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ABSTRACT
Uncertainty plays a pivotal role in machine learning as it tells us
if we can trust the predictions made by the model. So, estimat-
ing uncertainty and being able to interpret it is crucial to avoid
overconfident wrong predictions. The method discussed in this
report is Counterfactual Latent Uncertainty Explanations (CLUE).
It indicates how to alter the input while keeping it in the same
distribution, such that confident predictions are obtained. CLUE in-
terprets the uncertainty estimates from differentiable probabilistic
models, like Bayesian Neural Networks (BNNs).
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1 INTRODUCTION
Science and technology have made significant advances due to
machine learning. Whether humans are directly using machine
learning classifiers as tools or are deploying models within other
products, one of the vital concerns is overconfident predictions
which are incorrect. Models make very confident wrong predictions
for inputs that are difficult to classify. So, in these situations, it would
be preferred if the model said it was not sure about the prediction
rather than providing an incorrect prediction.

Capturing uncertainty can help in avoiding such overconfident
wrong predictions. For this, probabilistic machine learning models,
such as Bayesian neural networks (BNNs), can be used since they
provide reliable uncertainty estimates [6]. BNNs can capture uncer-
tainty and translate it to their predictions. If the user is aware that a
model is uncertain about certain decisions, the incorrect predictions
can be avoided by throwing away the uncertain predictions.

Instead of only estimating the uncertainty, trying to understand
why the predictions were uncertain can also help the practitioner
greatly. Machine learning practitioners can learn more about their
datasets by understanding what makes a model uncertain. When a
model’s parameters in some regions of the input space are unknown,
it indicates little data in those areas. More data from these areas can
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help constrain the model’s parameters more effectively, resulting in
more reliable predictions. When there is irreducible uncertainty in
a dataset, more input features must be measured to produce reliable
predictions.

Moreover, it helps identify unreliable measuring techniques. Un-
derstanding what makes complex models unpredictable has re-
ceived very little research. The work discussed in this report ex-
plores how uncertainty can be used in ML to improve interpretabil-
ity and a new method to explain BNN uncertainty estimates. The
proposed method is called CLUE. It is used to explain uncertainty
as show in the Figure 1.

Figure 1: Why is CLUE required?

This report begins by explaining Bayesian Methods in Deep
Learning in Section 2. Some related work on which the proposed
method is built will be discussed in Section 3. Section 4 explains
the method to estimate uncertainty proposed in the paper being
discussed, and section 4 briefs about the experimental validations
performed. In section 5, the advantages and disadvantages of the
proposed model are discussed.

2 BAYESIAN METHODS
This section explains the fundamental concepts from the ML lit-
erature on which the proposed method is based. The uncertainty
estimation in BNNs is briefly described in section 2.1. The follow-
ing section, 2.2, discusses recent developments in Deep Generative
Models (DGMs), which can be applied to feature imputation.

2.1 Uncertainty Estimation in BNNs
Probabilistic models known as Bayesian neural networks (BNN)
incorporate neural networks’ adaptability within a Bayesian frame-
work. Making predictions with Bayesian neural networks requires
marginalizing over parameter distributions, as shown in Figure 2.
In particular, latent input variables have been added to BNNs to
estimate functions with complex stochasticity, including bimodality
or heteroscedasticity. This model class can account for model uncer-
tainty via a distribution over weights (epistemic uncertainty) while
also describing complicated stochastic patterns via a distribution
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over the latent input variables (aleatoric uncertainty). The het-
eroscedastic Gaussian likelihood functions are employed for regres-
sion, and their standard deviation is used to express uncertainty. We
use the categorical distribution’s entropy to measure uncertainty
in classification. It is possible to divide predictive uncertainty into
Aleatoric uncertainty and Epistemic entropy, and each explains
information to practitioners in a distinct way [3]. The data’s gen-
erative process contains inherent noise that causes irreducible or
aleatoric uncertainty, which typically appears as class overlap. The
lack of knowledge regarding the weights is represented by a model
or epistemic doubt. Epistemic uncertainty emerges when we query
points beyond the training manifold because the model is under-
specified by the data. The posterior distribution over the predictor’s

Figure 2: Bayesian neural network (BNN) is formed by com-
bining a neural network with Bayesian inference.

parameters, given a dataset, a prior on our model’s weights, and
a likelihood function, captures our uncertainty about the value
the weights should take. This parameter uncertainty is converted
into predictive uncertainty through marginalization, producing
trustworthy error boundaries and avoiding overfitting.

The posterior over parameters and the prediction distribution for
BNNs are both intractable. The paper uses scale-adapted Stochastic
Gradient Hamiltonian Monte Carlo (SG-HMC) [11] to approximate
these objects. The main advantage of BNNs over conventional NNs
is the ability to capture model uncertainty. To maintain compu-
tational tractability and because BNNs are very flexible models
capable of expressing a wide range of functions, in this work, we
only consider model uncertainty caused by uncertainty in the pa-
rameters.

