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ABSTRACT
Simulation of the wildland fire is essential for making accurate
predictions of fire in real-time and information should be provided
to the forest manager. Large uncertainty in the input parameters
exists which needs to be quantified. An ensemble forecast is used
for this purpose and the input probability distribution is applied
based on expert knowledge.

A novel method is used to generate calibrated ensembles using
input distribution of whose PDF is described by posteriori pseudo-
likelihood function. For calculating the distance between simulated
and observed burn surface for all the cases of seven fires, Wasser-
stein distance is used. A gaussian emulator is constructed using the
MCMC algorithm in about one day with 8 computing cores to gen-
erate the calibrated input distribution due to the high dimensions
and computation requirements of the input parameters.

The calibrated ensembles lead to better accuracy and consistency
than uncalibrated ensembles. The marginal probability distribution
of the input parameters results in a significant difference when the
calibration value is increased. This help in limiting over-prediction
and restricting the probability to cover more of the observed burn
surface.

1 INTRODUCTION
Wildlife fire prediction is a very challenging task due to high uncer-
tainty in the input parameters and the environmental conditions.
Several physical and quasi-physical models[14] have been proposed
to understand the fire spread behavior with different complexity.
The dynamics of the fire behavior shape are described in the 2D fire
simulation model[15], which are better and quicker for generating
operational predictions. This model relies on the semi-empirical
equation for calculating the rate of spread(ROS) of fire which fur-
ther depends on wind and slope factors. Instead of using a single
deterministic prediction, a probabilistic model for quantifying the
uncertainties can be proposed. The Monto Carlo method can be
used to propagate the uncertainties where several input sets are
sampled independently from a predefined probability distribution
that describes the input uncertainty. This leads to the ensemble of
the fire spread simulation which can be combined to form a burn
probability map showing the probability in observed burn surface
as illustrated in Figure 1.

Figure 1: An ensemble result for the simulated fire front.
The left shows the five black lines of a firefront. Right is the
aggregation of five firefront in to burn probability map.

The main idea of the present paper is to calibrate the probability
distribution of the input parameters and to solve the problem of
inverse uncertainty quantification[16]. Two major problems were
identified: one with a large number of uncertain inputs and other
models considered is "black box" whose formula for likelihood can-
not be implemented easily. So, a novel score is applied for the cali-
bration of input probability distribution comparing surfaces using
Wasserstein distance for various wildland fires. Various uncertain
inputs were found in[1] using direct uncertainty quantification.
Therefore, the main goal is to find better probability scores by cali-
bration of uncertain distribution on the observed burn surface of
seven Corsican fire spreads.

The paper outlines the following sections. In Section 2, the theo-
retical method for the calibration is discussed. In Section 3, those
methods are applied for the real-life application of seven Corsican
fire spreads. In Section 4, the results for the emulation energy func-
tion, calibrated distribution simulation and ensemble evaluation
is shown. In Section 5, conclusion is made and further research is
defined.

2 A POSTERIORI UNCERTAINTY
QUANTIFICATION

The author explained three sources of uncertainty namely unknown
parameters, model inadequacy, and observation error. They pur-
posed a Bayesian approach for the calibration of different forms of
input uncertainty. The starting part of this method points to a model
updating equation (equation (4) in [9]). Two additive terms that,
respectively, take into account model inadequacies and observation
mistakes are used to quantify the difference between observations
and the associated model outputs at given parameter values. Input
uncertainties are approached by perturbation whereas model ad-
equacy and observation errors are not taken into account. Error
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in observed burn surfaces is considered to be measured negligible
when compared to the error due to other sources of uncertainty.

In this section, we consider only one observed burn surface. Let
𝑆𝑜𝑏𝑠 be an observed burn surface and M represents a numerical
model of fire spread in which input depends upon input 𝑢 of per-
turbation d based on reference inputs. This simulation is applied on
the observed burn surface which results simulated burned surface
denoted as 𝑆𝑢 (one may define 𝑆𝑢 = M(u)). To make a direct compar-
ison between 𝑆𝑢 and 𝑆𝑜𝑏𝑠 , uncertainty is modeled by attributing
probabilistic distribution 𝑢 to the perturbation vector. The distri-
bution of 𝑢 is assumed to be described by a new quantity called
probability density function denoted as g and its prior distribution
by prior density function denoted as f. So, the main idea is to obtain
g by making the best possible use of f, 𝑆𝑜𝑏𝑠 and M.

2.1 Distribution based on Wasserstein distance
𝑝 (.|𝑆𝑜𝑏𝑠 ) is the posterior density function that would be the classical
choice for g and is obtained according to Bayes’ rule:

𝑝 (𝑢 | 𝑆obs ) =
L (Sobs | 𝒖) 𝑓 (𝒖)∫
L (Sobs | 𝑢) 𝑓 (𝑢)𝑑𝑢

, ..........(1)

where the likelihood of the observation 𝑆𝑜𝑏𝑠 knowing the perturba-
tion vector 𝑢 is 𝐿(𝑆𝑜𝑏𝑠 |𝑢). But if we define the likelihood, then we
need to make an appropriate probabilistic hypothesis, where the re-
alization of a 2D stochastic process whose distribution is dependent
on 𝑢 is 𝑆𝑜𝑏𝑠 . Hypothesizing it like this is not trivial, but to move
forward, we would use 𝑆𝑢 instead of just 𝑢 and define a conditional
probability distribution for 𝑆𝑜𝑏𝑠 based on 𝑆𝑢 . The fact that the most
likely realizations of 𝑆𝑜𝑏𝑠 are the ones that are most similar to 𝑆𝑢
is a desirable property of such a probability distribution. When
two points in a 2D domain are close, similarity should take into
account high correlation between these points. For example, if a
given location has a high probability of being burned, the neighbor-
ing locations should also have a high probability of being burned.
Even so, it may not entail that just because defining a likelihood
for a vector is feasible, it has to be the same for a random surface as
well. Hence, we may use a calibrated distribution where the density
g can be written as (inspired by Bayes’ rule):

