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Abstract

The report aims to discuss two methods that can
enhance the performance of Latin Hypercube sampling.
The conventional approach of taking samples for each
variable from the cumulative distribution is replaced
by finding the probabilistic means of equiprobable
disjunct intervals in the variable’s domain. Instead
of doing matrix manipulation to reduce the correlation
between variables(correlated and uncorrelated), a
single-switch-optimized step for one variable at a time is
proposed. Improvements and limitations achieved by the
two new methods introduced, and experimental results
from a Poisson process are further discussed.

1. Introduction

Numerous statistical studies have utilized and
continue to employ the Monte Carlo method or Monte
Carlo simulation as an analytical tool. Monte Carlo
simulation is a powerful tool to analyze random
phenomena using computers. It relies on repeated
random sampling to produce numerical results. The
idea is to use randomness to solve problems that, in
theory, may be deterministic. Monte Carlo simulation
is simple and easy to use. It is most useful when
other approaches are difficult or impossible to use. The
random inputs variables in Monte Carlo are expressed in
several deterministic set of numbers known as samples,
realization, or observation. The random problem is
now divided into smaller deterministic problems which
are easy to solve. The samples generated by Monte
Carlo as a result, will provide accurate statistical and
probabilistic information about the desired variable.

The crux of Monte Carlo simulation is the sampling
scheme. The simplest sampling scheme technique
uses a pseudorandom generator which generates random

samples based on a known transformation. The samples
are generally drawn randomly from the cumulative
distribution of the input variables. This straightforward
sampling scheme has a significant flaw as it requires
large samples to represent the input distribution
precisely. When simulating a single Gaussian variable
using this sampling scheme, 133,000 samples are
needed to guarantee a 99% probability that the sample
variance is within 1% of the true value.

Other sampling schemes such as Shinozuka or
auto-regressive moving average(or ARMA for short)
have been developed to tackle the large sample
size requirement for specific cases. Although these
techniques provide good samples which match the target
mean and correlation precisely when temporal averaging
of the simulated process is used, they cannot be used for
non-Gaussian or non-stationary, or several independent
non-Gaussian variables[5].

Latin hypercube sampling is considered as one of the
best sampling techniques for Monte Carlo simulation.
Latin Hypercube sampling is a stratified random process
that provides an efficient way of sampling variables
from their distributions[4]. Unlike simple random
sampling scheme, this method ensures full preservation
of marginal probability of the simulated variables and
the correlation between each variable by maximally
stratifying each marginal distribution. Only a small
number of samples are required for good accuracy in
the response parameter. This is achieved by creating a
highly joint probability density function for each of the
variables in the random problem.

Latin Hypercube sampling has two stages. First,
the values are chosen from a cumulative distribution
to represent the variables’ probability density function.
The samples of the variables are then ordered in
such a way that they match the target correlation



between the variables. The marginal probability of
the variables remain unaltered as ordering is done
for matching correlation rather than changing the
values. The improvement suggested by authors (D.
E. Huntington and C. S. Lyrintzis) in these two steps
improves the samples by ensuring a higher correlation
between the variables to the target values and better
representation of the probability distribution of each
variable. This method improves the result especially
when the correlation of the variable is nonzero.

The improvement suggested in the first stage
of generating sample is to take the probabilistic
mean of each section or intervals from the variables’
domain. This is in contrast to the normal approach
of taking samples directly from the cumulative
distribution function. The second improvement
suggested is to reorder the samples generated by
using a single-switch-optimizer rather than the
conventional approach of using matrix manipulation
to achieve target correlation between the variable. The
single-switch-optimizer hence orders the variable one
at a time rather than ordering all variables in one step
in the conventional manner. The results obtained by
the two improvements are discussed with respect to
existing techniques. The strength and limitation of the
improvements to Latin Hypercube sampling suggested
here are analyzed using a simple Poisson process.
Improvements related to the updated Latin Hypercube
sampling to enable non-positive ordering matrix and
achieving better statistical accuracy are mentioned
in this report. Further, future improvements are also
discussed in this report.

