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ABSTRACT
A seminar report summarizing the work done on the topic "Uncer-
tainty Quantification and Deep Ensembles" [4] as part of the MSc in
Data Science study curriculum at TUDortmund. This research work
was published by the original authors of the paper. The research
focuses on calibration issues in deep learning methods, particularly
deep ensembles, and a proposed solution to resolve the issue. This
report summarizes the proposed solution, methods utilized in the
solution, comparison of the methods utilized with other known
methods, and possible improvements to the approach presented in
the paper.
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1 INTRODUCTION

Figure 1: Deep ensemble learning where the data input is
very less (Image source: [7])

The amount of data fed into a deep learning algorithm deter-
mines the quality of the output. When the data supply is limited (for
reference Figure 1), deep learning algorithms are prone to calibra-
tion issues. Even though the networkmodel appears to be extremely
accurate, it is only addressing a subset of the possible outcomes,
and hence the model fails to address uncertainties in the unknown
data. This is mostly due to the trained deep model’s overfitting,
which is caused by overconfidence. A common deep ensemble net-
work can be utilized to alleviate the issue, however, this is most
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probable in the event of enormous data, making the calibration
issue less significant. However, deep ensemble implementation is
computationally expensive when the dataset is huge.

The deep ensemble (for reference Figure 2) is a simple approach
that performs well with any quantity of data, although the cal-
ibration issue exists when the data is small. When paired with
two additional strategies, data augmentation and post-processing
calibration, it reduces overconfidence and thereby overcomes the
calibration issue. The authors of the study emphasize the sequence
in which the aggregation of estimations and calibrations are per-
formed, which is referred to as "Pool-then-Calibrate."

Figure 2: Deep Ensembles model (Image source: [2])

1.1 Data and Setup
Multiple datasets were employed in the study, each having images of
different classes since the aim is image classification. Two datasets
were primarily utilized for estimate verification and calibration
performance. The first is the CIFAR-10 dataset [3], which comprises
60000 32x32 color images of ten different classes, as seen in the
Figure 3. Only 1000 images were collected to train the models (also
containing validation images). The second dataset is CIFAR-100,
which contains images comparable to CIFAR-10 but with images
belonging to 100 classes [3]. There are 5000 photos in the training
set (along with validation images). RefNet18 is the neural network
architecture used to train these datasets.

Imagenette and Imagewoof using ResNet34 network architecture
with 5000 training images were utilized to compare the estimated
outcomes. MNIST and Diabetic Retinopathy datasets were also
utilized for comparisons. Since the goal is to enhance calibration
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Figure 3: CIFAR-10 dataset having images of 10 different
classes (Image source: [3])

in the low-data environment, training data utilized is quite limited.
The deep ensembles is implemented with 𝐾 = 30 network models.

2 METHODS IN THE PROPOSED SOLUTION
According to the study, deep ensembles, in combination with the
other two approaches employed at the network’s input and output
sides, have a significant impact on the accuracy and calibration
ability of the network model. As shown in the Figure 6, the two
approaches employed are data augmentation using the Mixup Aug-
mentation methodology and model calibration with Temperature
scaling as a post-processing method. Expected calibration error
(ECE) is used to check the extent of calibration in the model.

2.1 Data Augmentation: Mixup
When there is a scarcity of data, some strategies may be utilized
to improve the quantity of data available for training the model.
One such way is data augmentation. Mixup is a data augmenta-
tion strategy that takes convex combinations of training images
with randomly chosen weights, and those weights are taken from
the beta distribution with identical values for both parameters
(Beta(𝛼, 𝛼))[7]. This process is shown in the Figure 4.

The formulas depicted in the illustration are as follows:
The weight, 𝜆, is taken from the beta distribution for which the

hyperparameter, 𝛼 , is given by the experimenter. The image 𝑥𝑚𝑖𝑥𝑢𝑝

is the result of the convex combination of two images 𝑥1 and 𝑥2
with weights. After combining the labels of images 𝑥1 and 𝑥2, the
augmented label for the new image is𝑦𝑚𝑖𝑥𝑢𝑝 . The amount of mixup
data augmentation will result in an increase in entropy, decrease
in over-confidence of the model, also the decrease in the value of
negative log-likelihood and higher model accuracy [4] (discussed
in the next sections).

