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Abstract
Deep neural networks (DNNs) are frequently utilized for a variety of applications and have shown to be one of
the most effective predictors. However, their implementation in numerous risk-sensitive applications depends
on the reliability of the uncertainty estimation of their predictions. The paper introduces an unconventional and
straightforward method that, in contrast to adversarial attacks, impairs the network’s ability to estimate uncertainty
rather than producing inaccurate predictions. As a consequence, the DNN is more confident about its incorrect
predictions than about its correct ones after an attack. Here it is important to note that the model’s accuracy
remains intact throughout. For the newly introduced attack, only small-scaled perturbations are needed. The
paper also compares attacks under different settings. At first, the researchers target a black-box system (where
they are unaware of the target network), after that, they target a white-box system with full knowledge about the
network. In the study, effective attacks against three of the most widely used uncertainty estimating techniques
which are the vanilla softmax score, Deep Ensembles, and MC-Dropout are illustrated with respect to different
DNN models and architectures .
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Introduction
This report is intended to summarize the research paper “Dis-
rupting deep uncertainty estimation without harming accu-
racy“ which introduces the concept of attacking deep neural
networks (DNNs) without affecting its accuracy as an alterna-
tive of standard adversarial attack. [1]. The report is presented
as a course work under the seminar ”Uncertainty quantifica-
tion in machine learning ” at Technische Universität Dort-
mund. In a wide range of functional fields, such as computer
vision and natural language processing, deep neural networks
(DNNs) demonstrate impressive performance and are becom-
ing better. However, the ability to accurately estimate the
uncertainty estimations in these models’ predictions or the
use of some form of selective prediction is crucial for their
successful deployment.

There are several popular uncertainty estimation tech-
niques when it comes to classification such as: 1)Softmax
score (estimates the embedding distance between a decision
boundary and an instance) [2]; 2) MC-Dropout (proposed to
substitute Bayesian networks) [3] ;3) Deep Ensembles , which
have produced cutting-edge outcomes in a variety of estimate
scenarios [4].

The study in this paper demonstrates how all of these
well-known strategies for estimating uncertainty are suscepti-
ble to new types of attacks that might utterly eliminate their
effectiveness. That operates in both black-box(When the at-
tacker has no knowledge of the model itself and can simply
query the attacked model for anticipated labels.) as well as
White-box (the attacker thoroughly knows the model to be
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assaulted) settings. Unlike standard adversarial attacks (aim
to reduce model accuracy), the suggested approach is meant
to maintain the performance accuracy and avoid altering the
original predictions initially classified by the attacked model.
The above-mentioned technique of attack is known as ACE:
Attack on Confidence Estimation. In order to testify to the
findings, the ACE is evaluated on different modern architec-
tures such as MobileNetV2 , EfficientNet-B0, also on some
standard baselines for instance ResNet50, DenseNet161 and
VGG16.

Figure 1 demonstrates the working of ACE on Efficient-
Net with softmax as uncertainty estimation method. As we
can see, two images on the left-hand side were predicted as
tanks before the attack out of which the one in the upper left
corner is correctly predicted as a tank with higher confidence
of 0.9392 whereas one in the lower left corner is binoculars
incorrectly predicted as a tank with a lower confidence score,
0.1. On the right-hand side after adding the perturbations to
original inputs the confidence of correct prediction dropped
significantly to 0.036 and the confidence score of incorrect
prediction highly increased to 0.908. After the attack, the
model is more confident about its incorrect prediction than
the correct one.

1. Working
In this section, we will have a look into the functioning of
the ACE with respect to sofmax function. Let’s consider the
classifier that classifies cats vs. dogs by using the softmax
function as its measure of uncertainty estimation. Before
going into details, familiarity with some fundamental concepts
and understanding how they get affected by ACE is important.