2. Sample Generation

The first stage of Latin Hypercube can be
summarized as:

• divide the cumulative distribution of each variable
into N equiprobable intervals

• from each interval, select a value randomly, for
the ith interval

The samples for each variable generated will represent
the variable’s probability distribution.

xi,k = Fi
−1

(
k − 0.5

N

)
, (1)

where Fi
−1 is the inverse cumulative distribution

function for variable Xi, N is the number of samples per
variable, and xi,k is the kth sample of the ith variable of
Xi. The major drawback of this approach is the lack

of matching target correlation, although mean is fairly
close to the desired one.

The authors suggest a method which would help
improve the variables’ marginal probability density
function. This is achieved by taking the random mean of
each section as the section’s sample from the probability
density function.

xi,k =
1

N

∫ yi,k

yi,k−1

xfi(x)dx, (2)

where fi is the probability density function of the
variable Xi. The limits of the integration can be found
out by using eqn (3).

yi,k = Fi
−1

(
k

N

)
, (3)

Using eqn (2), we might not be able to solve
some probability distribution in its closed form. It is
worthwhile to put forth the additional effort required to
perform the necessary numerical integration.

Figure 1. Percentage error in mean and variance of

an exponentially distributed variable for the

current(old) and proposed(new) sampling schemes

using different numbers of samples.

Fig (1) shows a table that compares the difference in
statistical accuracy between the old and new sampling
schemes. Various number of samples are simulated
for an exponentially distributed variable using both
the techniques. The probability density function of
the variable is given by f(x) = e−xH(X), where
H(X) is the Heaviside unit step function, and e is
the base of natural logarithms. Mean and variance of
the random variable is 1. Comparing the values from
the table shown in fig (1), we can see that the errors
in the simulated mean for the old technique (taking
directly from the cumulative distribution function) is
low, whereas the error in the simulated mean while using
the new or proposed technique is 0. There is a noticeable
difference for the errors in simulated variance of the



variable while using the proposed method. In order to
get the simulated variance to be accurate within 1%,
500 samples were required when using the old technique
where as only ten samples were required in the proposed
new sampling scheme.

The new sampling scheme can be used along with
the old scheme since the values generated by the
samples are nearly identical everywhere except at the tail
of the distribution. The old, simpler sampling scheme
should be effective for replicating a distribution with
finite domain. The new scheme only needs to generate
the first and last several samples; the remaining samples
can be obtained using the old method if the probability
distribution for the relevant variable has an infinite or
semi-infinite domain or if the numerical integration in
the proposed scheme becomes challenging.

3. Sample Ordering

The correlations between variables, whether they are
zero or not, must be taken into consideration after the
samples for each variable have been generated. Samples
for each variable generated are ordered using Latin
Hypercube. The nth response value is produced when
doing function evaluations using the nth ordered sample
for each variable. In order to maintain the marginal
probability density functions for each variable, the target
correlations between variables can be matched with the
appropriate ordering scheme.

Random ordering of generated samples for each
variable was considered sufficient when the variables
were uncorrelated. Florian, in his work has proved
that this method would generate significant correlation
between some of the variables. Hence to reduce the
random correlation between the generated variables,
Florian proposed an updated Latin Hypercube sampling
scheme[1]. Florian proposed the following ideas in his
updated Latin Hypercube sampling.

In the updated Latin Hypercube, instead of using the
samples themselves for ordering, Florian proposed to
use rank number. The value of k used in eqn (1) or
in eqn (2) or in eqn (3) is taken as the rank number.
An ordering matrix R of size N × M is formed with
columns containing permutation of rank numbers for
each variable. The simulation proceeds as the following
once the ordering matrix R is formed: Samples for
each variable are arranged on the same column of the
ordering matrix based on the rank numbers for the
variable. The nth reordered sample of each is then used
to produce the nth required output.

It must be ensured that no two columns are alike
in the ordering matrix, even though the permutation of
rank numbers in it are generated randomly. Spearman

correlation coefficients defines the correlation between
columns in the ordering matrix.

Ti,j = 1−
6
∑
k

(Rki −Rkj)
2

N(N − 1)(N + 1)
, (4)

where Tij represents the Spearman correlation
coefficient between variables i and j. The Spearman
correlation coefficient ranges from -1 to 1.

