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Abstract

Machine learning models have been widely used,
but they still primarily exist as ”black boxes”. As
a result, methods for understanding these black-box
models are crucial because they attempt to explain the
models’ fairness and dependability by making them
more transparent. Nevertheless, if these explanations
are accompanied by uncertainties, users will be less
inclined to trust the predictions and will become more
concerned about the robustness of the model. Here,
the emphasis will be on one such method, Local
Interpretable Model-Agnostic Explanations (LIME) and
to illustrate three sources of uncertainty in this method:
randomness in the sampling process, variance with
sampling proximity, and variation in explained model
credibility across various data points. The existence of
these sources of uncertainty is proven by analysing the
uncertainty in the LIME method with the aid of synthetic
data and two public data sets, a newsgroup data set and
a data set for recidivism risk-scoring.

1. Introduction

Machine learning is at the heart of many recent scientific
and technological breakthroughs, and it is playing an
increasingly significant role in decision-making across
a wide range of fields. Modern machine learning
models are sometimes effectively ”black boxes”, as it
is practically hard to understand how they work. For
instance, a doctor would never operate on a patient
merely because ”the model said so” as the stakes are
quite high if a machine assumes the place of the doctor.
Therefore, knowing the reasoning behind the model’s
predictions will enable us to assess whether the model
achieves desired features such as fairness, privacy, etc.
(Doshi-Velez and Kim (2017)), as well as to identify

and fix any model flaws (Ribeiro et al. (2018b)) and this
would help users to decide whether or not to trust the
model.

As a result, methods for comprehending and
illuminating these black-box models were subsequently
created with the goal of assisting users in evaluating
and establishing trust in black-box models and their
predictions. But what if these justifications themselves
aren’t reliable and have flaws? Uncertainty in
explanations raises concern about the understanding of
a specific prediction which in turn leads to questions
about the reliability of the black-box model, reducing
the significance of the explanation (Ghorbani et al.
(2019)).

Therefore, the topic we are addressing here is when
can we trust an explanation, and to answer this
question, we study a particular explanation method
called Local Interpretable Model-Agnostic Explanations
(LIME) (Ribeiro et al. (2016)). It is a model-agnostic
method to generate local explanations for the model.
The method’s fundamental notion is simple and
straightforward: Assume we have a complex classifier
with a very nonlinear decision boundary. However, if
we focus on a single prediction and examine it, we can
use a simple interpretable model to explain how the
model behaved in that particular locale. LIME explains
the prediction of the desired input by using a local
surrogate model trained on perturbations of that data
point, which is achieved by sampling its neighbouring
inputs and learning a sparse linear model utilizing the
complex model’s predictions for these neighbours as
labels. Then the features in the linear model with the
highest coefficients are then assumed to be significant
for predicting that input. We illustrate that there
are uncertainties in the explanations of LIME after
investigating it with the aid of a few trials. These



uncertainties should not be disregarded. In order
to explain the predictions, LIME requires sampling
close to the desired input, which introduces uncertainty
because the sampling process introduces concerns like
randomness, variance with the sampling proximity, and
variation in the credibility of the explained model.
Additionally, two recent methods that are useful and will
be utilized in the future to help users interpret models
and their predictions are discussed.

2. Methods

The local explanation method investigated in this
experiment is LIME. The explanation produced by
LIME is obtained by the following:

ξ(x) = argming∈GL (f, g, πx) + Ω(g) (1)

An explanation ξ(x) is defined as a model g ∈ G,
where G is a family of interpretable models, for instance,
linear models, decision trees etc. It is an optimization
function with two loss terms, to put it succinctly. The
first term L (f, g, πx), is a measure of how unfaithful
the approximation of the black-box modelf , by using
simple interpretable model g is in the neighbourhood of
the data point x. πx is a proximity measure between
an instance z to x, so as to define locality around x.
And the second term Ω(g) is a measure of complexity
of the explanation g ∈ G that is it is to regularize the
complexity of our simple surrogate model. For decision
trees, for instance, (g) might refer to the depth of the
tree, whereas for linear models, (g) might refer to the
total number of non-zero weights. We must minimize
L (f, g, πx) while keeping Ω(g) at a level that is human
interpretable (Ribeiro et al., 2016).
This approach can be extended to different fidelity
functions L, explanation families G, and complexity
measures Ω. Here, the search is conducted using
perturbations, and K-LASSO is employed as the
interpretable model. We set Ω = ∞1

[
∥wg∥0 > K

]
for K-LASSO, where w denotes for the linear model’s
coefficients and πx samples points nearby x to train
K-LASSO (Zhang et al. (2019)).