𝑔𝐸,𝛽 (𝑢) =
𝑒−𝛽𝐸 (𝑢) 𝑓 (𝑢)∫
𝑒−𝛽𝐸 (𝑢) 𝑓 (𝑢)𝑑𝑢

, ..........(2)

where 𝛽 > 0 and E is a positive "energy" function that is 0 when
𝑆𝑢 = 𝑆𝑜𝑏𝑠 and the more dissimilar 𝑆𝑢 and 𝑆𝑜𝑏𝑠 become, the more it
increases. Here, in equation (1), the role of L is played by a pseudo-
likelihood function. The calibrated family of functions is different
from the Gibbs measures although inspired by it as the exponential
is multiplied by the prior PDF f. The higher 𝛽 , the more weight the
pseudo-likelihood function holds and when 𝛽 = 0, the calibrated
PDF and prior PDF are equal.

To make suitable choices for E, there exists several scores to
compare 𝑆𝑜𝑏𝑠 and 𝑆𝑢 and could be used directly or after minor
modifications. A metric between the probability distributions called
the Wasserstein distance is used to introduce a novel score in the
present study. A reference to [13]. The Wasserstein distance, de-
noted asW2 (𝜇, 𝜈), between two probability measures mu and nu,
both defined on R𝑞 , whose square is defined as follows:

W2
2 (𝜇, 𝜈) = inf

{∫
R𝑞×R𝑞

| |𝑥 − 𝑦∥2
2𝑑𝛾 (𝑥,𝑦) | 𝛾 ∈ Γ(𝜇, 𝜈)

}
, ..........(3)

where ∥ · ∥2 is the Euclidean distance (in R𝑞) and Gamma(mu,
nu) is the ensemble of the measures defined on R𝑞 x R𝑞 such that
mu is the conditional measure relative to the first variable and
nu is the conditional measure on the second variable. It is natural
to consider q = 2 for comparison between surfaces and choose
uniform measures whose support is respectively 𝑆𝑜𝑏𝑠 and 𝑆𝑢 for
the probability measures mu and nu. After making these choices,
E(u) can now be defined as:

𝐸 (𝑢) = inf
𝛾

{∫
Sobs ××𝑆𝑢

∥𝑥 − 𝑦∥2
2𝛾 (𝑥,𝑦)𝑑𝑥𝑑𝑦 |∫

Su

𝛾 (𝑥,𝑦)𝑑𝑦 =
1 (𝑥 ∈ Sobs )

|Sobs |
,∫

Sobs

𝛾 (𝑥,𝑦)𝑑𝑥 =
1 (𝑦 ∈ 𝑆𝑢 )

|S𝑢 |

} ..........(4)
where 1 is the indicator function, ∥ · ∥2 is the Euclidean distance
(in R2), and |S| is the surface area of S. We can think of it as the
minimum energy required to move the points contained in 𝑆𝑜𝑏𝑠 to
transform the surface into 𝑆𝑢 . When both surfaces are the same, E(u)
= 0. There is no simple analytic formula for Wasserstein distance
except for some particular cases. This leads to us considering a dis-
crete approximation of E(u) instead, which is obtained numerically
via a discretization of the PDFs by a sum of Dirac delta distributions.
Now, E(u) can be defined as:

𝐸 (𝒖) = inf
𝛾

{∫
Sobs×S𝑢

∥𝑥 − 𝑦∥2
2𝛾 (𝑥,𝑦)𝑑𝑥𝑑𝑦 |∫

S𝒖

𝛾 (𝑥,𝑦)𝑑𝑦 =
1
𝐽

𝐽∑︁
𝑗=1

𝛿𝑥 𝑗 (𝑥),∫
Sobs

𝛾 (𝑥,𝑦)𝑑𝑥 =
1
𝐾

𝐾∑︁
𝑘=1

𝛿𝑦𝑘 (𝑦)

, ..........(5)

where 𝛿𝑥 is the Dirac delta distribution at point x belongs to R2 and
each 𝑥 𝑗 belongs to 𝑆𝑜𝑏𝑠 , whereas 𝑦𝑘 belongs to 𝑆𝑢 . The admissible
distributions in this discrete setting can be represented by a matrix
of size 𝐽𝑥𝐾 where each cell 𝛾 𝑗𝑘 is positive and indicates the "prob-
ability mass" that is transferred from 𝑥 𝑗 to 𝑦𝑘 . Here, the infimum
of (5) is arrived at and is the solution of the linear programming
problem below:

min
𝛾 𝑗,𝑘

𝐽∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝛾 𝑗𝑘


𝑥 𝑗 − 𝑦𝑘

2

2 , ..........(6)