Unless some columns in the matrix have identical
ordering, the correlation matrix T will be symmetric and
positive definite. To ease further calculations, Cholesky
decomposition of matirx T can be performed:

T = QT .Q (5)

A pseudo-ordering matrix RB is generated at this
point:

RB = R.Q−1 (6)

The rank numbers are then put in each column of the
ordering matrix R in the same order as the corresponding
column of RB. It has been demonstrated that applying
this strategy may cause correlations between any two
system variables to decline rather than increase. It
should be noted that this method can be used repeatedly,
possibly allowing for extremely low correlations. The
authors have discovered that updated Latin hypercube
sampling actually exhibits a tendency to converge to
an ordering that nevertheless produces considerable
correlation errors between some variables. Therefore,
for uncorrelated variables, a different ordering strategy
must be utilized.

The current technique has greater challenges
while simulating correlated variables. To generate
’uncorrelated’ variables, Latin Hypercube sampling
must be done repeatedly. Cholesky decomposition is
done on the matrix T of the target correlation coefficient
as in eqn (5). Using eqn (6) we generate the new
ordering matrix. There is no method to iterate the
correlation procedure done using eqn (5) and eqn (6).
Consequently, nothing can be done to solve the issue if
the new ordering matrix does not enable the variables
to match the intended correlation coefficients well. It
is essential to devise a new ordering scheme that can
accurately represent both correlated and uncorrelated
data.

The authors propose a single-switch-optimized
sample ordering scheme to better simulate both
correlated and uncorrelated variables. The proposed
scheme orders modified sample rather than using
rank numbers or Spearmans coefficient. Spearmans
coefficient correlation between two variables fails when
the variables are not uniformly distributed. Hence the



updated Latin Hypercube approach has to be modified.
For this, a new matrix with unordered samples is
formed:

Rij =
xj,i − µj

σj
(7)

where σj is the standard deviation for that variable and
µj is the mean for the jth variable. Each column of
the transformed matrix R now has a zero-mean and unit
variance variable.

Each column of matrix R is subjected to the
following method one at a time beginning with the
second column. Let’s say the first m − 1 columns
were subjected to the ordering technique. The actual
correlation coefficients between the mth column and
each of the preceding ones are first calculated into the
vector T . This is formed using:

Tj =
1

N

N∑
i=1

RijRim (8)

where 1 ≤ j ≤ m− 1. The correlation coefficient error
E is defined as:

E =

m−1∑
j=1

(Tj − T ′
jm)2 (9)

where T ′ is matrix containing target correlation
coefficients. The change in E that would happen if
a pair of samples in the mth variable were switched
is computed for each pair of samples. The samples
that resulted in the highest decrease in E are then
exchanged. The mth variable is subjected to this process
repeatedly until the point at which either there is no
room for improvement or the correlation coefficients are
all accurate to within a predetermined threshold. The
method is then applied, one variable at a time, to all
remaining variables. Since just one switch is used at a
time to optimize sample ordering, the method is known
as single-switch optimization[2].

Finally, the ordered samples can be written in
a matrix S when the reordering method is finished,
converting the original unordered modified sample
matrix R into an ordered modified sample matrix R′,
as shown here:

Sij = R′
ijσj + µj (10)

Figure 2 and 3 are tables that show the
difference in performance between the updated
Latin Hypercube sampling method and the proposed
single-switch-optimized method. Uncorrelated

Figure 2. Minimum over 50 runs of maximum

Spearman coefficient using updated Latin hypercube

ordering for various numbers of variables and samples.

Figure 3. Maximum correlation coefficient using

proposed single-switch optimization ordering for

various numbers of variables and samples; variables

are exponentially distributed. The ordering scheme

was halted when the maximum correlation coefficient

was 0.1% or lower, or when no further improvement

was possible.

exponential variables were simulated using varying
amounts of samples and variables for both sampling
schemes. Actual correlation coefficients were used
for the proposed method while Spearman coefficient
correlation was used for the updated Latin Hypercube
sampling. The greatest Spearman coefficient(in
absolute value) was recorded for each of the 50 runs
of Florian’s revised Latin hypercube sampling method.
The procedure was iterated 50 times in total, with each
run lasting until there was no longer any change in
the ordering matrix. The minimum of these numbers
was then kept, and is shown in Figure 2. Maximum
correlation coefficients from the proposed technique
with a threshold of 0.1% are shown in Figure 3.

