
Diverse, Global, and Amortised Counterfactual Explanations for
Uncertainty Estimates

Seminar: Uncertainty quantification in machine learning

Sruthi Aikkara
Matriculation Number: 229386

Summer Semester 2021/22

Supervised by: Jelle Hüntelmann

Abstract

Machine learning modeling can often result
in predictions that are uncertain. When there is
uncertainty in the prediction, there is a possibility
to give the interpreter different counterfactual
explanations which might be the reason of this
uncertainty. A technique called Counterfactual
Latent Uncertainty Explanation (CLUE) (Antoran
et al. (2021)) uses an uncertain data point to find
a single change in the on-manifold that increases
the certainty of the input, thereby increasing the
prediction’s accuracy. The multiplicity issue of CLUE
is addressed by the introduction of δ-CLUE, which
creates a set of CLUEs inside the delta-ball distance
of the original input. A development over δ-CLUE
is DIVerse CLUE (∇-CLUE), which focuses only on
the distinct counterfactual explanations. Finally the
GLobal AMortised CLUE (GLAM-CLUE) is introduced
which uses a single function call that makes the input
more certain and also makes the model computationally
more efficient.

1. Introduction

Estimating uncertainty is crucial to machine
learning. Uncertainty can lead to inaccurate predictions.
Therefore, it’s essential to comprehend the factors that
contribute to uncertainty before modeling is done. The
experts can then analyze these features and estimate
the value ranges in which they will provide a more
accurate prediction. Therefore, more counterfactuals
can be produced if there is a large degree of prediction
uncertainty. Therefore, it is possible to think of
uncertainty explanations as the first step towards model
explanation.

Antoran et al. (2021) proposed CLUE or

Counterfactual Latent Uncertainty Explanation which is
such a state-of-art method introduced which identifies
the single on-manifold change to an uncertain input
x0 that makes it more certain. These counterfactual
explanations are generated in the latent space of an
auxiliary deep generative model(DGM). The CLUE
minimises the loss value to make the uncertain input
more similar or closer to the prediction space.

As we examine CLUE, we find that it has some
downsides. Think about a situation where someone
is renting out an apartment and learns that the person
won’t be receiving the rent they were expecting after
all the calculations. They can take into account a wide
range of factors, such as the balcony, floor, whether
an elevator is available, the location, whether pets are
permitted, etc. The counterfactual explanation offered
by CLUE, however, calls for changing the location
of the apartment to a more desirable area, which is
something impractical to do. It would be beneficial
for the owner if we offered additional suggestions that
were practical and CLUE doesn’t have this possibility
to give multiple suggestions. Hence δ-CLUE is
introduced which generates a set of CLUEs within
the δ ball distance of the original uncertain input x0

in the DGM’s latent space. Some of δ-CLUEs were
redundant or similar, so diversity metrics are applied to
gauge how unique these CLUEs are. These measures
are used to optimize the generated CLUEs, and the
resulting diversified CLUE is known as ∇-CLUE. The
GLAM-CLUE (GLobal AMortised CLUE) is developed
to address the computational inefficiencies of CLUE and
speed up the process by having a single function call to
map a group of set of uncertain inputs to certain inputs.
Figure 1 shows how all the new CLUE algorithms work
in comparison to the original CLUE.

The efficiency of the CLUE techniques is evaluated

Figure 1. (Ley et al. (2021)) z0 is the latent space representation of uncertain input x0. The left most picture

shows the original CLUE with training data shown in different colours and gradient descent to regions also having

low cost. The small white circles in the pictures represent the counterfactual explanations. Left center represents

the δ-CLUE with δ being the radius of the circle and gradient descent within this δ ball. Right center is ∇-CLUE

with more diverse CLUEs at each region. Right most picture is the computationally efficient GLAM-CLUE.

by performing several experiments on various data sets
using various diversity metrics, altering the initialization
criteria, and so on. In the final sections of this paper,
CLUE’s potential for the future is also discussed.