Figure 4: Mixup data augmentation with hyperparameter 𝛼
from the beta distribution (Image source: [7])

2.2 Post-processing Calibration: Temperature
Scaling

In the post-processing phases, the calibration methods are used
to recalibrate the model’s naive probabilities in order to provide
a predicted confidence score 𝑝 (𝑥). Temperature scaling is one of
the calibration methods and is a single parameter 𝑃𝑙𝑎𝑡𝑡𝑆𝑐𝑎𝑙𝑖𝑛𝑔
approach [1].

Figure 5: Temperature scaling using the optimized parameter
𝜏 (Image source: [1])

It converts the probabilistic outputs, 𝑓 (𝑥), from model averaging
into temperature scaled outputs, 𝑝 (𝑥), determined by the scaling
function, as illustrated in the equation below.

𝑆𝑐𝑎𝑙𝑒 (𝑓 , 𝜏) = 𝜎𝑆𝑀 (𝑙𝑜𝑔 𝑓 /𝜏) =
1
𝑍
(𝑝1/𝜏1 , ..., 𝑝

1/𝜏
𝐶

) ∈ Δ𝐶 ,

where 𝜎𝑆𝑀 is the softmax function, 𝑍 > 0 is the normalization
scaler, 𝜏 is the optimal parameter found by minimizing the negative
log-likelihood score on the validation set and Δ𝐶 is the probabilistic
predictions for all the classes𝐶 . The temperature paremeter 𝜏 > 0 is
the only parameter that is optimized here [4]. The Figure 5 explains
the temperature scaling.

2.3 Calibration Metric: Expected Calibration
Error (ECE)

The difference between prediction confidence and empirical ac-
curacy is measured by the Expected Calibration Error (ECE). It is
used to assess if the predicted probabilities of the model are closer
to actual probabilities; if so, the network model is well calibrated.
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The ECE is calculated by calculating the difference between the
confidence and accuracy for a set of bins, and it is equated as,

ECE =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑁

|𝑐𝑜𝑛𝑓𝑚 − 𝑎𝑐𝑐𝑚 |,

where

𝑎𝑐𝑐𝑚 =
1

|𝐵𝑚 |
∑︁
𝑖∈𝐵𝑚

1(𝑦 (𝑥𝑖 ) = 𝑦𝑖 ) 𝑎𝑛𝑑 𝑐𝑜𝑛𝑓𝑚 =
1

|𝐵𝑚 |
∑︁
𝑖∈𝐵𝑚

𝑝 (𝑥𝑖 )

Here, 𝐵𝑚 is the m𝑡ℎ bin for all𝑚 = 1, ..., 𝑀 , 𝑁 is the number of data,
𝑦 (𝑥𝑖 ) is the estimation for the data 𝑥𝑖 and 𝑝 (𝑥𝑖 ) is the predicted
probability for the data 𝑥𝑖 where 𝑖 = 1, ..., 𝑁 .

For every bin m, if 𝑎𝑐𝑐𝑚 ≈ 𝑐𝑜𝑛𝑓𝑚 , then the model can be con-
sidered to be well calibrated and the ECE value would be as less
as possible, aiming to reach the value zero or ideally should ECE
become zero. Reliability curves can display the curve with 𝑐𝑜𝑛𝑓𝑚
on the x-axis and (𝑎𝑐𝑐𝑚−𝑐𝑜𝑛𝑓𝑚) on the y-axis. An under-confident
model’s curve lies below the line 𝑎𝑐𝑐𝑚 − 𝑐𝑜𝑛𝑓𝑚 = 0 [4].

3 OBSERVATIONS ON PROPOSED SOLUTION
3.1 Proposed Solution

Figure 6: Idea behind the proposed solution with Mixup and
Temperature scaling (used in pool-then-calibrate methodol-
ogy) (Primary Image source: [2])

The proposed solution can be visualized as shown in the Figure 6.
As the data supplied is less, the input sample space undergoes mixup
data augmentation, and the output is calibrated by temperature
scaling performed in the sequence described over the "pool-then-
calibrate" technique. The performance of the proposed solution can
be measured by comparing the outputs of the model in the solution
with the outputs of a simple deep ensemble model for the same
data input. Comparisons can also be done to identify the effects
and advantages of Mixup augmentation and Temperature scaling.

