this assumption in NNs.

1) Other approximate Bayesian methods like MFVI and the
Laplace approximation [8] make similar assumptions. It is typi-
cal for MFVI to fit a factorized normal distribution to the posterior.
The Laplace distribution fits the mode of MAP solutions to a multi-
variate normal distribution.

2) Figure 5 depicts the conditional parameter likelihood for NNs
trained on regression and classification. Following training, a ran-
dom parameter is chosen, and all others are frozen. The choice
parameter is adjusted over a narrow range, and the data likelihood
is determined at each point. As a result, the conditional distribu-
tions are shown. Analyzing local modes as approximately normally
distributed seems reasonable based on the plots.

Figure 5: Conditional likelihood graphs for four randomly
selected parameters in two-layer NNs.

It is, therefore, justified to model the parameter likelihood as a
multivariate normal distribution with a single mode. In the param-
eter space of a NN, however, such modes are likely to be numerous,

with each member of an anchored ensemble ending up at a differ-
ent mode. Moreover, many of these modes arise from parameter
symmetries and would be exchangeable, making the MAP solutions
exchangeable.

4.2.2 Special cases. RMS approximate posteriors produced by set-
ting the anchor distribution equal to the prior have, in general,
underestimated variance and overestimated correlation. Figure 7
display bias-free predictive distributions for anchored ensembles
resembling the real Bayesian predictive posterior.

The two exceptional conditions resulting in exact recovery make
the distribution bias-free. First, it should be simple to notice that
the figures contain extrapolation parameters. This is because all the
concealed nodes in the data range will die. The data likelihood is
then unaffected by their corresponding final layer weight; however,
they do have an impact on forecasts outside of the training set.

Perfect correlations are more challenging to understand, and a
numerical example is demonstrated in the paper. A hidden node
must become live between two data points for this to work. The final
layer weights linked to them are then perfectly correlated. Later
tests with CNNs will indirectly examine if these unique conditions
continue beyond fully-connected NNs. Increasing the width of the
NN, which adds more parameters and increases the likelihood of
significant correlations, is an apparent method to support these
requirements further.

4.3 Implementation Practicalities
How many NNs should an RMS ensemble contain? Unfortunately,
many samples can only fully capture the posterior parameter dis-
tributions. On the other hand, if one considers each NN as an iid
sample from a posterior predictive distribution, a significantly fewer
number are necessary given that output dimensionality is often low.
Notably, the input dimension has no bearing on this. Additionally,
the studies employed 5–10 ensembles scaled by O(𝑀𝑁 ).

Is it necessary to initialize the NNs at anchor points? Although
it is practical to derive parameter initializations from the anchor
distribution and regularize immediately around these initialized
values, the authors discovered that trials were improved when
initializations were decoupled from the anchor points.

5 EXPERIMENTS
This section presents vital discoveries from the research.

5.1 Qualitative Tests
The authors initially investigated anchored ensembles on toy prob-
lems to get a feel for their behavior compared to standard approxi-
mate inference and ensembling techniques.

A comparison of popular Bayesian inference methods within
single-layer NNs for ReLU and sigmoidal nonlinearities is presented
in figure 6. Bayesian inference produced by GP and HMC is deemed
the best by comparison, and all the other methods are judged on
how close they are to the gold standard. Interpolated uncertainty is
poorly captured byMC dropout andMFVI (with a factorized normal
distribution). This is a sign that the posterior approximation ignores
parameter correlations [1].

Figure 7 depicts a group of 10NN who were trained on straight-
forward regression problems using common loss functions, either

2022-07-31 20:58. Page 4 of 1–7.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Approximately Bayesian Ensembling Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 6: Predictive distributions from single-layer NNs
trained on a simple regression problem using a variety of
inference techniques.

with no regularization term (’unconstrained’, Γ = 0) or with regular-
ization centered on zero (’regularized’, 𝜃𝑎𝑛𝑐,𝑗= 0). Since regulariza-
tion eliminates the ensemble’s variety and pushes all NNs toward
the same single solution, it gives subpar results. Unconstrained is
also improper because, despite producing diversity, it maintains no
knowledge of a prior and overfits the data. Unconstrained is most
similar to deep ensembles.