It is evident from the figures that the proposed
technique provides much higher correlation accuracy
across all the variables than the updated Latin hypercube
sampling method. Both ordering techniques’ accuracy
are largely influenced by the N/M ratio, which
measures the number of samples to variables. For
updated Latin hypercube sampling, N/M must be
greater than 100 to guarantee that the maximum



Figure 4. Average computation time (s) required for updated Latin hypercube ordering on an IBM 486DX4/120

desktop computer.

Figure 5. Computation time (s) required for proposed single-switch optimization ordering on an IBM

486DX4/120 desktop computer. The ordering scheme was halted when the maximum correlation coefficient was

0.1% or lower. For reference, 1 day is 86400s.

Spearman coefficient is less than 5%. The proposed
method yields a maximum correlation coefficient of less
than 1% for a ratio N/M of 2 to 5. The reason for this,
as previously explained, is that updated Latin hypercube
sampling converges to an inappropriate ordering. The
suggested method performs sufficiently, even if it may
possibly converge to a non-optimal ordering.

Additionally, computation times for the two
reordering methods on an IBM 486 DX4, 120 desktop
computer were determined. This is displayed as tables
in fig (4) and Fig (5) respectively. Figure 4 shows
the average computational time required by the updated
Latin Hypercube for various number of variables and
sample size. Likewise, Figure 5 shows the average
computational time required by the proposed method for
various number of variables and sample sizes. From the
tables, it is evident that the updated Latin Hypercube
technique is much faster compared to the proposed
technique. For a simulation with 200-variables with
1000-samples, the updated Latin hypercube sampling
took less than 3 minutes of time. The proposed
technique is quite time consuming with larger cases
taking several hours or days. The entry denoted by N/A
on the table took more than a day.

The computation time required by the proposed

method can be reduced roughly by approximately a
factor of N , if there is enough memory to store the
changes in each correlation coefficient change caused
by each sample pair switch. This is because only a
small subset of those numbers would need to be updated
following a switch. This was not done for any of
the simulation done by the authors. The computation
time can further be decreased if the threshold value
for maximum correlation coefficient error is set higher
resulting in a lower accuracy statistical output.

Figure 6. Percentage error in skewness of sum of

various number of simulated independent exponential

variables, with various number of samples.



Figure 7. Percentage error in kurtosis of sum of

various number of simulated independent exponential

variables, with various number of samples.

4. Simulating a Poisson process

A Poisson process is used to test the powers of
proposed Latin Hypercube sampling. The proposed
Latin Hypercube sampling method was used to
simulate various uncorrelated exponential variables
with different sample size. The outcomes can
then be used to simulate the sum of ”independent”
identically-distributed exponential variables, which
should be a gamma-distributed variable. The mean µ,
variance σ2, kurtosis k, and skewness s of the gamma
distribution are given below :

µ = E[x] = n/λ

σ2 = E[(x− µ)2] = n/λ2

s = E[(x− µ)3]/σ3 = 2/
√
n

k = E[(x− µ)4]/σ4 = 3 + 6/n

(11)

where λ represents the parameter in the exponential
distribution for each variable which is taken to be
unity in the computations here, x is a dummy variable
denoting a value of the gamma-distributed variable,
n denotes the number of exponential variables being
added together, and E[ ] is the expected value.