1.1 Confidence score
In a general scenario, the confidence score ranks correct pre-
dictions higher than incorrect ones. However, the ACE causes
the confidence score to rank incorrect predictions higher and
correct ones lower. The concept is illustrated using figure 2
and figure 3. Figure 2 shows the histogram of EfficientNet
confidence scores derived by softmax function for its correct
(green) and incorrect predictions (red). Figure 3 shows the
histogram of EfficientNet confidence scores after attacking
with ACE

1.2 Selective prediction
Majority of Risk-sensitive applications employ uncertainty
estimation mechanisms like a selective prediction. It ab-
stains the model from predicting observation for which a
confidence score is lower than a certain threshold to achieve
higher accuracy[5]. In order to understand its working with
respect to ACE, consider the above-mentioned example of the
cat vs. dog classifier. As we can see in Figure 4, there are
four instances to be classified out of which the first three are
correctly classified with higher confidence whereas the last
image of a dog (with glasses) is incorrectly predicted as a cat
with low confidence of 0.3. As three out of four instances are

predicted correctly, the model accuracy would be 75%. If the
selective prediction with a 0.6 threshold value is applied to the
above-mentioned model as shown in Figure 5, the selective
prediction mechanism will abstain to predict the incorrect
prediction(dog with glasses) as it has a confidence score (0.3)
less than the threshold value 0.6. In this case, the model only
predicts three correctly classified instances, therefore, achiev-
ing 100% selective accuracy. However, after the attack on the
model as demonstrated in Figure 6, ACE has already lowered
the confidence score of the correctly classified instance be-
low the threshold and increased the score of incorrect ones
above the threshold. That causes the Selective prediction to
abstain from predicting the correct observations due to lower
confidence. And only predicting incorrect predictions.

2. Comparison: ACE Vs. Adversarial
attacks

We can assume a 2D plane where the distance of an instance
to its decision boundary can be quantified by the softmax
score.[6] That means the farther the instance is from the de-
cision boundary the more confident the model is about the
prediction of that instance. As can be seen in Figure 7, the
classifier misclassified one instance of a dog as a cat. In gen-
eral, the model has the lowest confidence of all classifications
in predicting that instance which is rather obvious.

2.1 Standard adversarial attack
In the case of a standard adversarial attack as illustrated in Fig-
ure 8, the attacker would aim to alter the label of the correctly
classified instance. In the context of softmax, that means the
attacker would wish to push the correctly predicted instance
across the decision boundary by adding the perturbation into
the input image. In that case, the added perturbation should
be large enough to cross the decision boundary. The larger
the perturbation is more likely to aware the victim about the
undergoing attack. Figure 9 demonstrates that even if the
attacker succeeds to push the instance with higher confidence
across the decision boundary, the instance would be assigned
with lower confidence after the attack. Therefore there is a
higher chance of it getting rejected by the selective prediction
and leaving the model unharmed. Additionally, altered labels
can cause a sudden and significant drop in the accuracy of the
model. Therefore, it is more likely to alert a victim about the
attack in case of constant monitoring.

2.2 Attacking Confidence Estimation(ACE)
However, in the case of ACE, the attacker targets the instances
in which the model possesses higher confidence. The attacker
does so by aiming to decrease the confidence of the correctly
predicted instances and pushing them towards the decision
boundary and increasing the confidence of the incorrectly
classified instance by pushing them away from the decision
boundary as demonstrated in Figure 10. For that reason, the re-
quired amount of perturbation would be significantly smaller
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Figure 1. Attacking EfficientNet with the uncertainty estimation technique softmax.

Figure 2. Confidence before attack

than an adversarial attack. In other words, as opposed to stan-
dard adversarial attacks, ACE successfully causes a significant
amount of harm to the model even with a smaller magnitude
of perturbation benefitting the attacker with limited resources.

During the process, the attacker makes sure that the in-
stance doesn’t cross the decision boundary. Unlike standard
adversarial attacks, ACE only targets the model’s uncertainty
estimation which is less likely to alert the victim about the
attack. Here, Figure 11 shows the final result after applying
ACE.

Figure 3. Confidence after ACE.

2.3 Advantages of ACE over standard adversarial
attack

To summarise this section, we can point out a few benefits of
ACE that distinguish from other adversarial attacks:

1. Inherently, the perturbations required for this kind of
attack are much lower than those required for the ma-
jority of adversarial attacks benefiting the attacker with
limited resources.

2. Keeps the accuracy intact therefore less likely to alert
the victim.

3. Its success isn’t double-edged: Pushing an input over
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Figure 4. Classification model cat vs. dog

Figure 5. Classification model cat vs. dog with selective
prediction

the decision boundary is the primary objective of most
adversarial attacks. The assault is considered unsuc-
cessful if the magnitude of perturbation is inadequate
to achieve it. However, in the ACE even smaller magni-
tude of perturbation would succeed to create a consid-
erable amount of harm.