3. Experiment Design

We run LIME on three different types of data sets, one
synthetic data example and two real data sets, to show
and establish the existence of uncertainties in the LIME
method and to identify their sources.
In the first experiment, we will run LIME on the
synthetic data produced by trees for a single data point
in multiple iterations and then use K-LASSO to select

the top features from it each time. Then, by looking
at the cumulative selection probability of the chosen
features, we will see if the top features that LIME chose
throughout various trials are consistent or not. This will
demonstrate whether LIME can explain a given data
point across various trials. The experiment then tweaks
different LIME parameters to determine how sensitive
LIME’s explanations are to sampling proximity and
different sample sizes. Finally, we’ll run LIME on the
two real data sets. We will first use the Newsgroup data
set as an example of text classification, and then we will
use the ”Correctional Offender Management Profiling
for Alternative Sanctions” (COMPAS) Recidivism Risk
Score Data set as an example of risk classification. In
these tests, we will apply LIME to different data points,
compare the explanations of LIME on those data points,
observe the cumulative selection probability of the top
features we’ve chosen, and see if the top features are
actually informative in the real context.

4. Data Summary

Three data sets, one synthetic in a simulation setting and
two actual data sets are being utilized in the experiment
to demonstrate the existence of uncertainties in LIME.

4.1. Simulation setting: Synthetic data
generated by trees

Using local sparse linear models on uniformly
distributed input in [0, 1]N , we create a training and
test data set with N number of features. Out of the
two scenarios with 8 and 4 features that are taken into
consideration, we will only use the case with 8 features
in this example. To observe LIME’s local behaviour at
different data points, the data is then partitioned using a
known decision tree.

Figure 1. Decision tree partition of eight-feature

synthetic data (Zhang et al. (2019)).

In this instance, data is split into six leaves with known
coefficients β and labels are assigned to each data point
x using the given linear classifier.



Figure 2. Empirical selection probability in LIME explanations of the random forest model trained by

eight-feature synthetic data.

y(x) =

{
1 x⊤β ≥ 0
0 x⊤β < 0

(2)

In each leaf, three of the eight characteristics are given
coefficients 1, as seen in Figure 1. Under each end node
in the figure, each leaf’s local coefficients are indicated.

4.2. Text Classification Data set

Here, The 20 Newsgroups data set is utilized as a
text classification example. It consists of about 20,000
newsgroup documents distributed evenly across 20
different newsgroups. The data set is typically used for
machine learning experiments on text applications, like
text classification and text clustering. The two document
classification examples ”Atheism vs. Christianity” and
”electronics vs. crypt” are taken from the data set in
order to observe LIME’s behaviour on text classification
models with high accuracy. LIME is then applied to
these examples to determine whether the features it
chooses are informative or not (Ribeiro et al. (2016)).

4.3. COMPAS Recidivism Risk Score Data set

The ”Correctional Offender Management Profiling for
Alternative Sanctions” (COMPAS) dataset is utilized
in the final experiment. COMPAS is a risk scoring

algorithm developed by Northpointe Inc. It is a
commercial algorithm that judges and parole authorities
use to determine whether a criminal defendant is likely
to commit another crime (recidivism). Criminal history,
jail and prison time, demographics, and COMPAS risk
scores for defendants from Broward County are used to
determine the risk scores, which are then categorized
as ”High,” ”Medium,” and ”Low.” We use a portion
of the COMPAS dataset compiled and processed by
ProPublica to apply LIME to two data points that
COMPAS has categorized as ”high risk” in order to
observe how LIME behaves when applied to a risk
classification model.