As mentioned above, the simulated mean for each
variable will have 0% error as simulated mean will
be exactly the same as the actual mean. This can be
verified from Figure 1. The simulated variance will also
be close to the actual variance (again, see Figure 1).
From Figure 3, we can see that the simulated correlation
between the variables are near to zero. We look at
the skewness and kurtosis of the sum of the simulated
variables and compare them to the target values in eqn
(11) to determine how successfully Latin hypercube
sampling replicates independent variables. Figure 6 and
7 shows the percentage of error in skewness and kurtosis
of sum of various numbers of simulated independent
variables, with various number of samples. From

Figure 6 and 7, we can see that the error in skewness
and kurtosis of the simulated variables are high. The
error is skewness tends to increase as the number of
variables increases. Although less predictable, the error
in kurtosis again seems to be mostly dependent on the
number of variables. No definite relationship between
the variable size and error in skewness or error in
kurtosis can be established. It is to be noted, more
samples are not always going to produce more accurate
results in Latin hypercube sampling after a sufficient
number of samples have been picked for accuracy in
variable distributions and correlations.

Latin hypercube sampling can match higher
order moments inside each variable, which are
represented by the variable’s marginal probability
distribution, but it can only match second-order random
moments(variances) between variables. Although
independent variables cannot be simulated using Latin
hypercube sampling, uncorrelated variables can be.
Therefore, unless a small number of variables become
dominating, which the Poisson process does not
produce, the preservation of the marginal distributions
for the variables is of limited use. Higher-order random
moments between variables might be incorporated by
modifying the error term in eqn (9), but doing so would
need significantly more memory, computing time, and
samples per variable than the suggested method for
good accuracy.

Latin Hypercube can generate an approximate
cumulative distribution function(or CDF) from the
samples generated. For this, the outputs of the Latin
Hypercube are sorted in ascending order. This can
be used as the x-values and can be placed at equal
intervals along the y-axis ranging from 0 to 1. Figure
8 and 9 show charts that compares actual CDF to the
approximate ones derived from the outputs. The CDF
generated from an output of 10 and 100 variables are
seen in figure 8 and 9 respectively. From these figures,
it is evident that the generated CDF closely matches to
that of the actual CDF. Slight variation from the actual
CDF can be seen at the tail of the distribution. Although
the curve improves with the increase in samples, after
a point more samples would not yield a better curve as
the generated CDF converges to a single limiting curve.
This can be predicted because of the error in skewness
and kurtosis explained above.

5. Related Works

The updated Latin Hypercube sampling scheme uses
Cholesky decomposition in its permutation as explained
above in eqn (5). In this approach, the Latin Hypercube
tends to converge to an ordering but will still produce



Figure 8. Actual CDF for the sum of 10 independent exponential variables, with parameter λ = 1, and

approximate CDF for various numbers of samples.

significant correlation error between the variables. Also
a positive definite correlation matrix is required for the
approach. The single-switch-optimized sample ordering
scheme proposed by the authors for better accuracy in
correlation between the simulated variables comes with
a lot of computational time. Although the proposed
method achieves better statistical accuracy, compared
to the updated Latin Hypercube sampling, it is far
too slow. Hence a modification in updated Latin
Hypercube step to incorporate for non-positive definite
correlation matrix yielding higher statistical output and
lower computational time can be used as alternative to
the proposed single-switch-optimizer.

Three modified algorithms are proposed that can
improve the stability of the Latin Hypercube sampling
when a non-positive definite correlation matrix case
arises[6].

5.1. Hypersphere Decomposition

The hypersphere decomposition(or Hd) can be used
to convert the matrix into a semi-positive definite matrix.
One way to think of hypersphere decomposition is as
an iterative procedure to change the existing defined
matrix to the desired correlation matrix. P is a given
non-positive target matrix, P̂ is the desired matrix that
is closest to P . P̂ can be constructed as follows:

P̂ = Q.QT (12)

xi1 =


cos θij .

j−1∏
t=1

sin θit for j = 1.. .. .. n-1,

j−1∏
t=1

sin θit for j = n ,

(13)
θij is an arbitrary set of n × (n − 1) dimensional

angles. A suitable error measure can help P̂ to approach
P and can be defined as follows:

ϵa = ∥P − P̂∥ (14)

To identify the matrix that most closely matches the
target matrix, optimization algorithms can be used based
on the target eqn (14). The correctness of the output,
admittedly, comes at the sacrifice of time.