3. Implemetation of ACE
This section will provide detailed insights into the implemen-
tation of ACE. In order to attack the model with ACE, the
attacker first crafts the perturbation. After that, the attacker
pushes the instance towards the boundary in case of a correctly
predicted instance or far from the boundary in case of an in-
correctly classified instance by iteratively adding the crafted
perturbation to the input instance. During the process, if the
instance crosses the boundary then the attacker decreases the
magnitude of the perturbation by decay factor(εdecay) and tries
all over again. Meanwhile, if the algorithm exceeds the max-
imum number of iterations then the attacker stops attacking
and returns the last successfully perturbed instance within the
boundary. The algorithm of ACE given in Figure 12 illustrates
the above-mentioned process in mathematical form.

Let X be the input space and Y be the response space.
And f is the model for a prediction f : X → Y , and ŷ f (x)
is its predicted label for an input image x where x ∈ X and
y ∈ Y . For a given model f , we define a confidence score
function k(x, ŷ f (x)| f̂ ). The function k is suppose to measure
confidence in the prediction of ŷ for the input x, based on
signals from the model f. An ensemble of models that do not
include the attacked model f itself serves as the proxy ( f̂ ) in
black-box scenarios. In white-box settings an attacker doesn’t
need a proxy as he has all the required information about the
model to be attacked, f̂ = f . η is a gradient derived by taking
the derivative of k(confidence score) w.r.t. input x. Initial
value of perturbation is ε . εdecay is a rate of decay in the value

Figure 6. Classification model cat vs. dog with selective
prediction after ACE

Figure 7. The visualization of a classifier of cats and dogs
with the softmax as uncertainty measure

of perturbation ε . max iterations is the limit on the number
of iterations.

Finding a minimum perturbation εe f f ctive for an input x, ∼
x= x+εe f f ctive that would cause the confidence score function
k to produce a poor partial order on its inputs without changing
the model’s accuracy enables one to construct an adversarial
example that especially attacks uncertainty estimate.

4. Effect of ACE
This section provides a short overview of the impact of ACE
on different models with different architectures. It also com-
pares the effect of attacks being held under white-box and
black-box settings. A detailed interpretation of results and
comparisons has been discussed in the ‘Results and Dis-
cussion’ section. Figure 13 illustrates the EfficientNet RC
curves during a white-box assault with different magnitudes
of perturbations(ε). The area under the curve (AURC) x 1000
is shown by the colored numbers adjacent to each correspond-
ing colored curve. As we can see, for ε= 0.005, the selective
accuracy will be 0% for it’s top 20% of most confident predic-
tions which means, an end user querying the model simply for
its 20% most confident predictions will receive nearly 100%
incorrect results for assaults applied with 0.005 magnitudes
of perturbation.

4.1 Effect of ACE under white-box vs. black-box
settings

Comparing the results derived from different experiments on
the models with different architectures under white-box and
black-box settings it can be concluded that for white-box set-
tings, much less perturbation (εe f f ctive) is required compared
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Figure 8. The visualization of standard adversarial attack on
a classifier of cats and dogs with the softmax as uncertainty
measure

Figure 9. The visualization of standard adversarial attack
after pushing correctly classified instance across the
boundary.

to black-box to generate a similar amount of harm. Consider
table from Figure 14 containing observations for white box
and black box attacks for different values of perturbations for
ResNet50. Here, εe f f ctive value is the smallest value of ε for
which maximum harm is caused without instance crossing
the boundary. NLL(negative log-likelihood) and brier score
represents the loss we can also interpret it as a harm caused
to the model in our case. The greater the value of NLL, the
more harm has been caused to the model.

Comparing the values of table from Figure 14 we can see
that for the same amount of perturbation applied, εe f f ctive for
White-box is less than that of Black-box attack however, the
values of NLL and brier score are considerably higher for
White-box as compared to Black-box. Another thing to notice
is that as the value of ε increases, the difference between ε

and εe f f ctive also increases or( εe f f ctive decreases considerably
with an increase in ε ) implying that in reality, the attacker
requires very less amount of perturbation to effectively harm
the model no matter how high the value of applied perturbation
is. The losses increases with the increase of applied ε however,
the accuracy of the model is intact.