3.2 Linear Averaging (Deep Ensembles)
Deep ensembles are intended to give more precise and calibrated
estimates. To train neural network models with 𝐾 = 30 separate
network models, three distinct datasets were employed. Forecasts
are also aggregated by averaging probabilistic estimations from all
30 models. The generated reliability curves are depicted in Figure 7.
The curves for the network trained on the CIFAR 10 dataset indicate

that both individual and averaged predictions are under-confident,
particularly aggregated forecasts, which might be useful when each
individual network produces over-confident findings. Individual
networks are overconfident in the CIFAR 100 dataset but near-
calibrated in the Imagewoof dataset. The aggregated predictions

Figure 7: Reliability curve to identify the confidence of the
deep ensembles model for different datasets (Iamge source:
[4])

that are under-confident can be used to calibrate a deep ensembles
model. As a result, deep ensembles are a better tool for calibration.

3.3 Deep Ensembles against BNN Methods
When predictions are aggregated, certain Bayesian Neural Net-
work models exhibit characteristics comparable to deep ensembles,
according to the research. The under-confidence of aggregated pre-
dictions persists in BNN models as well. In Table 1, the resultant
ECE scores for ensembled networks for the SWAG andMC-Dropout
BNN models are greater for both the CIFAR 10 and CIFAR 100 train-
ing datasets. These models are computationally more expensive
than the non-BNN deep ensembles.

Dataset Method Single models Ensemble

CIFAR 10 SWAG 3.17±.27 4.36
MC-Dropout 6.55±.10 7.59

CIFAR 100 SWAG 3.34±.14 5.49
MC-Dropout 4.92±0.19 9.05

Table 1: ECE scores of BNN methods for CIFAR 10 and CI-
FAR100 datasets: under-confident models [4]

The BNN ensemble models are less calibrated than their indi-
vidual models. Deep ensembles is much easier to implement and
calibrating under-confident predictions is still feasible.

3.4 Effects of Mixup Augmentation and
Temperature Scaling

The CIFAR 10Mixup augmented dataset is used for training deep en-
sembles with varying regularization 𝛼 = {0.2, 0.5, 0.8, 1.0}. The Fig-
ure 8 depicts several key metrics for unscaled (no post-processing)
and temperature scaled ensemble models. The unscaled model ex-
hibits an increase in entropy as the distance between the validation
and training images grows, indicating a reduction in overconfidence.
Despite the increasing distance between validation and training
images, the model trained on no mixup dataset delivers compara-
bly overconfident results. The increase in distance is denoted in
quantiles on the x-axis.
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Figure 8: Comparing the effects of mixup and temperature
scaling on the basis of different matrics (Iamge source: [4])

With the exception of themixup augmentedmodel with𝛼=0.2, all
of the other models exhibit better reliability, a decrease in negative
log-likelihood scores, and only a slight decrease in the accuracy
as the distance rises. When the models with varied 𝛼 values are
temperature scaled, their entropies agree, as do their reliability, NLL,
and accuracy. This is because the training dataset was augmented
using the mixup approach.

Figure 9: Effects of mixup and temperature scaling on train-
ing different datasets (Iamge source: [4])

The same combination of mixup augmented data and temper-
ature scaling is used in conjunction with deep ensembles to train
with different datasets. The Figure 9 shows the resulting reliability
curves for models with different 𝛼 values. The predictions for the en-
semble models with no mixup (𝛼=0) are overconfident, while other
models with 𝛼=0.3, 0.6, and 0.9 show better calibration of predicted
estimations for all datasets. As a result, using mixup augmentation
and temperature scaling in combination with deep ensembles result
in better-calibrated forecasts.

4 RESOLVING THE CALIBRATION ISSUE
Temperature scaling as a post-processing technique aids in the
generation of better-calibrated models. According to the study, the
order in which aggregation and scaling are applied has a major
impact on model calibration. Various approaches were used, their
results were compared, and eventually which methodology was
best suited is summarized in the following subsections.

4.1 Calibration Methodologies
There are 4 methodologies introduced which explain the sequence
in which the aggregation and scaling are done. They are as follows:
A. Averaging the estimations from all the models hoping to obtain a

better-calibrated model. No temperature scaling is to be applied.
B. Each individual network will be calibrated before aggregating

the estimations. Each individual model is temperature scaled
separately, then the estimates are pooled.

C. Aggregating and calibrating the estimations simultaneously for
each individual model. Each model is scaled with a common
temperature parameter and simultaneously they are pooled.

