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1 INTRODUCTION
Uncertainty quantification has been applied in various fields to
acquire approximate outcomes to use in real-world applications.
It helps in the optimization and decision-making process. A pre-
dictive uncertainty framework is designed in a way to treat both
epistemic and aleatory uncertainties by propagating both uncer-
tainties through a model to System response quantities. This paper
starts by explaining the types of uncertainties and subsequently the
various sources of uncertainties. Then the predictive framework is
explained to treat all those sources of uncertainties. There are six
phases in this framework, the First phase is to identify all sources
of uncertainty, the second phase is to characterize the model un-
certainties, the third phase is to eliminate or estimate the code and
solution verification errors, and the fourth phase is to propagate
the uncertainties through the model, the fifth phase is to quantify
the model form uncertainty, and the sixth phase is to estimate the
model form uncertainty. In the end, for decision-makers, there are
various methods for verdict the total predictive uncertainty. For
the purpose of illustration, they used a hyper-sonic wind tunnel in
computational fluid dynamics.

2 CLASSIFICATION OF UNCERTAINTIES
The uncertainty is classified as aleatory and epistemic uncertainty[2].
The aleatory uncertainty is a representative of randomness that
differ for each iteration of the same experiment. It is also known as
irreducible uncertainty and it is Characterized either by probability
density function or cumulative distribution function. Epistemic
uncertainty occurs due to a lack of knowledge during the phase of
analysis. It is also known as reducible uncertainty and it is char-
acterized by intervals. As it is mentioned, this uncertainty could
be reduced through conducting various experiments, also through
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improved numerical approximation, and even suggestions from
experts’ opinions.

3 SOURCES OF UNCERTAINTIES
The sources of uncertainties are broadly classified as aleatory, epis-
temic, or mixed uncertainties. If in case, there is any fixed value
uncertainty then it is treated as deterministic. All possible sources
of uncertainty must be identified and characterized. These uncer-
tainties occur in model inputs, numerical approximations, or model
form. This figure 1 represents the various other sources of uncer-
tainties.

Figure 1: Model input uncertainty sources(from[4])

3.1 Model Input
The model Input uncertainties can be characterized as aleatory,
epistemic, or mixed uncertainty which includes parameters both
from the model as well as the data from surroundings (i.e boundary
conditions, system excitation, initial conditions, or expert opinion).

3.2 Numerical approximation
The numerical approximation errors include discretization error,
iterative convergence error, roundoff error, and also errors due to
programming bugs. Discretization error is the largest of all numeri-
cal errors and it is hard to evaluate for real-world issues. To obtain
a steady-state solution we use relaxation techniques that results in
Iterative convergence errors. The effects on the numerical solution
in coding mistakes are hard to estimate. A single solution is not
sufficient for a mathematical model of nondeterministic methods;
thus ensemble simulations are preferred. For accuracy, the map-
ping depends on four key factors (1) the nonlinearity of the partial
differential equations, (2) the dependency structure between the
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uncertain input quantities, and (3) the type of the uncertainties, i.e.,
whether they are aleatory, epistemic, or mixed uncertainties, and
(4) the numerical methods for computing the mapping mentioned
in the below figure 2.. To propagate input uncertainties into the
model, various techniques like Monte Carlo and Latin hypercube
sampling are used. The most common technique is Monte Carlo
sampling [1].

Figure 2: Propagation of I/O uncertainties (from[4])

3.3 Model form
The source of model form are from all conceptualizations, assump-
tions, abstractions, approximations, and mathematical formulations
on which the model relies [3]. The model form is characterized as
validation in a way of comparing outcomes with the experimental
data for model accuracy purposes. The validation process is carried
out as a standard procedure but in addition to it, there are a few
steps to proceed further. Initially, the disagreement between the
simulation and experimental results is statistically quantified, then
it extrapolates the structure of uncertainty where is no availability
of experimental data.

4 UNCERTAINTY FRAMEWORK
The main objective of the framework is to be able to estimate the
uncertainty in an SRQ where no experimental data is available. The
mathematical model which we are going to use includes numerical
approximation uncertainties and extrapolation to predict the un-
certain SRQ. The process of identifying the sources of uncertainty
is explained in the next paragraph.

4.1 Identify all sources of uncertainty
The potential sources of uncertainty are identified on the basis
of what is considered fixed(deterministic) and uncertain (minimal
uncertainty in all SRQs in the interest of all analysis). So nowwe can
categorize the sources as model inputs, numerical approximations,
and mathematical models. In the case of models where it is difficult
to identify the uncertainty assumptions are made to deal with it.
Some of them are

• Assumptions about what type of environment (normal, ab-
normal, hostile) the system is in.