subject to

𝛾 𝑗𝑘 ≥ 0,
∑︁
𝑗

𝛾 𝑗𝑘 =
1
𝐾
,

and ∑︁
𝑘

𝛾 𝑗𝑘 =
1
𝐽
, ..........(7)
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which is also called the Earth Mover’s distance [3]. From graph
theory, we know that the optimal 𝛾 is a sparse matrix that has
at most 𝐽 + 𝐾 − 1 non-zero cells. There is an issue that we need
to address and that is of the denominator of 𝑔𝐸,𝛽 (𝑢) in (2), which
is an intractable high-dimensional integral. But this integral does
not depend on u, so for a given beta, the PDF is known up to
some constant factor. In this case, we can draw samples from that
distribution using the Metropolis-Hastings (MH) algorithm. We
can compute 𝑆𝑢 and the Wasserstein distance to obtain 𝐸 (𝑢) in a
reasonable amount of time. Even still, a large number of iterations
(105) of the MH algorithm may be required to obtain a sufficiently
large sample which is extremely time consuming. To make the MH
algorithm faster, we use an emulator 𝐸. The emulated value 𝐸 (𝑢) is
much faster to compute and provides a good approximation of 𝐸 (𝑢).
In order to determine how appropriate the sample returned by the
MH algorithm is, a multivariate diagnostic metric as proposed in
[4] can be used.

2.2 Emulation
2.2.1 Gaussian Process Modelling. We use the Gaussian process
(GP) modelling method in this study, also called kriging. Here, 𝑦 (𝒖)
is seen as a realization of a Gaussian process 𝑌𝑢 and is indexed by
𝑢. It means that any random vector

[
𝑌𝑢1 , . . . , 𝑌𝑢𝑛

]𝑇 with 𝑛 < ∞
components follows a Gaussian multivariate distribution. Let the
trend function of the process be denoted by 𝑎: E [𝑌𝑢 ] = 𝑎(𝒖). 𝑍𝑢 =

𝑌𝑢 − 𝑎(𝑢), which is the centered process, is also a Gaussian and
has a covariance function of the form Cov (𝑢,𝑢 ′) = 𝜎2𝜌 (𝑢 − 𝑢 ′),
where 𝜎2 > 0 and 𝜌 are the correlation functions between two
input points 𝒖 and 𝒖 ′.

We have a set of training data for use:
(
𝑢𝑖 , 𝑦

(
𝑢𝑖
) )
𝑖=1,...,𝑛 . Let

us denote 𝒀𝑛 =
[
𝑌𝒖1 , . . . , 𝑌𝒖𝑛

]𝑇
,𝒚𝑛 =

[
𝑦
(
𝒖1) , . . . , 𝑦 (𝒖𝑛)]𝑇 and

define the correlation matrix 𝑅𝑛 on the inputs of the training data:

𝑅𝑛 =

(
𝜌

(
𝑢𝑖 − 𝑢 𝑗

))
1≥𝑖, 𝑗≥𝑛

..........(8)

and 𝒂𝑛 =
[
𝑎
(
𝒖1) , . . . , 𝑎 (𝒖𝑛)]𝑇 , the vector of trends in the training

data.
For a new point 𝑢∗ (irrespective of weather it is in the training

sample), the correlation vector is defined as
𝒓∗ =

[
𝑟
(
𝒖∗ − 𝒖1) , . . . , 𝑟 (𝒖∗ − 𝒖𝑛)

]𝑇 . As per the assumptions made
on𝑌𝒖 , the joint probability distribution (𝑌𝑛 and𝑌𝑢∗ ) and conditional
distribution of 𝑌𝑢∗ knowing 𝑌𝑢∗ are Gaussian. We can write:

𝑌𝑢∗ | 𝑌𝑛 ∼ N
(
E
[
𝑌𝑢∗ | 𝑌𝑛

]
,Var

[
𝑌𝑢∗ | 𝑌𝑛

] )
..........(9)

where

E
[
𝑌𝑢∗ | 𝑌𝑛

]
= 𝑎

(
𝑢∗

)
+ 𝑟∗𝑇𝑅−1

𝑛 (𝑦𝑛 − 𝑎𝑛) ..........(10)

and

Var
[
𝑌𝑢∗ | 𝑌𝑛

]
= 𝜎2

(
1 − 𝑟∗𝑇𝑅−1

𝑛 𝑟∗
)
..........(11)

We can define an emulator 𝑦 of 𝑦 as the mean of the conditional
variable given by (10) for any 𝑢∗ ∈ 𝐷 :

𝑦
(
𝑢∗

)
= 𝑎

(
𝑢∗

)
+ 𝑟∗𝑇𝑅−1

𝑛 (𝑦𝑛 − 𝑎𝑛) ..........(12)

A linear trend is chosen for 𝑌𝑢 in the present case: E [𝑌𝑢 ] =

𝑎(𝑢) = 𝛼0 + 𝑢𝑇𝛼 where 𝛼0 ∈ R and 𝛼 ∈ R𝑑 . A product of one-
dimensional Matérn 5/2 correlation functions is the choice for the
correlation function:

∀𝑢,𝑢 ′ ∈ D, 𝜌
(
𝑢 − 𝑢 ′

)
=

𝑑∏
𝑙=1

©­­«1 +

√
5
���𝑢𝑙 − 𝑢 ′𝑙 ���
𝜃𝑙

+
5
���𝑢𝑙 − 𝑢 ′𝑙 ���2

3𝜃2
𝑙

ª®®¬
exp

©­­«−
√

5
���𝑢𝑙 − 𝑢 ′𝑙 ���
𝜃𝑙

ª®®¬ , ..........(13)

where 𝜃1, . . . , 𝜃𝑑 > 0.
In this study, universal kriging is used which signifies that the

trend is a unknown polynomial (as seen in [12]). Practically, the 2𝑑+
2 hyperparameters 𝜎2, 𝛼0, 𝛼1, . . . , 𝛼𝑑 , 𝜃1, . . . , 𝜃𝑑 that the Gaussian
process is defined by are unknown and can be estimated as the
maximum likelihood estimators for the training data set.[10]