Figure 7: NN ensemble loss comparison for the toy regression
challenge.

5.2 Convergence Behaviour
The Boston housing dataset was used to assess how accurately
anchored ensembling performs Bayesian inference on real datasets
compared with an exact method (ReLU GP). The ensemble’s pre-
dicted and GP’s predictive distribution were compared using the
KL divergence method; zero indicates identical distributions. Both
models used half of the data for training and a half for testing. Re-
sults were averaged over ten runs, with each run’s test/train split
being shuffled at random. For both models, the data noise variance
was fixed at 𝜎2𝜖= 0.1. Preprocessing of the data followed the UCI
regression technique.

Figure 8 quantifies the change that results from adjusting the
ensemble’s NNs’ width and number. Instead of using anchored
NNs, the "ideal" line displays the metric where posterior samples
from the GP itself were used. The KL divergence between the two
prediction distributions reduces with increasing NN width and NN
count. However, a modest residual difference persists even with
40xNNs with 1,024 nodes.

5.3 UCI Regression Benchmarks
A standard BNN benchmark was utilized to compare anchored
ensembles to well-known approximate inference techniques. The
benchmark aims to minimize negative log-likelihood (NLL) and root
means square error (RMSE) for each dataset. Ninety percent of the
data is used to train themodels, and the remaining 10 percent is used
to record RMSE and NLL. Using single-layer NNs with 50 hidden

Figure 8: anchored ensemble and a ReLU GP. Mean ±1 stan-
dard error.

nodes, experiments are run 20 times with random test/train splits.
Only five and one repetitions are allowed for the more significant
datasets Protein and Song, which allow for 100 hidden nodes.

Figure 9 displays the outcomes. Additionally, the outcomes for
Deep Ensembles [4] were also included. An obvious pattern emerges
when ranking results by estimated data noise level 𝜎2𝜖 anchored
ensembles outperform deep ensembles and deep learning ensembles
in datasets with low data noise.

Figure 9: Benchmark results for NLL regression. Mean ±1
standard error.

5.4 Out-of-Distribution Classification
The research on classification tasks for out-of-distribution (OOD)
data using complicated NN architectures are presented in this part,
along with a comparison to alternative ensemble methods.

Three separate datasets are trained using an NN architecture
suitable for each dataset: 1) Classification of fashion images using
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three fully connected layers with 100 hidden nodes. 2) Classifi-
cation of the emotion of IMDb movie reviews using embedding
(20 dimensions) and 1D convolution (50 filters, kernel size of 3),
followed by a fully-connected layer (200 hidden nodes). 3) Convo-
lutional NN (CNN) with 9 million parameters, 64-64-max pool-128-
128-max pool-256-256-256-max pool-512-512-512-max pool-flatten-
2048-softmax, CIFAR-10 picture classification. Experiments were
run five times for Fashion MNIST and IMDb; for CIFAR-10, they
were run three times.

Due to the lack of data augmentation and batch normalization,
the accuracy levels remain below the state-of-the-art.

OOD inputs presented to the NNs are shown in figure 10. Two
groups held out during training are called Edge (for CIFAR ships,
dogs; for Fashion MNIST trousers, sneakers). Each row of pixels
in a particular image gets scrambled. Invert used the pixel values
that were in the negative, and Noise selected pixels from a large-
magnitude Bernoulli distribution (p=0.005) with a pixel value of 50.
It was trained on 40K instances.

Figure 10: High confidence predictions on out-of-distribution
data. Mean over five runs (three for CIFAR).

Similar trends may be seen in all three tables. In terms of other
data categories, all approaches predict with equal confidence on the
training data, although this confidence varies widely, with anchored
ensembles typically generating the most cautious forecasts. For data
taken further from the training distribution, this difference widens.

One of their tests involved training a neural network (NN) to
predict OOD samples that were somewhat different from the train-
ing examples and, worst case, random noise. They discovered that
even if a single NN with an utterly random noise was presented,

ninety-five percent of the time, it will assign this with a high prob-
ability to one of the CIFAR classes. With the use of the anchoring
loss function, this drops to twelve percent.