• Assumptions about the scenarios the operating system is
working under (can be a misuse of the system).

• Assumptions about the situations where no experimental
data is available in the relevant systems to predict the sources
of uncertainty.

4.2 Characterize uncertainties
To characterize the uncertainties, we have to define the mathemati-
cal structure of all the sources of uncertainties. The mathematical
structures are made based on whether it is a purely aleatory un-
certainty or purely epistemic uncertainty, or a mixture of the two
uncertainties. For purely aleatory uncertainties, it is characterized
as a precise distribution. For purely epistemic uncertainties, such
as numerical approximations and model form, the uncertainty is
characterized as an interval. For an uncertainty which is a mix-
ture of aleatory and epistemic uncertainty, it is characterized as an
imprecise distribution.

Additionally, characterizing input uncertainties is derived from a)
experimentally measured data from the system, b) data generated
from separate models which support the current system, and c)
opinions expressed by experts who are familiar with the system.

4.3 Estimate uncertainty due to numerical
approximations

Estimating numerical errors includes discretization error, iterative
error, round-off error, and coding mistakes. In the case of discretiza-
tion error, it can be categorized as higher-order estimators (Type I)
or residual-based estimators (Type II). The Type I methods includes
post-processing of the solution(s) and Richardson extrapolation, or-
der extrapolation, and recovery methods from finite elements. The
Type II methods include discretization error transport equations,
defect correction methods, and implicit/explicit residual methods
in finite elements. Round-off errors are small but can be reduced by
increasing the number of significant figures used in floating-point
computations. Errors due to unknown coding mistakes or algorithm
inconsistencies should be minimized by deploying good software
engineering practices and scientific computing software such as
order of accuracy verification and the method of manufactured
solutions. To overcome the difficulties in getting accurate estimates
in numerical approximation errors they should be represented as
epistemic uncertainties. The methodology for converting error esti-
mates to uncertainties is to use the magnitude of error estimate and
apply uncertainty bands above and below the simulation prediction
along with the factor of safety.

4.4 Propagate input uncertainties through the
model

Propagation of input uncertainties can be done by aleatory and epis-
temic uncertainties in order to determine the effect on all SRQs. Let
us consider a sampling-based approach for propagating combined
aleatory and epistemic uncertainty. Sampling an aleatory uncer-
tainty means the sample is taken from a random variable and that
each sample is related to probability. But, sampling an epistemic
uncertainty means the sample is taken from a range of possible
values. So it is referred to as probability bounds analysis and is a
fundamental concept of the proposed uncertainty framework.

4.4.1 Aleatory uncertainty. In aleatory uncertainty, propagation
is done through the samp[ling procedure.Even though sampling
methods are simple, large numbers of samples are needed in order to
accurately characterize low-probability events which are necessary
for SRQs.Some of the advanced approaches include polynomial
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chaos, stochastic collocation, and response surface approximation
methods. If the sample has larger numbers of uncertain variables
or statistical correlations exist between input quantities, traditional
sampling methods have better performance.

4.4.2 Combined aleatory and epistemic uncertainty. In the scenario
where both aleatory and epistemic uncertainties occurred in the
input quantities, the propagation of each type is separated. For
example, each of the samples obtained from an aleatory uncertainty
is associated with a probability of occurrence. But when a sam-
ple is taken from an epistemic uncertainty, there is no probability
associated with the sample. In that case, it is simply a possible
realization over the interval-valued range of the input quantity.
For each sample of all of the epistemic uncertainties, the aleatory
uncertainties are propagated through the model to produce a single
CDF of the SRQ. This type of combined sampling between aleatory
and epistemic uncertainties is usually referred to as double-loop or
nested sampling. The p-box (probability box) is a special type of
CDF that contains both aleatory and epistemic uncertainties (see
Fig.3). A p-box expresses both epistemic and aleatory uncertainty in
a way where it gives interval-valued probability rather than precise
probability.

4.5 Estimate model from uncertainty
Model form uncertainty is estimated by the process of model valida-
tion. Firstly, we quantitatively estimate the model form uncertainty
where experimental data are available using a mathematical oper-
ator referred to as a validation metric. Secondly, we extrapolate
the uncertainty structure expressed by the validation metric to the
required conditions. The extrapolated model form uncertainty is
used in the prediction of the model as an epistemic uncertainty.
The below sections discuss these steps.

Figure 3: Steps to compute validation metric (from[4])

4.5.1 Validation metrics. A validation metric is a mathematical
operator that has two inputs a) the experimental measurements

of the SRQ b) the prediction of the SRQ used in the experimental
measurements.A flowchart for computing a validation metric is
given in Fig. 4.The flowchart explains that the experimental pro-
cesses of nature on the left side are expected to reproduce by the
mathematical model on the right side. Figure 3 provides the overall
steps to compute the validation metric.