2.2.2 Design of experiments and error metrics. We use a Latin hy-
persquare sample (LHS) to obtain the the inputs of the training
sample with optimized discrepancy. Because of the fact that the
GP emulator is built from the points of the training sample, to
evaluate he approximation of the emulator far from the training
points, a complementary test sample is generated (obtained with
algorithm for an optimal validation design [? ]) which relies on a
low discrepancy sequence whose points are chosen to maintain
a low discrepancy when both training and test samples are taken
together. The goal of this process is to select points that are located
far from each other but it is also expected to be far from the points
displayed in the training sample where the expectations for approx-
imation error is higher. As per the test sample

(
𝑢𝑖 , 𝑦

(
𝑢𝑖
) )
𝑖=1,...,𝑛test ,

we can use several error metrics to evaluate the emulator 𝑦. In this
study, we use the mean absolute error (MAE) which is defined as:

MAE =
1

𝑛test

𝑛test∑︁
𝑖=1

���𝑦 (
𝒖𝑖
)
− 𝑦

(
𝒖𝑖
)��� ..........(14)

We then introduce the standardized mean square error (SMSE),
which is defined as:

SMSE =

∑𝑛test
𝑖=1

(
𝑦
(
𝒖𝑖
)
− 𝑦

(
𝒖𝑖
) )2∑𝑛test

𝑖=1
(
𝑦
(
𝒖𝑖
)
− 𝑦

)2 ..........(15)

where 𝑦 = 1
𝑛test

∑𝑟rest
𝑖=1 𝑦

(
𝑢𝑖
)
is the sample mean of the emulated

function based on the test sample. It can be perceived as the mean
squared error which is normalized by the variance of the function
on the test sample. But a more commonly used metric is the 𝑄2
metric which is closely related to the SMSE and is defined as:

𝑄2 = 1 −
∑𝑛teet
𝑖=1

(
𝑦
(
𝒖𝑖
)
− 𝑦

(
𝒖𝑖
) )2∑𝑛test

𝑖=1
(
𝑦
(
𝒖𝑖
)
− 𝑦

)2 = 1 − SMSE ..........(16)

As the error of the emulator decreases, the MAE advances to-
wards 0 and the 𝑄2 advances towards 1. If a model always predicts
the mean of the training set, the 𝑄2 would approximately be equal
to 0.
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2.3 Extension to several fire cases
If we consider 𝐾 fire cases, we can compute the energy functions
𝐸1, . . . , 𝐸𝐾 that correspond to each fire. Intuitively, a choice for
the combined energy function is 𝐸 :u ↦→ ∑𝐾

𝑘=1 𝐸𝑘 (𝑢). But an issue
arises when the variations of 𝐸1 (𝑢) (for example) are much higher
than for the rest of the fires. If this happens, then 𝐸1 (𝑢) will mostly
dictate the variations of the pseudo-likelihood, and the calibrated
distribution will be mostly represented by the information of the
first fire at the cost of the rest of the fires.

To go around this issue, we can weigh each fire depending on
the values taken by 𝐸𝑘 (𝑢) and the energy function is then defined
as the weighted sum of squared Wasserstein distances:

𝐸 (𝒖) =
𝐾∑︁
𝑘=1

𝑤𝑘𝐸𝑘 (𝒖), ..........(17)

where we define the weights using all points from the training
dataset:

𝑤𝑘 =
𝑛∑𝑛

𝑖=1 𝐸𝑘
(
𝑢𝑖
) ...........(18)

We can emulate 𝐸 (𝑢) directly but even though the function is
positive, emulation by Gaussian Process does not ensure positivity
outside the training sample. As an alternate, wemay emulate 𝐿(𝒖) =
log𝐸 (𝒖) by the GP procedure, which leads to the emulator 𝐿̃(𝑢).
Emulation of 𝐸 (𝑢) is derived from taking the exponential 𝐸 (𝒖) =
exp 𝐿̃(𝒖), which guarantees positivity. The R-package DiceKriging
is used to implement the Gaussian Process emulation. [12]

2.4 Sampling from the calibrated distribution
In this section, we talk about the procedure we use to obtain a
sample following a PDF of the form 𝑔

𝐸̃,𝛽
as defined in equation (2).

We use the emulator 𝐸 instead of the energy function 𝐸 to run the
algorithm in reasonable computational time with the assumption
that the target distribution of MH is close enough to the desired
distribution which has a PDF 𝑔𝐸,𝛽 . This procedure is represented
in the algorithm in Figure 2.