5. Analysis

On the three data sets, various experiments are run to
analyze the LIME explanation method and determine
whether there are any sources of uncertainty. The
following section is an overview of the key points and
observations from these experiments:

5.1. Simulation Setting

In this instance, we employ Random Forest Classifier
as the black-box model to train on synthetic data with
eight features. Following this, we run LIME 100 times
on one data point from each of the six leaves, and the



Figure 3. Empirical selection probability for feature words in text classification “Christianity vs. Atheism”.

top features are selected using K-LASSO for each trial
by computing the cumulative selection probability for
each of the eight features.
Results are illustrated in Figure 2, where active features
for each leaf that have true coefficients of 1 are
highlighted in red. We can see from the figure that the
top features chosen by LIME are not always the locally
significant features on each leaf. We can see that the
features chosen by LIME with the highest cumulative
selection probability are identical to their true features in
leaves 0 and 1. One of the features chosen in leaf 2 also
coincides with the true features. However, signals of the
first three features are chosen for leaves 3–5, rather than
the actual features.
The first three attributes are employed for data tree
splitting on a global scale. LIME records this global
information rather than local information for each
leaf, although each leaf has different features that
are important. LIME’s explanations are therefore
contradictory locally for each data point from each
leaf in this instance because it is unable to collect the
relevant information accurately. It has been observed
that LIME by default selects samples from a standard
normal distribution N

(
0, σ2

)
near the test point, where

σ2 is the variance of the training data, and that different
trials frequently choose different features as a result of
sampling variance because the variance of the training
data determines the sampling proximity.
So, in order to verify this observation, the sampling
proximity of LIME is altered by pulling a sample from
N

(
0, (0.1σ)2

)
near the test point instead of N

(
0, σ2

)
for a data point on leaf 5. Figure 2f illustrates this,
showing a tenfold decrease in the sampling proximity
for leaf 5. LIME thus picks locally significant features in
leaf 5 with smaller sample proximity. We can see from

this trial that LIME typically picks up global features
with larger sampling proximity and locally important
features with smaller sampling proximity.

5.2. Text Classification

Two classification examples—”Atheism vs.
Christianity” and ”electronics vs. crypt”—are
chosen from a data set of 20 newsgroups, and a
term frequency-inverse document frequency (tf-idf)
vectorizer is used on the data with the default
settings. Following that, Multinomial Naive Bayes
classifiers—which in this case serve as our black-box
model—are trained on each of these classification cases.
For each of the classes, the model provides test accuracy
values of 0.9066 and 0.9214, respectively (Ribeiro et al.
(2016)). In order to determine the feature importance
for each output and to examine the explanation over
two different test data points, we now run LIME on the
two different text documents for each of these cases.
On the test documents, LIME is run 100 times for the
examples and top features are chosen using K-LASSO
utilizing empirical selection probability. Figure 3 and
Figure 4 provide empirical selection probabilities for
the feature words in the text classification ”Atheism vs.
Christianity” and ”Electronics vs. Crypt”, respectively.
The informative words in the figures are highlighted in
red.
Figure 3 demonstrates that different trials select
different words as their top features. We can observe
that just two words from Test Document one, ”Christ”
and ”Athos” and one word from Test Document 2,
”Ruth” are considered informative in relation to the
context out of the six features chosen by LIME. It is
clear that none of the other frequently used feature



Figure 4. Empirical selection probability for feature words in text classification “electronics vs. crypt”.

words are informative. In the second example, Figure
4 shows that the top features in Test Document 1
are consistent and informative, as shown by the
explanations chosen by LIME. In other words, the top
features are all informative and they don’t vary with
different trials, in this case, ”crypto,” ”netcom,” and
”Sternlight.” However, none of the features that were
chosen for test document 2 is informative. Therefore,
the model in this instance appears to be quite credible
with Test Document 1, but ineffective with Test
Document 2. Thus, the model’s credibility fluctuates
across different input data and is not always reasonable
for different test documents, according to LIME’s local
explanations.

5.3. Risk Classification

In the last experiment, two data points with both
numerical and categorical variables that COMPAS has
classified to be ”high risk” are chosen. and is trained
using a random forest classifier as the ”mimic black-box
model” since we do not have access to the original
COMPAS black-box model (Tan, Caruana, Hooker, and
Lou (2018)). On these two data points, LIME is then
run 50 times, and the top features are chosen using
K-LASSO utilizing the empirical selection probabilities
for these features.
The results are shown in Figure 5. The figure shows
that the features “juvenile felony count”, “priors count”,
“days in jail”, “race”, and “age” are consistently selected
in different trials on both a single data point and for two
different data points.
As there are very few deviations in the top features that
were selected on the same data point between different

trials, while at the same time the selected features are
consistent across data points, we can state that LIME’s
explanations in this situation are reliable and consistent.