4.6 Determine total uncertainty in the SRQ
To determine the total uncertainty, firstly we use the p-box that was
generated by propagating the aleatory and epistemic uncertainties
in the model input parameters through the model. This approach
provides valuable information to decision makers using the results
from the simulation. The width of the original p-box gives informa-
tion on the effects of epistemic uncertainties in the model inputs
on the predicted SRQ. The range of the two bounding CDFs of the
p-box provides data on the effects of aleatory uncertainties in the
model inputs. The validation metric d informs the decision maker of
the estimated magnitude of the uncertainty which is due to model
form uncertainty. and U_NUM due to numerical approximations.
From the graph below one can see that the epistemic uncertainty
in the SRQ has increased due to model form uncertainty because
of the area validation metric that is appended to the sides of the
p-box. If extrapolation of the model from uncertainty is required,
then extrapolated d values of the p-box are used.

Figure 4: Increase in predictive uncertainty of model
form(from[4])

5 ILLUSTRATION: HYPERSONIC WIND
TUNNEL

The predictive uncertainty framework VVUQ framework is illus-
trated with the simulation of hypersonic nozzle flow which uses a
quasi one-dimensional Euler equation to get cross-sectional area
variations in the nozzle. This wind tunnel replicates the air move-
ment over aircraft, vehicles, and other objects. Engineers use this
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simulation technique for further improvement in design, stability,
cost-effectiveness, etc. In the given example, the wind tunnel radius
of the test section could vary based on the tunnel wall layer (i.e
laminar, transitional, or turbulent. Given that the nominal value of
effective radius would be r=0.14m. From the previous experimental
data, it is known that if the static temperature in the tunnel section
falls below 80K there exists the formation of condensation. This
condensation damages the aircraft when there is a simulation test
is performed. During the simulation test there exist a high pressure
in the air to test the stability and the performance of the aircraft if
in case there occurs condensation, that high pressure it could lead
to critical damage to the aircraft. Thus the analysis is carried out at
95% confidence that the test section temperature should be greater
than or equal to 80K.

5.1 Identify all sources of uncertainty
The primary sources of uncertainty include wind tunnel stagnation
temperature and the area downstream of the tunnel. The other
sources of uncertainty inputs are stagnation pressure, the ratio
of specific heats, specific gas constant, and tunnel throat radius
which has fixed values from the experimental data and is so-called
deterministic in nature.

5.2 Characterize uncertainties
The Wind tunnel stagnation temperature is an aleatory uncer-
tainty. Through run-to-run experiments, variations are normally
distributed with a mean stagnation temperature of 1200k with a
3.33% coefficient of variation and 40k of standard deviation. The
Wind tunnel stagnation temperature is an aleatory uncertainty.
Through run-to-run experiments, variations are normally distributed
with a mean stagnation temperature of 1200k with a 3.33% coeffi-
cient of variation and 40k of standard deviation. In the area down-
stream of the tunnel throat the wind tunnel side-wall boundary
layer is not measured. The state of the boundary layer (laminar,
transitional, or turbulent)is not known. Separate boundary layer
simulations are performed(i.e fully laminar and turbulent) to find
the effective radius of tunnel. From experimental the effective ra-
dius is found to beLaminar boundary layer - 0.13m and forTurbulent
boundary layer - 0.14m. In the figure 5, the effective area versus
static temperature is plotted.

5.3 Estimate uncertainty due to numerical
approximations

As an initial step the Code Verification is done. It is done by remov-
ing the coding mistakes in the code. All of these coding mistakes
or also known as bugs are found by comparing them to the exact
solution. By comparing it to the exact solution, the unknown error
are found and solved. The roundoff error and iterative error are
treated with simulations. These simulations are advanced by means
to achieve a steady state. To achieve steady state significant floating
point values are used in the results. All these are done by insert-
ing the current solution of the discrete equations and evaluating
the non-zero remainder. Iterative residuals are converged 2 orders
of magnitude from their initial levels to eliminate at ease level.
The Discretization error was Estimated by running simulations on
three systematically-refined meshes the 128, 256, and 512 cells, the

Figure 5: Effective area Vs static temperature(from[4])

test section static temperature was found to be 85.307, 85.824, and
85.954 K, respectively. They used order of convergence followed
by Richardson extrapolation which uses two fines grids to obtain
an estimate of the value. Then Roache’s grid convergence index
is used to estimate uncertainty due to discretization on the coarse
mesh of 128 cells.