D. Aggregating the estimates of each individualmodel before pooled
estimates are calibrated. First, the estimates from the models are
aggregated by pooling them, then calibrated by the application
of temperature scaling (Pool-then-calibrate).
The authors recommend the pool-then-calibrate strategy over

other methods. This can be substantiated by comparisons and ex-
amination of its impact on various data regimes.

4.2 Comparison of the Methodologies
For different datasets, all four approaches were implemented and
investigated. The findings are shown in Figure 10, which shows the
values obtained for three performance metrics: ECE, NLL, and Brier.
The ECE values, after using strategies C and D, as seen in the first
row, are almost the same, even for different pooling methods such
as linear pooling, median pooling, and trimmed pooling. In terms
of all metrics utilized to measure the performance, strategies A
and B yield fairly unconvincing outcomes. So, C and D are deemed
preferable strategies to calibrate ensemble models since their results
show lower ECE, NLL, and Brier scores throughout.

Figure 10: Comparing different calibration methodologies
on the basis of diffrent scoring metrics (Iamge source: [4])

The red lines represent the results of single models trained using
mixup augmentation at 𝛼=1. These red lines serve as the baselines
for all of the techniques. As shown in the graphs, linear pooling as
the pooling method in all strategies has an effect on models trained
with different training datasets. Because linear pooling produces
lower ECE, NLL, and Brier scores, it was chosen as the pooling
strategy in the suggested solution. Also, among strategies C and
D, strategy D, "pool-then-calibrate", appears to be the simplest to
execute, and because C and D perform practically identically, D
was chosen to be used in the suggested solution.

4.3 “Why pool-then-calibrate?” and Benefits of
Mixup Augmentation

As previously stated, pool-then-calibrate is the preferred method. It
is used in conjunction with the mixup-augmentation for different
𝛼 values and the results are given in terms of performance metrics
in the Figure 11. The deep ensembles of 𝐾=30 networks is trained
on 𝑁=1000 CIFAR 10 training data with varying amounts of mixup-
augmentation, with 𝑁𝑣𝑎𝑙=50 validation samples included.



UncertaintyQuantification and Deep Ensembles Seminar: UncertaintyQuantification in Machine Learning,

Figure 11: Graphs to compare the scores: Before and after
applying mixup augmentation (Iamge source: [4])

The dotted black line represents the baseline performance of a
model trained without mixup-augmentation on the same CIFAR 10
mixup-augmented dataset. The accuracy graph demonstrates that
using mixup augmented data with varying alpha values increases
model accuracy by nearly 5%. Furthermore, ECE appears to have
been decreased by 25% for models trained on mixup data. NLL
appears to be lowered by around 8-9 percent. Brier score is also
dropped by 8-9 percent.

These characteristics imply that the use of mixup augmenta-
tion, in conjunction with the pool-then-calibrate technique, yields
considerable success in calibrating the deep ensembles model.

4.4 Effects of Pool-then-Calibrate
In terms of low-data regime, the pool-then-calibrate technique on
the deep ensembles model trained using the mixup-augmented
dataset shown to be advantageous. It is appropriate to use the same
approach in a high-data regime and compare it with other known
methods. The Table 2 displays the performance metrics of the model
based on the proposed solution, as well as additional models such
as scaled individual models, unscaled individual models, and en-
sembled scaled and unscaled models.

Method Accuracy ECE NLL Brier
(1) Individual
models (un-
scaled)

70.8±.36 9.8±.31 1.17±.01 0.411

Ensemble of
models in (1)

78.4 5.9 0.782 0.308

(2) Individual
models (scaled)

70.8±.36 2.1±.4 1.07±.01 0.396

Ensemble of
models in (2)

78.4 13.2 0.859 0.331

Pool-then-
calibrate

78.4 3.4 0.770 0.303

Table 2: Matrics to measure the performance of different
models trained with large CIFAR 100 50k data: Pool-then-
calibrate is a better method [4]

The results in the table are from experiments performed on the
CIFAR 100 complete dataset. The accuracies of unscaled individual
model ensembles, scaled individual model ensembles, and deep
ensembles with pool-then-calibrate are identical, thus applying this
idea will not help in judging the success of the suggested pool-
then-calibrate technique. As a result, ECE, NLL, and Brier scores
better reflect the performance of each method. The accuracy of
the ensemble of individual unscaled and scaled models is good,

but the ECE value of the unscaled ensembles is poorer due to high
under-confidence. When compared to other methods, the suggested
pool-then-calibrate method has the lowest ECE.