Figure 10. The visualization of ACE on a classifier of cats
and dogs with the softmax as uncertainty measure.

Figure 11. The visualization of final arrangement after ACE
on a classifier

5. Limitations and suggestions for
improvements

In this section, we would discuss a few limitations concern-
ing the ACE, suggestions for improvements as well as some
possible extensions regarding the application domain of the
algorithm.

Limitations The fact that knowledge of the instances’ ground
truths is necessary for carrying out large-scale attacks presents
a limitation for ACE because it may be challenging to get. Al-
ternatively, irrespective of the ground truths, the only concern
of the attacker is to increase the confidence for certain types
of labels and decrease the confidence for other types.

Suggestions for improvement: The efficiency of the ACE
algorithm can be improved further by optimizing the pertur-
bation in each iteration rather than when the instance crosses
the boundary.

Modifying ACE for the regression task: Although the fo-
cus of this paper is classification, subsequent work may alter
ACE for regression problems, where the variance of various
model outputs is frequently used to quantify the uncertainty.
A simple conversion of this algorithm could, for example,
define any instance with a loss above some threshold (such
as the median loss on some validation set) as an “incorrect
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Figure 12. ACE algorithm

Figure 13. EfficientNet RC curves during a white-box assault
with different magnitudes of perturbations(ε).

prediction” and loss values less than the threshold as “correct
predictions”.The variable that would be under attack would be
the variance of the outputs; leading to an increase in variance
for the low loss inputs, and a decrease in variance for high
loss inputs with respect to the model.

6. Summary
The primary aim of the report was to introduce a new tech-
nique of attacking the model called ACE, especially for some
risk-sensitive applications. As the name suggests an attack is
completely focused to harm the uncertainty estimation perfor-
mance of the model rather than its accuracy, unlike standard
adversarial attacks. To summarize, it basically increases the
confidence of the model in its incorrectly predicted instances
and decreases that of the correctly predicted ones by adding
the perturbation to input images. It keeps the accuracy intact
throughout the attack. A brief intuition about the working of
the attack with respect to concepts like confidence intervals
and selective predictions has also been mentioned. The attack
possesses a few benefits over the standard adversarial attack
such as a requirement of a much lower amount of perturbation
than adversarial attacks, it is less likely to alert the victim and
create considerable harm even with a smaller magnitude of the
perturbation. The paper also provided an overview of the iter-
ative algorithm to implement the ACE in detail. Additionally,
it explains its impact on the model and a comparison of the at-

Figure 14. Comparision of white-box and black-box settings
for different ε for ResNet50

tacked model under white-box vs. black-box settings. During
the comparison, we observed that compared to black-box set-
tings, an attack under white-box settings requires significantly
less magnitude of perturbation to cause equivalent destruction.
Finally, we concluded by addressing possible limitations and
suggesting some changes to make the attack more effective.
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7. Results and Discussion
7.1 Evaluation matrices
We assess the effectiveness of ACE using a variety of mea-
sures, including the AURC (x 103), Negative Log-likelihood
(NLL), and Brier score, which are frequently used for DNN
uncertainty assessment.

7.1.1 Risk-coverage curve (RC curve):
The risk-coverage curve (RC curve), assessed on a selected
test set, is a curve that depicts the selective risk as a function
of coverage. Coverage and risk are used to assess a selected
model’s performance. The coverage measures the proportion
of the input that the model processes in absence of human
involvement and the risk denotes the level of risk possessed
by these model predictions. Where,

Coverage =
|Xh|
|X |

Risk = L
(
Ŷh
)

Where, L is a loss function quantifying the quality of pre-
diction. With a confidence score ri for each input xi and
a threshold t, selective prediction divides the input from
dataset X and the prediction Ŷ into two parts: Xh = {xi|ri ≥ t},
Ŷh = {Ŷi|ri ≥ t} and Xl = {xi|ri < t}, Ŷl = {Ŷi|ri < t} respec-
tivly. [7]

NLL: The Negative Log Likelihood (NLL) is also a loss
function of the model defined as

Σy∈Y − ln(Py)

where, Y is the correct labels and Py is the probability assigned
to label y by the model.