2. Methods

As we go into more details of the different methods
introduced, let’s actually look into what a counterfactual
explanation is. If we go back to the previous
example of the owner renting out his apartment, if
allowing pets in the apartment increases his expected
rent, then that is a counterfactual explanation. The
counterfactual explanations don’t give advice or tell
the user what action to take; instead they help the
user by giving different possibilities or suggestions
by which they can achieve their expected goal. The
counterfactual explanations are considered to have the
”Rashomon effect” named after an old film in which
several characters attempt to justify a Samurai’s murder.
Every witness in the film has an unique account of
how the Samurai was killed, and this is exactly what
counterfactual explanations are. Every counterfactual
explanation presents a unique ”narrative” of how a
particular result might occur.

The smallest on-manifold change on an uncertain
input that increases prediction certainty is known as
CLUE (Counterfactual Latent Uncertainty Explanation).
On the latent space of an auxiliary deep generative
model (DGM), the explanation search for model
uncertainty is conducted. Consider x is the uncertain
input and z is the latent space. DGM has an encoder
µϕ(z | x) and a decoder µθ(x | z). H is the uncertainty
quantification which means if they are confident enough
if the prediction y is correct or not. There is a distance
metric that is presented as follows to determine how
similar the original input and the CLUE-generated input
are to one another:

d (x,x0) = λxdx (x,x0) + λydy (f(x), f (x0)) (1)

Here f(x) = y is the function which maps the input
x to a label y. λx and λy are the hyper parameters that
control the trade-off between distance and uncertainty
which is explained later in this report. CLUE has to
minimise this loss function given as:

L(z) = H (y | µθ(x | z)) + d (µθ(x | z),x0) (2)

This yields xCLUE = µθ(x | zCLUE) and zCLUE

is the minimal value of loss function given as zCLUE =
argminzL(z).

2.1. δ-CLUE

Bhatt et al. (2021) propose δ-CLUE, which
generates a set of counterfactuals that are within δ
ball distance of the original input in latent space,
to overcome the multiplicity issue of CLUE. These
multiple solution search is initialised randomly by
different initialisation schemes in different regions of
the δ ball. This is what CLUE does as well, however
CLUE has an inclination to look for minimal value in a
constrained region, and it’s possible that this minimal
region may be distant from original input. Figure 2
shows the comparison between the original CLUE and
δ-CLUE.

Similar to CLUE, the new CLUEs also employs
BNNs (MacKay (1992)) as its classifiers and Variational
Auto Encoders (VAEs) (Kingma and Welling (2013)) as
its DGM. The distance metric used here is the L1-norm
which is simply the Manhattan distance between the
original input and the input in the latent space. The
δ-CLUE loss function is similar to the original CLUE
loss function as in Equation 2 with an additional
δ constraint added to it. The loss function yields

Figure 2. Left: Original CLUE with training data

shown in colours. Right: δ-CLUE with white circle

representing the counterfactuals in latent space.

xδ−CLUE = µθ(x | zδ−CLUE) and zδ−CLUE =
argminz:ρ(z,z0)≤δL(z). Here ρ(z, z0) is the L-2 norm
which is the Euclidean distance and z0 = µϕ(z | x0).

When initializing δ-CLUEs in various regions of
latent space, the δ constraint value is adjusted to obtain
an optimal value at different stages (Figure 2). There
are two initialization schemes, as was previously stated.
One uses gradient descent while the other sampling
the area around the uncertain input. Even though
the sampling initialization technique is computationally
faster, using the latter produced better performance
with the highest quality of counterfactuals. The first
initialization method uniformly distributes CEs in a δ
ball within a random radius. The second initialization
technique generates CEs for each class using the Nearest
Neighbor path, as shown in Figure 3.

Figure 3. Initialisation schemes. Top: Initialised

along radius via random sampling. Bottom:

Initialisation done by Nearest Neighbour Path.

Figure 4. Uncertainty-Distance trade-off. Left:

MNIST data set. Right: Synbols data set.

As explained before the hyper parameters λx and
λy controls the trade-off between the distance and
uncertainty. The result of decreasing uncertainty over
increasing distance from original input is shown in
Figure 4.