The process is presented in Figure 2. Let𝑚 denote the number of
chains and 𝑛 denote the number of samples per chain such that the
𝑖-th element of the 𝑗-th chain is denoted as𝑢𝑖, 𝑗 . The distribution that
is used to sample a candidate 𝑢𝑐,𝑗 from element 𝑢𝑖−1, 𝑗 is defined by
the PDF𝑞 :u ↦→ 𝑞(𝑢 | 𝑣). Figure 2 presents the use of a version ofMH
with several chains and is motivated by the convergence diagnosis
for MCMC (Markov Chain Monte Carlo) algorithms introduced by
Brooks and Gelman[4]. Choosing the starting points 𝑢1,1, . . . , 𝑢1,𝑚
quite far from each other is recommended. We can easily parallelize
the loop on the𝑚 chains. The between-sequence covariance matrix
𝐵/𝑛 (of size 𝑑 ) and the within sequence covariance matrix𝑊 are
computed as given below, based on the chains returned by the MH
algorithm:

𝐵/𝑛 =
1

𝑚 − 1

𝑚∑︁
𝑗=1

(
𝑢 𝑗 − 𝑢

) (
𝑢 𝑗 − 𝑢

)𝑇
, ..........(20)

𝑊 =
1

𝑚(𝑛 − 1)

𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

(
𝑢𝑖, 𝑗 − 𝑢 𝑗

) (
𝑢𝑖, 𝑗 − 𝑢 𝑗

)𝑇
, ..........(21)

Figure 2: Metropolis-Hastings algorithm applied to 𝑔
𝐸̃,𝛽

(sev-
eral chains)

where 𝑢 𝑗 = 1
𝑛

∑𝑛
𝑖=1 𝑢𝑖, 𝑗 is the sample mean of the 𝑗-th chain, and

𝑢 = 1
𝑚

∑
𝑗=1 𝑢 𝑗 is the sample mean over all chains. The metric used

to analyze convergence is

𝑅𝑑 =
𝑛 − 1
𝑛

+
(
𝑚 + 1
𝑚

)
𝜆1, ..........(22)

where the largest eigenvalue of the symmetric, positive definite
matrix𝑊 −1𝐵/𝑛 is 𝜆1. At convergence, 𝑅𝑑 tends to 1, and as per the
recommendations of Gelman and Brooks[4], it can be considered
that a sufficient number of MH iterations has been carried out if
𝑅𝑑 < 1.1 for the second half of the chains. This shows that the set
that has the second half of all𝑚 chains makes up a representative
sample of the target distribution when 𝑅𝑑 < 1.1.

3 APPLICATION TO WILDLAND FIRE SPREAD
3.1 Fire spread simulation
We use the open source fire spread solver ForeFire [7] in this study.
A front-tracking technique is used to model the spread of the fire
front (the interface between the burned surface and the rest of the
simulation domain–unburned). Langrangian markers linked by a
dynamic mesh is used to discretize the fire front. The markers are
advanced according to the surface geometry and the rate of spread
(ROS). As opposed to discrete time simulation methods, ForeFire
is reliant on a discrete event specification. The markers are the
advanced according to a given spatial increment and from its speed,
we deduce the time at which the marker will reach its next position,
thereby rendering the process asynchronous. Advancing a marker
in time is counted as an event. With other events, we can calculate
the future location and time advance of a marker, like topology
checks that determine whether the markers describe a properly
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burned surface and then reshapes the fire front when it is not the
case.

The ROS in this study is computed according to the empirical
model of Rothermel[11], widely used in wildland fire simulation,
which consists of numerous parameters already fitted and fixed
through an analysis of a large set of laboratory experiments. The
input variables of the ROS model that are subject to perturbation
in this study are𝑚𝑐 , the fuel moisture content of dead fuel, 𝑆𝑣 the
surface volume ratio, Δ𝐻 , the heat content, 𝜎𝑓 , the fuel load, 𝜌𝑝 ,
the particle density, ℎ, the fuel bed depth (denoted as fuel height
in the following section), and𝑊𝑆 , the "effective" wind speed in the
direction of fire spread, denoted as 𝑛.

Some additional assumptions are also made: first, the mineral
damping coefficient is assumed to be 1 and second, the fuel mineral
content is negligible which means that the net initial fuel loading is
equal to the fuel load 𝜎𝑓 . Additionally, to make up for the fact that
the wind speed at mid-height of the flame is usually lower than
that of the prediction, a 0.4 factor in ROS computations is applied
to𝑊 , the wind speed vector predicted by the meteorological model,
so that𝑊𝑆 = 0.4𝑊 .𝑛. We also apply the revised wind speed limit
function (proposed by Andrews et al.[2]) which is expressed in
equation (21).

The process used to advance the markers of the fire front is based
on a first-order approximation. Assuming a marker that at time 𝑡𝑖
is located at 𝑥𝑖 , with its normal to the front denoted as 𝑛𝑖 (oriented
towards the unburned area), the next location is determined by:

𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑙𝑛𝑖 , ..........(23)
and the advance in time is dependent on 𝑅𝑂𝑆𝑖 , which is the ROS
calculated with the values of the environmental inputs at location
𝑥𝑖 at time 𝑡𝑖 as defined here:

𝑡𝑖+1 = 𝑡𝑖 +
𝛿𝑙

𝑅𝑂𝑆𝑖
..........(24)

3.2 Prior uncertainty in input data

Figure 3: Prior probability distributions of the perturbations
in simulation inputs

Figure 3 shows the marginals of the prior distribution for the
perturbation variables used in this study. We assume the inputs
to be independent. The perturbation variables are described in a
previous study [1], where the distributions were mostly truncated
normal (table 2 in [1]). Expert knowledge and the support of the

marginals followed values found in the scientific literature were
used to choose the value of the standard deviations. In this study,
we choose a wider support for some of the distributions, which
can be substituted for uniform distributions. This choice is a result
of initial efforts at calibration where evaluation was performed
on ensembles of simulations that came from a few specific input
distributions. This gave way to obtain better probabilistic scores
for mot of the fires studied even though it can be considered as
somewhat arbitrary.