6. Related Works

In many situations, knowing why a model produces
a particular prediction can be just as important as
knowing if the prediction is accurate. In response,
a number of approaches have been put out to assist
users in interpreting the predictions of complex models.
Designing accurate models that are still inherently
interpretable (Lakkaraju et al. (2016) and Letham
et al. (2015)) and developing post-hoc ways to explain
black-box models are the two main areas of study for
interpretable approaches. Post-hoc techniques can either
be applied globally for the entire model (Ribeiro et al.
(2018a) and Tan, Caruana, Hooker, Koch, et al. (2018))
or locally for a particular input (Baehrens et al. (2010)
and Ribeiro et al. (2016)) . In this seminar, we looked
at one specific local explanation method, LIME, and
discovered the sources of potential uncertainties with
LIME’s stability and robustness.
The development of techniques that aid users in
interpreting predictions have been driven by the growing
tension between the accuracy and interpretability of
model predictions.
Deep Learning Important Features (DeepLIFT) is one
such contemporary technique with potential for the
future. By backpropagating the contributions of each
neuron in the network to each feature of the input,
it is a method for decomposing the output prediction
of a neural network on a given input. Each neuron’s
activation is compared to its ”reference activation” by



Figure 5. Empirical selection probability in LIME explanations of the COMPAS mimic model.

DeepLIFT, which then calculates contribution scores
based on the difference (Shrikumar et al. (2017)).
And last, there is a relatively new method called Shapley
Additive explanations (SHAP), which uses game theory
to explain the output of any machine learning model.
Using the standard Shapley values and their related
expansions from game theory, it links optimal credit
allocation with local explanations. It proposes a
unified method of understanding model predictions
(Lundberg and Lee (2017)). It proposes a system that
integrates six pre-existing feature attribution techniques,
including LIME and DeepLIFT, and they offer their
framework as an additive feature attribution model.
They demonstrate the ease with which the Shapely
Values can be determined and the ability to structure
each of these methods as an equation. Once these
strategies are applied to this framework of estimating
the Shapely values, they have a solid theoretical basis
on which to build, such as LIME. The authors of
the research have developed a new, model-neutral
method for approximating Shapely Values called Kernel
SHAP (LIME + Shapely Values), as well as certain
model-specific methods like DeepSHAP, which is an
adaption of DeepLIFT.
Since LIME is an attribute feature addition method,
the author showed that the Shapely Values provide the
desired properties for an additive feature explanation
method. We are aware that LIME uses a heuristic
to select its kernel function and kernel distance as
hyperparameters, which may result in uncertainties,
and would lead to other consequences. Kernel SHAP
reduces this uncertainty and guarantees that the solution
to the problem will create Shapely values while also
benefiting from the associated mathematical guarantees
by presenting a Shapely Kernel and a corresponding loss

function (Lundberg and Lee (2017)).

7. Conclusion

Three experiments were used to examine LIME’s
explanations, and the results allowed us to demonstrate
that LIME does contain significant uncertainties. We
discovered that the main sources of uncertainty in LIME
were three.
The numerical experiments on synthetic data revealed
that there is sampling variance, or randomness in
LIME’s sampling technique when describing a single
point. Additionally, it was discovered that it is
sensitive to the parameters used, such as sample size
and sampling proximity, meaning that its explanation
changes with sampling distance. It demonstrates that
LIME tends to pick up local features with smaller
sample proximity and global features with higher
sampling proximity, indicating that users should tune
it and select the value effectively to allow LIME to
explore both local and global structures in the data.
The experiment on text classification examples in 20
Newsgroup data revealed that LIME’s explanations for
the models’ credibility aren’t always accurate and vary
depending on the type of input data used, that is, it
varies across different input data points. Last but not
least, the experiment on COMPAS data demonstrated
that LIME does function in certain instances where
LIME explanations are really trusted and believed to be
reliable.
Explanation methods were developed to support users
in evaluating and establishing trust in black-box models
and their predictions, but if they themselves are
questionable, it casts doubt on the validity of the
black-box model and its predictions.



The increasing friction between the accuracy and
interpretability of model predictions has motivated the
development of different methods to assist users in
interpreting predictions. Recent methods, such as
DeepLIFT, which aids in predicting feature importance
for neural networks, and SHAP, which even uses LIME,
DeepLIFT, and other feature attribution techniques, will
be employed in the future to help users in understanding
these black-box models.
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