Diversity Metrics for CE Optimisation There is
a possibility that many of the δ-CLUEs produced
will be identical or similar to one another. Thus,
the diversity measures are introduced in order to
identify distinct CLUEs and optimize the algorithm.
For the distinctiveness evaluation of CLUEs, various
diversity measures are available, and depending on
the data set, one diversity metric or a combination of
diversity metrics may be utilized. Diversity can be
evaluated on points either pairwise or between labels
of counterfactuals. Here are a few of these diversity
metrics:

Determinantal Point Processes: Here the
determinantal point process explained by Mothilal
et al. (2020) is used.The determinant of a matrix which
contains the distance between CEs are constructed.
The sub matrix which gives the highest determinant
value exhibits the highest diversity and that matrix is
chosen. So the motive is to leverage the DPP and the
determinant, det(K) is given by:

Ki,j =
1

1 + d (xi,xj)

The DPP procedure requires the calculation of
matrix determinants, hence it will be computationally
expensive for a larger number of points.

Average Pairwise Distance: As the name suggests,
the diversity is calculated as the average pairwise
distance between the distinct pairs of counterfactuals
(Bhatt et al. (2021)). Average pairwise distance is given
as:

1(
k
2

) k−1∑
i=1

k∑
j=i+1

d (xi,xj)

As δ value increases, the average pairwise distance
also increases monotonically.

Coverage: Coverage is a diversity metric that can be
used for the optimisation of chosen counterfactuals.Each
counterfactual is given a weight in coverage based on
the feature importance. Coverage is hence the sum of
all these distinct features (Ribeiro et al. (2016)). This
makes it easier to select a subset from the collection
of all CEs while maintaining the set’s diversity. When
examining the features in coverage, the features added
as well as the ones removed are taken into account,
as merely considering one of them could result in
CE deviating from the original input. The coverage
calculation hence takes the sum of positive and negative
feature changes that are made to the counterfactual.

1

d′

d′∑
i=1

(
max

j
(xj − x0)i +max

j
(x0 − xj)i

)

Figure 5 shows how coverage is calculated for an
uncertain input x0. Five CEs are created, and if only
positive changes are considered, then they are far away
from x0. Hence the total coverage is the sum of both
positive and negative changes.

Figure 5. The positive and negative coverage is

calculated and the maximum pixel value is taken. We

can see only considering either features added or

removed is distant from the actual input. Hence total

coverage is taken as the sum of the positive and

negative coverage values.

Prediction Coverage: If we maximize the prediction
of one class label in a set of counterfactuals, eventually
it will minimize the prediction of the other labels.
Therefore, the goal of prediction coverage is to

maximize the prediction of a certain class label. This
count of the maximum predicted labels is then averaged
over all of the predictions that are available. Prediction
coverage is calculated as:

1

c′

c′∑
i=1

max
j

[
(yj)i

]
Distinct Labels/Entropy of Labels: Diversity of class

also rises when a prediction has a large number of
different labels. So if it is a binary classification, then
diversity will be less. The probability of a class is
defined as the number of counterfactuals in that class
over the total number of counterfactuls. This probability
of a particular class j with c′ as the number of CEs are
given as:

1

c′

c′∑
j=1

1[∃i:yi=j]

Below equation calculates the entropy of these class
labels as just calculating probability is not good enough
for diversity evaluation.

− 1

log c′

c′∑
j=1

pj(k) log pj(k)

The Figure 6 shows how the different diversity
metrics responds to increase in the δ values.

Figure 6. Logarithmic of diversity metrics are

plotted against the δ values.

As the δ value increases, we can see that the diversity
also increases monotonically for all the metrics. The
DPP process appears to exhibit considerable volatility
in the tests reported in this study, and there is a steep

increase in the diversity at δ=3.0. Also the statement that
as the number of counterfactuals increases, the diveristy
also increases is not always true for all the diversity
metrics. This is true for Coverage, prediction coverage
and number of distinct class labels, but not true for
DPP, APD and entropy of class labels as they exhibit
a decrease in diversity with an increase in the number of
counterfactuals.