In these simulations, up to 13 burnable fuel types may be in-
volved and are linked to the Corine Land Cover classification [6].
In Figure 3, when the perturbation is "individual", it signifies that
one perturbation coefficient is sampled for each fuel type.

For one simulation, the number of perturbation coefficients gen-
erated are d = 48. The distributions are truncated for wind direction
and wind speed norm, and the "Distribution" column corresponds
to the distribution before truncation is applied. The main reason we
choose these distributions with finite support is to avoid sampling
extreme values that may turn out to be unrealistic or can lead to
non-physical parameter values.

The perturbation parameters "direction from ignition point" and
"distance to ignition point" specify the uncertainty in the location
of the ignition point. In order to sample a perturbed ignition point,
we could first sample a direction and select the new ignition point
at an independently sampled distance from the reference ignition
point in this direction.

The maximum distance Δmax depends on the fire case: the range
for sampling the perturbed ignition point may therefore be within a
radius ranging from 100 m to 1 km around the reference. Similarly,
the maximum perturbation Δmax for the time of start of the fire
and time of end of the fire depends on the fire case. The varying
uncertainty is because of the information available about each fire.
Δmax is specific to each fire case for the last three variables. But for
the calibrations, one one "reduced" variable exists for each of these
three inputs, whose support is either [0, 1] or [−1, 1]. We obtain
the actual perturbation used to run the fire spread simulations for
a given fire case from the reduced variable after multiplication by
Δmax.

3.3 Application to seven Corsican wildfires
The procedure for emulation and calibration is applied to 𝐾 = 7
fires that took place in Corsica in the period 2017-2018 and are
presented in [1]. From here on, we refer to "reference ensembles"
as the ensembles obtained in this previous study.

We build an emulator with training sample of size 4000 and is
evaluated with a test sample of size 2000. Following equation (5),
for computation of the Wasserstein distance, we can consider an
orthogonal uniform grid that covers the burned surface which is
used to approximate the PDF by a sum of Dirac delta distributions
at these points. The size of the surfaces influences the spatial reso-
lution of the grid because of the drastic increase in computational
cost with the number of points. The resolution is approximately
20 m for small burned surfaces and about 80 m for the largest ones.
We carry out these computations using the package ot from the
Python toolbox POT. [8]
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The MH algorithm is then applied to several distributions with
varying values of 𝛽 ranging in

{ 1
10 ,

1
7 ,

1
4 ,

1
2 , 1, 2

}
. 𝑛 = 150000 itera-

tions are carried out for each value of 𝛽 for𝑚 = 8 chains. 𝑞(𝑢 | 𝑣),
which describes the instrumental distribution is a product of inde-
pendent univariate truncated normal distributions. The 𝑘-th normal
distribution is focused on the 𝑘-th component of 𝑣 before truncation
the standard deviation is equal to a twentieth of the perturbation
range’s width. The logarithm of the perturbation follows a trun-
cated normal distribution for the perturbation of wind speed norm.

Taking the second half of the chains obtained using the MH
algorithm, we get samples of size𝑚 ×𝑛/2 = 600000 for every value
of 𝛽 . What we will refer to as "calibrated ensembles" from here on
are the ensembles of wildland fire simulations that are generated
for the seven fire cases based on these empirical distributions. A
calibrated ensemble’s size ranges between 2000 and 10000. The
evaluation domain follows that of the reference ensembles but
in contrast to the previous study, no computational time limit is
applied to the simulations. "Prior ensembles" are obtained when the
ensemble generation procedure is carried out based on the prior
distributions.

The ensembles are evaluated following the approach in [1]. Here,
we define some of these evaluation tools. Let us consider an evalua-
tion domain X large enough to contain Sobs , the observed burned
surface, and a regular grid onX that comprises 𝑁 points 𝑥1, . . . , 𝑥𝑁 .
Now defining 𝑝𝑖 = P [𝑥𝑖 ∈ S𝑈 ] and 𝑜𝑖 = 1 if 𝑥𝑖 ∈ Sobs , 0 otherwise,
the Brier score (𝐵𝑆) is defined as:

𝐵𝑆 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑜𝑖 − 𝑝𝑖 )2 ..........(25)

This score lies between 0 and 1 and is negatively oriented. From
the ensembles that forecast a constant probability, the probability
𝑝𝑐 =

1
𝑁

∑𝑁
𝑖=1 𝑜𝑖 is used to obtain the one with the lowest Brier score

and the Brier score of this ensemble is 𝐵𝑆𝑐 = 𝑝𝑐 (1 − 𝑝𝑐 ). The Brier
skill score (BSS) is defined as;

BSS = 1 − 𝐵𝑆

𝐵𝑆𝑐
, ..........(26)

which is positively oriented. In case of several fires, the Brier scores
are summarized by their mean. The corresponding value of 𝐵𝑆𝑐
is obtained with the mean of the 𝑝𝑐 . Using these two global Brier
scores, we can define the Brier skill score as can be seen in equation
(26). In practice though, a Monte Carlo method is used to estimate
the probabilities 𝑝𝑖 , which means we only have an estimate of the
true values of 𝐵𝑆 and BSS. The standard deviation of the estimator
may be estimated with bootstrap [5], where we re-estimate the
probabilities 𝑝𝑖 by sampling with replacement among the burned
surfaces. Given a significantly large set of bootstrap samples, we get
𝜎𝑏
𝐵𝑆𝑆

, an estimator of the standard deviation of BSS. We can show
that the estimators of both 𝐵𝑆 and BSS are asymptotically normal
and that the bootstrap estimation is consistent by the regularity of
𝐵𝑆 . Now it becomes possible to establish an approximate confidence
interval at level 1−𝛼 for BSS based on 𝜎𝑏

𝐵𝑆𝑆
and the quantile of the

standard normal distribution for probability 1 − 𝛼/2. To provide
95% confidence intervals of BSS, bootstrap re-sampling was carried
out.