Even the suggested method’s NLL (negative log-likelihood) score
is the lowest among the scores of other methods. Finally, the Brier
score agrees with the suggested method’s performance in the high-
data setting by having the lowest value of all the remainingmethods.
As a result, the suggested pool-then-calibrate strategy has a consid-
erable influence in high data regimes.

5 ADVANTAGES AND DRAWBACKS IN THE
SOLUTION

5.1 Advantages of the Proposed Solution
The proposed solution comprises mixup data augmentation and
temperature scaling in combination with deep ensembles. The so-
lution has some advantages:

(1) All of the methods used in the solution are straightforward,
making them simple to implement.

(2) The suggested model’s probabilistic predictions are likely to
be well-calibrated, as the model’s overconfidence is poten-
tially rectifiable.

(3) The methods used in combination with deep ensembles are
simplistic, and they all perform well in the low-data realm,
where the calibration problem is inevitable.

5.2 Drawbacks and Possible Fixes
The model in the solution is simple to implement, but it has its own
set of limitations. Some of the remedies that can be considered to
potentially correct these limitations are as follows:

• Deep ensembles are simple to implement in general, but they
are computationally expensive, which might have an impact
on runtime performance when the input data is enormous.
Deep sub-ensembles are less expensive, and their influence
may be explored by using them instead of deep ensembles,
although at the risk of a minor increase in error [6].

• Image data augmentation with Mixup may result in over-
lapping of objects from distinct pairs of images, making
determining object boundaries challenging. This problem is
likely to degrade performance. In this instance, background
mixup data augmentation can be employed as an alterna-
tive. Background mixup augmentation combines training
and background images to increase generalization ability
and, as a result, overall performance [5].

6 SUMMARY
The study focuses on the calibration challenges of deep learning
algorithms trained in a low-data regime. The proposed method
addresses these challenges while also assisting deep ensembles
in calibrating their probabilistic predictions. The researchers in-
vestigated the interplay of three of the most basic strategies for
implementing deep learning in the low-data domain. Deep ensem-
bles, mixup data augmentation, and temperature scaling are the
employed methods in the solution.

The research also demonstrated how deep ensembles alone can-
not fix calibration issues since they provide overconfident forecasts.
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As a result, it was demonstrated that employing mixup data aug-
mentation reduces overconfidence, after which the probabilistic
estimates can be pushed through a calibration process using temper-
ature scaling to obtain a better-calibrated model. After comparing
its results and performance to other known methods, this combi-
nation of methods was found to be effective. The impacts of the
methods used were further investigated by comparing the perfor-
mance of the models with and without them. The influence of the
hyperparameters utilized in the methods in terms of the model’s
performance was investigated by comparing the performance by
varying the values of these parameters. These parameters may
be chosen by analyzing the model’s performance as measured by
metrics such as Expected Calibration Error (ECE), Negative log-
likelihood (NLL), and Brier scores. ECE was primarily used in the
research work to evaluate the model’s calibration abilities.

Various approaches can be used to calibrate the estimations. The
researchers determined which among the four approaches was the
best by analyzing the performance metrics of the results acquired
after calibrating the estimations using all those methodologies. The
authors chose the pool-then-calibrate strategy because of its sim-
plicity and efficacy in both low-data and high-data regimes. This
method combines the pooled predictions from individual neural
networks before post-processing the results with the resilient tem-
perature scaling method.

The proposed solution has a few advantages, including ease of
implementation and better-calibrated models. In terms of run-time
efficiency, there are a few constraints. Although deep ensembles
are a simple method to implement, they are computationally expen-
sive. If the primary goal of an experimenter is to make the model
computationally as less expensive as possible with tolerance to a
minor increase in error, deep sub-ensembles [6] might be proposed
in place of deep ensembles. Mixup data augmentation may result in
overlapped images, making it difficult for the model to recognize ob-
ject boundaries, and thus lowering the performance. In such a case,
a recently discovered augmentation approach called Background
Image Augmentation [5] may be useful. This method combines the
item from the training image with the background from another
image, resulting in objects that are easily recognized by the models
and improved performance.

Finally, AI-powered applications like these are susceptible to
approval based on dependability and trustworthiness. Simple im-
plementation may not imply superior results. Other difficult ap-
proaches can be utilized to develop a far more efficient model if
the goal is to get accurate, dependable, robust, and trustworthy
outcomes where processing power is not a concern.
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