2.2. ∇ - CLUE

We can generate an optimized set of diverse CLUEs
by applying the diversity metrics discussed in the section
previously. This set of CLUEs are called DIVerse CLUE
or ∇-CLUE. There are mainly 2 steps to be followed in
a generating ∇-CLUE. The first step is to choose the
diversity metric. The second step is to optimise the
set of k counterfactuals either simultaneously in latent
space (Mothilal et al. (2020)) or sequentially. Similarly
to the δ-CLUE algorithm, points are generated within a
particular radius using one of the initialisation schemes.
The ∇-CLUE is same as δ-CLUE when the diversity
weight λD = 0. This is in turn equals to the original
CLUE algorithm if δ = ∞, number of counterfactuals, k
= 1 and radius r = 0. The ∇-CLUEs generated for an
uncertain input x0 is given in Figure 7. Here H is the
uncertainty, d represents the distance between the CE
and original input, and ρ is the latent distance.

Figure 7. A set of six diverse counterfactual

explanations are generated. Original input is given on

the left most side which can be a 7 or 9.

As explained before, there are two types of
optimisation, simultaneous and sequential which is
explained in detail in the section below.

Simultaneous Diversity Optimisation: In
Simultaneous Diversity Optimisation, CLUEs are
optimised simultaneously in latent space. As the
number of counterfactuals k increases, the diversity also
monotonically increases. This can be avoided while
using the simultaneous diversity optimisation. The loss
function has to be minimised and it is given by:

L (z1, . . . , zk) = −λDD (z1, . . . , zk) +
1

k

k∑
i=1

L (zi)

where λD is the diversity weight and D is the Diversity
function and

L (zi) = H (y | µθ (x | zi)) + d (µθ (x | zi) ,x0)

This yields

XCLUE = µθ (X | ZCLUE)

where ZCLUE = argminz1,...,zk
= L (z1, . . . , zk).

Sequential Diversity Optimisation: In Sequential
Diversity Optimisation, each new counterfactual is
appended to the set to perform ∇-CLUE. The loss
function is to be minimised on each new appended CE
and it is given by:

L(z) = λDD (ZCLUE ∪ z)+H (y | µθ(x | z))+d (µθ(x | z),x0)

This yields zCLUE which can be seen appended to
the already existing set of CEs. Figure 8 shows how the
sequential ∇-CLUE works.

Figure 8. Upper left image shows the original CLUE

with training points given in different colours. Rest of

the images depict how sequential diversity

optimisation is performed with each new

counterfactual being generated at a distinct region.

We can see that each step, the new solution is added
to a new region by calculating the diversity term. Here
the gradient descent scheme is used to initialise the
CE generation in the δ ball distance using sequential
diversity optimisation.

2.3. GLAM-CLUE (GLobal AMortised
CLUE)

As CLUE works with local uncertainty explanation,
this will lead to computational inefficiency when a large
set of data is involved. If there are large sets of uncertain
inputs, then large sets of counterfactuals can also be
generated, as explained in the first section. Dealing

with this extensive collection of CEs is unreliable.
So GLAM-CLUE is proposed, which learns global
uncertainty of inputs by considering only a set of CEs,
and this learnt mapper is then applied to unseen or test
data. This method has proved to be computationally
efficient and reliable on large sets of input.

The generation of GLAM-CLUEs involves two
steps: the training stage and the inference step. Firstly
there will be a finite set of CEs which will be grouped
according to the certainty. The global features of the
uncertainty of this set of certain or uncertain points
are then learned in the latent space during the training
phase.This function is then applied to the unseen test
data to generate CEs in the inference step. The primary
distinction between GLAM-CLUE and the original
CLUE is that with GLAM-CLUE, the training phase
of the algorithm can be enhanced by producing CLUE
from uncertain properties of the points. As defined
before, there will be a mapper or function which maps
the uncertain points to certain points by checking on
which properties the changes have to be made. This is
given by:

zcertain = G(zuncertain)

Between an uncertain group i to certain group j,
there is only a single mapper and this is controlled by
parameter θ. This can be represented as:

zj = Gi→j(zi) = zi + θi→j

where G is the mapper. In the inference step, the mapper
is applied on unseen data to make it more certain. The
loss function is calculated as:

L (θ | Zuncertain, Xcertain) =

λθ || θ ||1 +
1

| Zuncertain |∑
z∈Zuncertain

min
x∈Xcertain

|| µθ(z+ θ)− x ||22

Performance Test Multiple performance tests are
available and two of them are: Difference Between
Means(DBM) and Nearest Neighbours(NN). In DBM,
the difference between the means of uncertain and
certain input is calculated and this is then added to
unseen test data in the inference step.
The nearest neighbors for highly certain data are
calculated for the second test. GLAM-CLUE
demonstrated in the experiments that it outperforms
these tests and is 200 times faster than the current
state-of-the-art methods.