Brier score: Can be obtained from a sample of size N for
which there are R potential labels can be defined as:

1
N

N

∑
i=1

R

∑
j=1

( fi j −oi j)
2

Where, R is number of potential classes and N is number of
onservation. fi j is the predicted probability for ith observation
for jth class and oi j is actual observation which takes the value
1 in case of ith observation belongs to jth class.

7.2 Experiments and interpretations
In this section, we will be discussing and interpreting the
results obtained by applying the attack on combinations of dif-
ferent architectures with a variety of uncertainty quantification
methods under different settings.

7.2.1 Attacking softmax uncertainty
Softmax under white-box settings:
Table in Figure 15 illustrates the outcomes by using ACE
for various magnitudes of ε . It is clearly evident from the
table, that the εe f f ective is approximately half the value or less
for greater values of ε , indicating that even fewer resources
are required for a highly detrimental attack. The AURC is
almost seven times worse under ACE assault with ε = 0.005,
whereas the NLL and Brier scores are roughly three times
poorer. Figure 16 represnts the RC curves for ACE under

Figure 15. Table of for different model architectures with
softmax uncertainity quantification for diffrent ε for
white-box settings

white-box settings for MobileNetV2 [8] with softmax score.

Figure 16. RC curves for ACE under white-box settings for
MobileNetV2 with softmax score
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Softmax under black-box settings:
Figure 16 represents the RC curves for ACE under white-box
settings for MobileNetV2 with softmax score and different
values of ε . Be aware that the value of ε for the most effective
assault considerably varies on which coverage is targeted. For
instance, for MobileNetV2 on coverage 0.6, the selective risk
is greater for ε = 0.005 than that for ε = 0.05.

Figure 17. RC curves for ACE under black-box settings for
MobileNetV2 with softmax score

7.2.2 Adversarial robustness via adversarial training
The main idea behind the concept of adversarial training is that
if employed properly, adversarial examples given as an input
during traininng phase can be used to enhance image recog-
nition algorithms[9]. An assessment of ACE performance on
an adversarially trained EfficientNetB0 can be found in the
table shown in Figure 18. We also provide the outcomes of an
EfficientNetB0 that was not trained using adversarial inputs.
These findings imply that employing traditional adversarial
training does not significantly improve robustness to ACE.
We speculate the reason behind that can be the tendency of ad-
versarial training of creating cases with extremely high losses
or that can cross the decision boundary. Such cases demand
an ε that is relatively large. It may be possible to increase
robustness to ACE by adversarial training that employs ACE
or uses a variety of smaller values of ε .

7.3 Deep ensembles
Deep ensembles under white-box settings
Table in Figure 19 demonstrates the results of ACE on ensem-
bles of varying sizes consisting of ResNet50 models trained
on ImageNet. As can be seen from the table, the AURC de-
teriorates by a factor of around eight when attacked by ACE
with ε = 0.005. It should be emphasized that ACE resilience
increases with ensemble size, with even the smallest ensemble
being more resilient than a single ResNet50 model.

The RC curve for applying ACE on a size 5 ensemble of
ResNet50 models with black-box settings is shown in Fig-
ure 20. It should be observed that the selection risk for any
coverage above 0.45 for the ResNet50 proxy is somewhat
higher for ε = 0.005 than for ε = 0.05, indicating that it is
more efficient to employ a smaller ε for these values.

Figure 18. Aassessment of an adversarially and
non-adverserially trained EfficientNetB0 under black-box and
white-box settings

Figure 19. ACE under white-box settings on ensembles of
different sizes consisting of ResNet50 models trained on
ImageNet.

Figure 20. RC curve for applying ACE on a size 5 ensemble
of ResNet50 models with black-box settings


	Introduction
	Working
	Confidence score
	Selective prediction

	Comparison: ACE Vs. Adversarial attacks 
	Standard adversarial attack
	Attacking Confidence Estimation(ACE)
	Advantages of ACE over standard adversarial attack

	Implemetation of ACE
	Effect of ACE
	Effect of ACE under white-box vs. black-box settings

	Limitations and suggestions for improvements
	Summary
	References
	Results and Discussion
	Evaluation matrices
	Risk-coverage curve (RC curve):

	Experiments and interpretations
	Attacking softmax uncertainty
	Adversarial robustness via adversarial training

	Deep ensembles