5.4 Propagate input uncertainties through the
model

As discussed above, the aleatoric uncertainty is characterized either
by probability density function or through cumulative distribution
function. Here we use Monte Carlo sampling, wherein we used a
set of random sample inputs from which we computed the system
response of interest (i.e response ‘y’ value). Once computed each
SRQ value of interest are plotted together as a cumulative distribu-
tion function where in we could find the range of both the input
and response parameters. For epistemic uncertainties, the input
would be a range of interval. In this case a rane of interval which
is splitted into 10 subinterval is took to determine the value. From
each subinterval a random sample is chosed, this random sample
will then generate a system response using monte carlo sampling
technique(Figure 6). Thus each random sample thus produces a CDF
which then combined to form a massive system response which is
technically known to be ensemble CDF. The process of combining
the entire CDF as a single output is known be a ensemble technique.
This ensemble technique helps for more accurate predcitions.

5.5 Estimate model from uncertainty
To explain the model form uncertainty estimation, Consider an ex-
ample, for stagnation pressure of 20 MPa, the area validation metric
is unknown. Provided three random validation experiment out-
comes as sample for stagnation pressure 7MPa,10MPa, and 12MPa.
The ten synthetic measurements of the SRQ (test section static
temperature) are chosen to be: SRQEXP = [78.5, 80.2, 81.6,81.8,
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Figure 6: Monte carlo sampling technique(from[4])

81.9,82.5, 82.7,83.6, 84.7,86.4] K. Then Propagating the input uncer-
tainty (aleatory and epistemic) through the model to form CDF. This
generated CDF is then compared with the experimental result CDF
from the observation. The area between these two CDFs is known
to be the area validation metric d=2.89K. Similarly, for other input
stagnation pressure, the values are found as 7Mpa as 3.1k,10Mpa as
2.89k, and 12MPa as 2.8k are computed. Then compute the Simple
Linear Regression from the obtained value considering the stagna-
tion temperature as an independent variable, and area validation
metric as the dependent variable y=̂ 3.518 - 0.0608xk. Finally, the
predicted interval is computed with a 95 percent of confidence
interval at an area validation metric at p=20Mpa is d=3.27k. The
below figure represents the ensembled CDF.

5.6 Determine total uncertainty in the SRQ
The p-box is determined by propagating aleatory and epistemic
uncertainties model inputs through the model in condition (p = 20
MPa). Then append the area validation metric, i.e., d = 3.27 K, to
the left and right sides of the p-box. Uncertainty due to numerical
approximation UNUM= 0.86 K is appended to the left and right sides
of the p-box. There is a 25% chance that the test static temperature
would fall below 80k at 95% CI.This figure clearly describes the
p-box plot with definite labels.

6 CONCLUSION
This predicted uncertainty is precisely shown to the decision-makers
to avoid putting customers or environments at risk from uncertain-
ties. It separates the aleatory and epistermic uncertainty and focus
on numerical solution error and model form uncertainty directly.
This framework could be used when the decision-makers find the
observations or system response quantities to be inaccurate such
as predictions of high consequences of the system (human lives,
national security, safety measures).

Figure 7: Ensembled CDF (from[4])

Figure 8: Total predictive uncertainity(from[4])

7 DISCUSSIONSIONS
This framework focused on both aleatoric and epistemic uncertainty
either by resolving or by providing an alternate way to quantify
uncertainties. The conversion of numerical approximation errors
into epistemic uncertainties through the verification technique is
discussed briefly. Similarly, quantification of model form uncer-
tainty, by adding additional steps on top of the standard validation
technique for no experimental data was described in detail. The six
phases of the framework are discussed in aspect with definite exam-
ples for a better understanding of the techniques used. The specific
advantage of this paper is, that they well discussed how to quantify
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pure aleatoric and pure epistemic as well as the combination of
both. In certain cases, as in numerical approximation errors, they
stated all possible sources of error occurrence and provided definite
research work on it for further improvement in it. The author of
this paper already presented a book on the topic of “Verification
and validation in scientific computing” [? ] wherein he described a
systematic development of the foundational concepts for the pro-
cedure of verification and validation of models and simulations.
The methods in the book are described by partial differential and
integral equations. For further in-depth understanding especially
in the stages of verification and validation, this book’s content and
methodologies contribute a lot. In the validation techniques instead
of traditional methodologies, he introduced even more concepts
to get more accurate predictions when comparing the simulation
outcomes with experimental data. A detailed description of the

steps in computing a validation metric is explained followed by
extrapolation of the validation metric is used due to the point that
there are no experimental data available for the conditions of in-
terest. The level of confidence is determined in a way to find the
predicted interval with available data and conditions. Thus this
comprehensive framework provided a
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