Uncertainty Grouping As explained in
GLAM-CLUE we need to group certain and uncertain
inputs. There is a higher bound on the amount of
uncertain data when compared to certain data points.
So there might exist a many-to-one mapping from
uncertain point groups to certain point groups. This is
given in Figure 9.

Figure 9. Uncertain groups to certain groups

mapping. Asterisk represent any group.

The first method shows the mapping for a particular
class where uncertain points are mapped to certain
points. The method on the far right maps from any
uncertain group to any certain group. In the first two
cases of mapping, we can select a set of best CEs for the
training using some selection method. As this type of
selection is not done in generic mapping, there will be
a higher number of CEs which will make the mapping
harder to train and also might not be diverse.

3. Experiments and Results

Different experiments are performed on the UCI
Credit Classification data set (Dua, Graff, et al. (2017)),
MNIST image data set (LeCun (1998)), and Synbols
image data set (Lacoste et al. (2020)). The advantages
of the δ-CLUE, ∇-CLUE and GLAM-CLUE are
demonstrated via these experiments. The main results
and takeaway of these experiments in each CLUE are
given in the below section:

3.1. δ-CLUE

As given in Figure 4, we can see that as the
δ value increases the distance also increases. This
uncertainty-distance trade-off is controlled by tuning the
hyper parameter λx. Low uncertainty can be reached
with less distance from the original input by reaching
an ideal λx value (Figure 10, right). In Figure 10, the
left most image shows that when the number of CLUEs
generated increases, the diversity increases as well, but
diversity eventually hits saturation at a certain point.

There exists different methods to select the optimum
δ value before the experiments are conducted. Finding
the ideal minima in a δ ball might be challenging at
times when the δ value is low. Therefore, several
constrained optimisation techniques are employed in
the experiments. As a result, choosing the proper δ
value can be a smart practice. To accomplish this,

Figure 10. Left: Entropy of the labels increasing as

the number of CLUEs increases in MNIST data set.

Right: Performance of CLUEs as δ increases.

identify the relationship between the uncertainty and the
distance of the data in the latent space, which gives some
information about the counterfactuals.

3.2. ∇-CLUE

Experiments are conducted on both MNIST and
UCI Credit data set with a fixed value for number of
counterfactuals, radius and δ value. Figure 11 is the
plot which shows how the different diversity metrics
changes when the diversity weight λD is increased in
both latent space and input space. We can see that
the diversity also increases monotonically with λD, but
it attains a saturation point in diversity with way less
counterfactuals than in the δ-CLUE.

Figure 11. Diversity weight versus Diversity metrics.

Row 1: MNIST data set. Row 2: CREDIT data set.

The effect of λD on different diversity metrics.

3.3. GLAM-CLUE

The computational efficiency of GLAM-CLUE is
demonstrated with MNIST data set. There are 3
GLAM-CLUEs which are compared with the first
GLAM-CLUE represented as GLAM1, with the mapper
learning from all uncertain and certain 4s in the

MNIST data set. GLAM2 and GLAM3 learns from
all uncertain inputs and and their corresponding CLUEs
generated. Although generating CLUEs at training
stage requires additional computation, GLAM2 and
GLAM3 performed better than GLAM1 because they
use CLUEs to train the mapper. The hyper parameter
λx is also trained with different values (λx = 0 , λx

= 0.03) to control the uncertainty-distance trade-off
and the best performed GLAM-CLUE was achieved
at λx = 0.03 when trained on CLUEs as in GLAM2
and GLAM3. The uncertainty, distance and cost
comparison of GLAM-CLUE with original CLUEs and
other baselines are given in the Figure 12

We can see that GLAM-CLUE outperforms all
the baselines and the CLUE itself. Even though the
GLAM-CLUE takes extra computational time during
the training phase because of the CLUE generation,
the average CPU time during inference phase is
exceptionally faster, almost 200 times when compared
to CLUE. The Figure 13 shows the table which specifies
the average CPU time of GLAM-CLUE, CLUE and
other baselines in the inference step.