5.2. Spectral Decomposition

Spectral decomposition(or Sd) is an empirical
method without iterating and we can always get a
correlation matrix modified well. The modification step
is:

1. P is a correlation matrix, λi, Li are its
corresponding eigenvalues and eigenvectors.

PLi = λiLi

Li = [li1, li2, ..., lin]
T

(15)

2. A positive matrix Λ′ is modified from Λ which is



Figure 9. Actual CDF for the sum of 50 independent exponential variables, with parameter λ = 1, and

approximate CDF for various numbers of samples.

the diagonal matrix of eigenvalues.

Λ = diagλi

Λ′ : λ′
i =

{
λi λi > 0,
ϵb λi ≤ 0,

(16)

3. A diagonal scaling matrix D can be formed from
the eigenvectors Li as:

D : di =

[
n∑

t=1

l2itλ
′
t

]−1

(17)

4. The columns of Q′ is formed by multiplying the
eigenvectors with their corresponding modified
eigenvalues. Q is the normalized form of Q′. P̂ is
the corrected correlation matrix constructed by Q.

Q′ = L
√
Λ′, Q =

√
DQ′

P̂ = Q.QT
(18)

Intuitively, the acquired matrix is exactly like the
targeted one. However, the simplicity of computation
and quick speed of this method are its advantages.

5.3. Modified alternating projections method

Modified alternating projections method(or Mapm)
modifies the principle of the alternating projections
method. It combines advantages of Hypersphere
decomposition and Spectral decomposition, which
possess high precision as well as fast speed. Alternating
projections method is applied to find the nearest matrix.
The alternating projections method can be summarized
as eqn (19).

X = PU (PS(PU (PS(P )))) → P

P = ZAZT , A = diag(vi)
(19)

where

PU (P ) = P − diag(diag(P - I))

PS(P ) = Z × diag(max(vi, 0))× ZT

5.4. Experimental Results

Data simulation is performed in order to compare
the effect of these three algorithms applied to
Latin Hypercube sampling. Three algorithms are
compared based on their correcting effect(Figure 10)
and computational time(Figure 11). The correcting



Figure 10. Correcting error of three algorithms

under different dimensions.

Figure 11. Correcting error of three algorithms

under different dimensions.

effect is calculated by:

ep =

√√√√√ n∑
i=1

n∑
j=1

(pij − p̂ij)2

n2
(20)

where P is the original non-positive correlation matrix
and P̂ is the modified matrix. pij , p̂ij are the elements

of P and P̂ .
The correctness of Hypersphere decomposition or

Hd is largely influenced by the optimization algorithms.
In this test case as seen in fig (11), Hd takes the
longest time. For example, the simulation time of Hd
is 0.4023s, the time of Sd is 0.0001s, and time for
Mapm is 0.0002s under the dimension of 8. In this test
instance, Sd performs well. It is a good idea to use
it as a starting point for another algorithm or just as a
quick approximation method to speed up the calculation.
Overall, Mapm is considered to have the best effect of
correction. The time is significantly less than Hd and
the error is minimal. Mapm is considered to possess
accuracy, speediness, and controllability at the same
time, essentially addressing all the issue with the first
two algorithms.

6. Conclusion

In this report, we discuss about the proposed
two improvements to Latin Hypercube sampling. It
has been demonstrated that section-mean sampling
provides significantly greater accuracy in the simulated
mean and variance for each variable. In sample
ordering, we showed the flaws in the updated Latin
Hypercube sampling approach in simulating target
correlation between the variables. The proposed
single-switch-optimized approach demonstrated
accurate matching of target correlations between the
variables despite taking a lot more computational
time. These proposed improvements help us identify
the strengths and limitations of Latin Hypercube
sampling. By introducing three new algorithms to
updated Latin Hypercube sampling for non-positive
correlation matrix, we found better results in simulating
correlation between the variables. With the proposed
improvements, Latin Hypercube works well for
simulating both correlated and uncorrelated variables.
However, Latin Hypercube is not used for simulating
independent variable as the output statistics are not
accurate. In future if the computational power increases,
single-switch optimizer may able to incorporate
higher order moments which help us in simulating
pseudo-independent variables. At present, Latin
hypercube sampling still remains a powerful tool for
Monte Carlo simulations.
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