6 CONCLUSION
This study suggested, analyzed, and tested a variation to the conven-
tional NN ensembling process that regularizes parameters around
values taken from a prior distribution and yields approximate
Bayesian inference.

The methodology for the analysis is described and explained in
Section 2. Sections 3 and 4 contributed to the field of study known as
"Bayesian deep learning," which applies the Bayesian framework to
NN parameters. The relationship between BNNs and GPs provides
a valuable lens for studying a BNN’s prior over functions.

The efficient learning of the posterior distribution presented
a second difficulty for BNNs. The paper suggested modifying an
ensemble of NNs’ regularization terms such that the estimates they
provide are more closely aligned with the Bayesian posterior. This is
advantageous because linking ensembles of NNs with the Bayesian
framework offers some assurance that their uncertainty estimates
are resilient, and ensembles of NNs are simple to create and scalable.

An abstracted form of RMS was obtained under simplifying
assumptions. In addition, a valid RMS variation was examined for
comprehending its approximative posterior’s bias. The recovery
of the true posterior under two unique circumstances—perfectly
correlated and extrapolation parameters—was demonstrated. The
viability of using RMS on NNs, arguing that these two unique
requirements are only partially present in NNs, was also questioned.

State-of-the-art performance was obtained in regression bench-
marking studies on 3/10 datasets, outperforming standard approxi-
mate inference techniques. In addition, anchored ensembles were
more reliable than alternative ensemble approaches on tasks in-
volving classifying images and texts.

6.1 Alternative algorithms
Building features that enable NNs to calculate their uncertainty
is still a topic of current research. However, like in many other
fields of machine learning, method comparison is frequently car-
ried out empirically through benchmark tasks using standardized
benchmarks like UCI datasets.

These empirical tests effectively determine how reliable uncer-
tainty estimates are, but they are not very informative about the
effect on usability. This is crucial because it directly affects the rate
of adoption by practitioners across the whole machine learning
community.

An excellent illustration of this is howwell-likedMCDropout [2]
is. Dropout layers can readily be included in NN designs, providing
practitioners with a practical way to calculate uncertainty. Because
of its ease, MC Dropout has gained widespread use even though
the quality of the estimates it generates is frequently worse than
alternatives.

Ensembling or VI may be a valuable option for practitioners who
require more exact uncertainty estimations but are ready to put
in more effort during implementation and computation. Addition-
ally, running HMC or converting to a GP can be appropriate for
individuals who require uncertainty quality above all else.
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Several other Bayesianmethodswork on the samemethodologies
as RMS, like the Laplace Approximation and MFVI.

Approaches will probably shift on these axes as deep learning
progresses and becomes more mature. The usage of dropout, for
instance, is declining in recent visual models where it has been
found to conflict with batch normalization [5] and in RL, where
the inclusion of extra variance is undesirable, despite it once be-
ing ubiquitous in state-of-the-art models (about 2015). This could
present a chance for novel approximations that have little effect on
usability.

6.2 Future Work
Many methods used today to deal with uncertainty in NNs are
drawn from those successful in more straightforward predictive
models. Although the Bayesian framework has the advantage of
having a solid theoretical foundation, scaling it to contemporary
NNs and datasets is a difficult task.

Building ever-more-general systems are the longer-term objec-
tive of AI. Unfortunately, this will probably demand ever-larger
models and datasets, so the complexity of using the Bayesian frame-
work will only get more complex. This section speculates whether
it will be possible to scale up these more basic frameworks for
addressing uncertainty to more extensive and more complicated
models or whether a new paradigm will be required.

Brains—the only (relatively) living example of general intelli-
gence we have—can help us answer this question. Because of their
limited experience and flawed views, theymust navigate aworld rife
with uncertainties. According to a normative argument, managing
these uncertainties was necessary for brains to evolve effectively.

This brings forth an intriguing viewpoint: possibly, learning
how the brain assesses uncertainty might help us create better
uncertainty-aware AI systems. Create techniques that allow more
abstract BNN priors to be specified. Communicating priors through
expert demonstrations, representative data sets, or straightforward
hard-coded rules may be more acceptable than explicitly storing
information into parameter priors. It is feasible that we will need
to alter how we design methods to handle uncertainty as artificial
systems become progressively more general.
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