In conclusion, these experiments demonstrates
how δ-CLUE deals with the uncertainty-distance
trade-off, ∇-CLUE deals with the diversity issue, and
GLAM-CLUE generates efficient global uncertainty
explanations, thus overcoming CLUE’s flaws.

4. Related Work

This paper majorly focuses on eliminating the
multiplicity and computational efficiency issue of the
CLUE algorithm. There are many additional studies
that concentrate on the uncertainty explanation, but
they all have certain flaws. Joshi et al. (2018) have
presented a method for creating counterfactuals using
a deep generative model, similar to CLUE, but not
for uncertainty explanation. Additionally, Mothilal
et al. (2020) and Russell (2019) use linear programs
to generate counterfactuals, although they are also not
designed to provide uncertainty explanations. These
works are all mostly concerned with local aspects of
counterfactuals.

Our algorithms place equal emphasis on increasing
computational speed and on global explanations.
Similar to GLAM-CLUE, there is a method in
which a function is devised which maps from lower
dimensional group to another group by Plumb et al.
(2020) and an advanced deep generative model which
generates counterfactuals in an efficient manner by
Mahajan et al. (2019) and Yang et al. (2021). DiCE
or Diverse Counterfactual Explanations is another
algorithm by Mothilal et al. (2020) which is similar

Figure 12. The comparison of GLAM-CLUE with other base lines in MNIST data set. CLUE 1 and CLUE 2 are

generated when λx = 0 and λx = 0.03 respectively. Left: Uncertainty comparison. Centre: Distance comparison.

Right: Cost comparison.

Figure 13. Average CPU time in seconds for

inference step of a single counterfactual generation

from MNIST data set.

to the DIVerse-CLUE or ∇-CLUE algorithm, however
DiCE was unable to address all of CLUE’s drawbacks.

Future applications of the methods described in this
research include testing with higher dimensional data
sets in the algorithm. The entire potential of CLUE
can be explored with higher dimensional data sets. In
this paper, we have only used the simple metrics like
L1-norm or L2-norm for distance calculations; instead
we can use FID scores (Heusel et al. (2017)) to evaluate
the performance of the algorithm in a better way.
In the experiments conducted in this paper, we have
used Variational Auto Encoder (VAEs) as the DGM,
but instead we can employ Generative Adversarial
Networks or GANs (Goodfellow et al. (2014)) as the
DGM to evaluate whether there are any improvements
or modifications to the performance when generating
counterfactuals using GANs.

GLAM-CLUE operates well, as demonstrated in the
studies, however this may not always be the case. Some
times GLAM-CLUE fails to differentiate uncertain and
certain groups from each other by simple translation as
given in Figure 14.

This problem must be resolved by GLAM-CLUE
utilizing better techniques to divide these groups, such
as a clustering approach or more intricate mapping
functions. Additionally, a novel approach is proposed
by Dosovitskiy and Djolonga (2020) that use a single

Figure 14. The shortcomings of GLAM-CLUE is

represented in this figure. Red points represent the

group of uncertain points and blue points represent

the group of certain points. We can see difficulty in

mapping uncertain groups to certain groups unless a

clustering or similar technique is employed.

model trained on multiple losses rather than multiple
models trained on a single loss can be used to quickly
tune the hyper parameterλθ. New experiments can also
be performed on human subjects as this would open
door to a wide possibility of improvements in the CLUE
algorithm.

5. Conclusion

Most practitioners will be interested in knowing
the reason behind the uncertainty in prediction and the
features that lead to this uncertainty. If we can provide
an explanation for this uncertainty, then it would be a
great advantage in the world of machine learning and
model predictions. CLUE is such a novel method that
can be used for uncertainty explanations. To overcome

the shortcomings of CLUE, three enhanced CLUEs are
introduced in this report.