In order to create a summary of the information given by the
other tools used for evaluation on several fires (rank histogram,

reliability and sharpness diagrams), we weigh the contribution of
each fire case by the size of the evaluation domain before adding the
contributions of the seven fires. The varying ensemble size causes
the values of the rank to be normalized for the rank histogram.

4 RESULT
4.1 Emulation

Figure 4: Error of emulator function on test data

The result of the predicted emulated test data is shown in Figure
4. The grey line indicates a perfect line fit. As shown in Figure 1, test
sets are deviating from this grey dotted line which indicates some
amount of error in the emulation result. The author used two error
metrics to describe the test results which areMAE andQ2. Values for
their approximation are found to be 0.73 and 95.3% respectively. As
mentioned by the author use of logarithm favors a good approxima-
tion in comparison with non-logarithmic computation (MAE = 0.97
and Q2 = 93.2% ). A decrease in error results MAE value being closer
to 0 and Q2 tends to move towards 1. It took them like 0.6 seconds
to create results for one energy function. This means to perform
150000 iterations of the MH algorithm, took them more than a day.

4.2 Ensemble Evaluation
The author presented the values for Brier Skill Score for all the
seven cases of fire as shown in Table 1. The size of the ensemble
is considered for all the ensembles except the one with reference
ensembles that are of size 500. It can be seen that prior ensembles
are showing better results than the reference ensemble. The scores
are also improved when calibrated ensembles are compared with
the prior ensemble but it is not true for all fire cases.

For the fire of Sant’Andrea di Cotone, Olmeta di Tuda andGhisoni,
there is an increase in BSS value with ß. For the fire of Chiatra,
there is a decrease in BSS value with ß. For the fire of Calenzana and
Ville di Paraso, influence of change in BSS is not so significant with
ß but for some optimum value of ß, BSS is maximum. This raises
the question that which ß value is best to consider. For three cases
of fire, the value of ß=2 gives us the best result but for the three of
the remaining four results value of ß=2 gives us the lowest score.
In general, the value of ß=2 is considered best since the decrease
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Table 1: Brier Skill Score of the reference prior and calibrated ensembles for different values of ß in all seven fire cases. The
best result for all the seven fire cases is shown in bold.

Fire name(ensemble size) Reference Prior ß = 1/10 ß = 1/7 ß = 1/4 ß = 1/2 ß = 1 ß = 2

Calenzana(10000) 0.269 0.291 0.304 0.308 0.309 0.314 0.308 0.284
Chiatra(10000) 0.324 0.386 0.385 0.379 0.371 0.358 0.342 0.325

Ville di Paraso(2000) 0.021 0.168 0.179 0.182 0.189 0.188 0.176 0.168
Sant’Andrea di Cotone(5000) 0.190 0.408 0.429 0.442 0.454 0.468 0.485 0.494

Olmeta di Tuda(2000) 0.063 0.187 0.230 0.219 0.278 0.322 0.378 0.451
Nonza(4000) -5.323 -3.089 -3.124 -3.133 -3.124 -3.044 -3.057 -3.053
Ghisoni(2000) -9.986 -10.273 -9.831 -9.851 -9.333 -9.018 -8.638 -8.332

Global -1.609 -1.332 -1.266 -1.269 -1.191 -1.135 -1.080 -1.033

Table 2: Ranking of Brier Skill Score

Fire name (ensemble size) Reference Prior ß = 1/10 ß = 1/7 ß = 1/4 ß = 1/2 ß = 1 ß = 2

Calenzana (10000) 8 6 5 3 2 1 3 7
Chiatra (10000) 8 1 2 3 4 5 6 7

Ville di Paraso (2000) 8 6 4 3 1 2 5 6
Sant’Andrea di Cotone (5000) 8 7 6 5 4 3 2 1

Olmeta di Tuda (2000) 8 7 5 6 4 3 2 1
Nonza (4000) 8 4 5 7 5 1 3 2
Ghisoni (2000) 7 8 5 6 4 3 2 1

Sum 55 39 32 33 24 18 23 25

Overall ranking 8 7 5 6 3 1 2 4

in BSS value is relatively low as compared to the increase in BSS
value when ß increases.

To find the best value of ß, the authors have presented another
table indicating the rank of the Brier Skill Score for all the ensembles
as shown in Table 2. Rank score from 1-8 is given to all the results
from the different ensembles and the overall ranking is calculated
by summing the rank. According to the method, it is found that ß
= 1/2 gives the best distribution for the ensembles. 95% confidence
interval is also estimated using 10000 bootstrap samples for each
of the ensembles and reported in Table 3 Appendix B.