To deal with the multiplicity issue of CLUE,
the δ-CLUE is introduced, which generates multiple
counterfactuals within the δ ball distance in latent space.
As the δ-CLUE can generate redundant CLUEs, the
more optimised DIVerse CLUE or ∇-CLUE generates
only diverse and distinct CLUEs and is optimised using
different diversity metrics. The ∇-CLUE demands for
more calculation time because it takes several iterations
to get to an optimized state. Finally, to solve this
computational inefficiency, GLAM-CLUE is proposed
which learns from the group of uncertain and certain
inputs in an amortised single function call to generate
more certain inputs.

The GLAM-CLUE is demonstrated through
experiments to be computationally more efficient than
other CLUEs and baselines. It also shows that δ-CLUE
and ∇-CLUE serve their respective functions in dealing
with the multiplicity and redundancy issues. As a result,
these kind of uncertainty explanations can be used as
a precedent for model explanations in the real world
machine learning problems.

References

Antoran, J., Bhatt, U., Adel, T., Weller, A., &
Hernández-Lobato, J. M. (2021). Getting a
{clue}: A method for explaining uncertainty
estimates. International Conference on
Learning Representations. https://openreview.
net/forum?id=XSLF1XFq5h

Bhatt, U., Chien, I., Zafar, M. B., & Weller, A. (2021).
Divine: Diverse influential training points
for data visualization and model refinement.
ArXiv, abs/2107.05978.

Dua, D., Graff, C. et al. (2017). Uci machine learning
repository.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2014). Generative adversarial nets.
Advances in neural information processing
systems, 27.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B.,
& Hochreiter, S. (2017). Gans trained by a two
time-scale update rule converge to a local nash
equilibrium. Advances in neural information
processing systems, 30.

Joshi, S., Koyejo, O., Kim, B., & Ghosh, J.
(2018). Xgems: Generating examplars to
explain black-box models. arXiv preprint
arXiv:1806.08867.

Kingma, D. P., & Welling, M. (2013). Auto-encoding
variational bayes. arXiv preprint
arXiv:1312.6114.

Lacoste, A., Rodrıguez López, P., Branchaud-Charron,
F., Atighehchian, P., Caccia, M., Laradji, I. H.,
Drouin, A., Craddock, M., Charlin, L., &
Vázquez, D. (2020). Synbols: Probing learning
algorithms with synthetic datasets. Advances
in Neural Information Processing Systems, 33,
134–146.

LeCun, Y. (1998). The mnist database of handwritten
digits. http://yann. lecun. com/exdb/mnist/.

Ley, D., Bhatt, U., & Weller, A. (2021). Diverse, global
and amortised counterfactual explanations
for uncertainty estimates. arXiv e-prints,
arXiv–2112.

MacKay, D. J. (1992). A practical bayesian framework
for backpropagation networks. Neural
computation, 4(3), 448–472.

Mahajan, D., Tan, C., & Sharma, A. (2019).
Preserving causal constraints in counterfactual
explanations for machine learning classifiers.
arXiv preprint arXiv:1912.03277.

Mothilal, R. K., Sharma, A., & Tan, C. (2020).
Explaining machine learning classifiers
through diverse counterfactual explanations.
Proceedings of the 2020 conference on
fairness, accountability, and transparency,
607–617.

Plumb, G., Terhorst, J., Sankararaman, S., & Talwalkar,
A. (2020). Explaining groups of points in
low-dimensional representations. International
Conference on Machine Learning, 7762–7771.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016).
” why should i trust you?” explaining the
predictions of any classifier. Proceedings of the
22nd ACM SIGKDD international conference
on knowledge discovery and data mining,
1135–1144.

Russell, C. (2019). Efficient search for diverse coherent
explanations. Proceedings of the Conference
on Fairness, Accountability, and Transparency,
20–28.

Yang, F., Alva, S. S., Chen, J., & Hu, X. (2021).
Model-based counterfactual synthesizer for
interpretation. Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery
& Data Mining, 1964–1974.