Figure 5 shows the reliability and sharpness diagram for all
the ensembles used. It can be seen that in the case of calibrated
ensembles lines tends to move near the dotted line which indicates a
perfect reliable prediction for a probability of 0.4 or less. In general,
prediction is more reliable for calibrated ensembles as compared
to a reference or prior ensembles. Sharpness is also plotted for the
reference, prior, ß = 1/4 and ß = 2 distributions.

In Figure 6, global rank histogram for various ensembles distribu-
tion is shown. The dotted horizontal line indicates the ideal line for
consistency. Higher bars on the left side of the histogram describe
that there is some tendency to over-predict the probabilities. This
over-prediction can be limited by calibration which results in an
ideal flat histogram. Burn Probability Map for reference , prior and
calibrated (ß = 2) ensembles is shown in Figure 7a in Appendix
A. As we move from reference to a prior ensemble, the non-zero
probability region reaches further location due to high uncertainty

in the input parameters. This extension is limited in the calibrated
ensemble because calibrated distribution favors lower ROS(Rate of
Spread). This limitation results in better accuracy of the prediction.

5 CONCLUSION
The study purposed a novel method to generate calibrated ensem-
bles using input parameters whose distribution depends on the
posteriori pseudo-likelihood function. A gaussian emulator is built
to obtain various calibrated ensembles for all the seven fires which
involve Wasserstein distance between the simulated and observed
burned surface. Emulation of the energy function resulted in a good
result(𝑄2 > 95%) so that the fire spread prediction has better overall
accuracy. It is safe to note that increasing the value of ß leads to a
lower marginal distribution for the heat of combustion(ROS) and
also lower uncertainty in wind direction. The best overall BSS score
is found for ß=1/2, although it is not good globally but rather best
for most fire cases. In all the seven fire cases, prior ensembles tend
to over-predict the burn probability. The calibrated ensembles limit
this more significantly and ultimately lead to great overall accuracy.

The calibrated ensembles generally result in a lower heat value
and limit the overprediction of burn probability. If the prior ensem-
ble is underpredicted, increasing ß will make underprediction more
significant. In the simulation, firefighting actions are not modeled,
so underprediction is less preferred than overprediction. This raises
a question about the choice of ß for the pseudo-likelihood function.
It is found by ranking the BSS score for the seven fire cases, the
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(a) Reliability plot

(b) Sharpness plot

Figure 5: Reliability and Sharpness plot for the results of
various ensemble.(a) This shows a dotted black line indicating
the perfect reliable prediction.

Figure 6: RankHistogram for the results of various ensemble.

value of ß = 1/2 leads to better overall accuracy. Another question
that is to be considered is the choice of the fire cases. In this paper,
all large fire for one season and region is considered. So, there is
no guarantee that the results will be the same for all the other fire
cases as well.

Overall, a novel method was purposed for calibrating the burn
probabilistic predictions of wildland fire spread. Prediction accuracy
is very crucial and needs to be improved since it adversely affects
endangered species, human lives, infrastructures, and ecosystems.
Further research on this topic can be considered to combine all

those calibrated ensembles with models for probability of ignition
and value at stake to access the next day’s wildlife risk.
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APPENDICES
A ADDITIONAL FIGURES

(a) Reference ensemble

(b) Prior ensemble

(c) Calibrated ensemble,ß = 2

Figure 7: Burn probability map for the results of various en-
sembles. Colored scale on the right represent the burn proba-
bility. Black and white line in the center is the observed burn
surface and the background coloured region is the Corine
Land Cover.
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Table 3: Bootstrap 95% confidence interval of the Brier Skill Score from Table 1

Fire name Reference Prior ß = 1/10 ß = 1/7 ß = 1/4 ß = 1/2 ß = 1 ß = 2

Calenzana
(10000) [0.238, 0.300] [0.284, 0.297] [0.298, 0.310] [0.301, 0.314] [0.303, 0.315] [0.308, 0.320] [0.303, 0.314] [0.278, 0.290]

Chiatra (10000) [0.316, 0.332] [0.383, 0.389] [0.382, 0.389] [0.376, 0.383] [0.367, 0.375] [0.354, 0.362] [0.338, 0.346] [0.322, 0.329]
Ville di Paraso
(2000) [-0.001, 0.042] [0.156, 0.179] [0.170, 0.188] [0.173, 0.192] [0.181, 0.197] [0.181, 0.194] [0.170, 0.182] [0.162, 0.174]

Sant’Andrea di
Cotone (5000) [0.159, 0.306] [0.398, 0.419] [0.419, 0.438] [0.433, 0.451] [0.446, 0.462] [0.461, 0.475] [0.480, 0.491] [0.489, 0.499]

Olmeta di Tuda
(2000) [0.011, 0.115] [0.161, 0.214] [0.204, 0.256] [0.193, 0.245] [0.254, 0.303] [0.299, 0.346] [0.356, 0.400] [0.433, 0.470]

Nonza (4000) [-5.45,-5.18] [-3.16,-3.01] [-10.01,-9.64] [-3.21,-3.05] [-3.20,-3.04] [-3.12,-2.96] [-3.13,-2.97] [-8.47,-8.19]
Ghisoni (2000) [-10.11,-9.85] [-10.47,-10.06] [-10.01,-9.64] [-10.03,-9.66] [-9.51,-9.15] [-9.18,-8.85] [-8.78,-8.49] [-8.47,-8.19]

Global [-1.63, -1.58] [-1.35, -1.30] [-1.29, -1.24] [-1.29, -1.24] [-1.21, -1.16] [-1.15, -1.11] [-1.10, -1.06] [-1.05, -1.01]
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