2.2 Deep Latent Variable Models
Neural networks are used by Deep Generative Models (DGM) to
model complex and high-dimensional data. Deep Latent Variable
Models (DLVM), a class that assumes that data can be created from
a set of latent variables, are the focus of the work under discussion.

2.2.1 Variational Autoencoders. An autoencoder whose training is
regulated to prevent overfitting and guarantee that the latent space
has good properties that enable generative processes is referred to
as a variational autoencoder. A variational autoencoder is a two-
part architecture consisting of an encoder and a decoder. It is trained
to reduce the amount of reconstruction error between the encoded-
decoded data and the initial data. It performs similar to a typical
autoencoder. To introduce some regularization into the latent space,
we encode an input as a distribution over the latent space rather

than as a single point. It modifies the encoding-decoding process
slightly.

A distribution over the latent space is encoded as the input dur-
ing training. After that, a point is sampled from that distribution
from the latent space. Further, the sampled point is decoded, and
the reconstruction error can be computed. As a final step, backprop-
agation of reconstruction error occurs.

2.2.2 Variational Autoencoders with Arbitrary Conditioning. High-
quality artificial samples can be generated using VAEs. Unfortu-
nately, unlike other DGMs [5, 7, 9], the stock VAE framework pro-
vides no straightforward way to perform conditional generation. So,
the Variational Autoencoder with Arbitrary Conditioning (VAEAC)
proposed [10], a VAE-based solution to this problem. In this model,
an arbitrary subset of observed features is conditionally encoded by
a variational autoencoder, and the remaining features are sampled
in a single shot. Both real-valued and categorical features may be
used. Stochastic variational Bayes performs training of the model.

3 RELATEDWORK
The literature on machine learning interpretability is discussed in
this section. Since so little has been done to use Bayesian methods
to improve the interpretability of machine learning models, there
is little overlap between the two areas in the publications currently
available. However, given that many of the fundamental principles
that have influenced the development of these methodologies are
also applicable to uncertainty interpretability, it is crucial to assess
current interpretability approaches. Subsection 3.1 discusses coun-
terfactual explanations, and Subsection 3.2 discusses uncertainty
sensitivity analysis [4], an existing approach for understanding
uncertainty estimates in BNNs.

3.1 Counterfactual Explanations
The machine learning community has emerged as a multidisci-
plinary community of researchers and industry practitioners inter-
ested in creating techniques to identify bias in machine learning
models, creating algorithms to combat bias, producing explanations
for machine decisions that are understandable to humans, holding
companies accountable for unfair decisions, etc. The developers of
machine learning models can use explanations to find, isolate, and
resolve faults and other performance problems. In various instances,
human-readable explanations for machine-generated decisions are
helpful. It aids the user in understanding which of their attributes
served as powerful motivators when making a decision. Checking
their algorithms for bias can also be helpful. In some situations,
an explanation gives the user feedback they can use to get the de-
sired result later [12]. "Counterfactual explanations" are a particular
category of explanation that connects what would have occurred
if a model’s input had been altered in a particular way. Contrary
to other explainability strategies, counterfactual explanations of-
fer recommendations on how to get the desired result rather than
directly responding to the "why" aspect of a decision.

Counterfactual explanations are typically constructed by ad-
dressing an optimization problem similar to:

x𝑐 = argmax
x

(𝑝𝐼 (y = 𝑐 | x) − 𝑑 (x, x0)) s.t. y0 ≠ 𝑐

2022-07-31 21:35. Page 2 of 1–8.
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Where y is the desired outcome, x0 refers to the original input
to the predictor and 𝑑 () is some pairwise distance metric.

A machine learning model may use multiple inputs to get the
same outcome; as a result, many counterfactual explanations may
apply to a given input. The counterfactual set of input variables that
comes the closest to the original input configuration is often what
we aremost interested in. To do this, CLUE looks for counterfactuals
in an auxiliary DGM’s lower-dimensional latent space. Given that
the DGM limits CLUE’s search space to the data manifold, this
decision is ideally suited for uncertain situations.

3.2 Uncertainty Sensitivity Analysis
Uncertainty Sensitivity Analysis [4] is an existing technique for in-
terpreting uncertainty estimations. This approach seeks to quantify
the significance of each input dimension to a selected uncertainty
metric. In order to achieve this, all test data points are averaged
to obtain the gradients of the uncertainty measure for the selected
input dimension:

𝐼𝑖 =
1

|𝒟test |

|𝒟test |∑︁
𝑛=1

����� 𝜕𝐻 (
y∗𝑛 | x∗𝑛

)
𝜕𝑥∗

𝑛,𝑖

�����
Predictive entropy𝐻 is the chosen uncertainty metric in this expres-
sion. However, any alternative measure, such as aleatoric entropy,
epistemic entropy, or standard deviations, can take its place. The
equation can be viewed as a sum of linear approximations with
centres at each test point that approximates a global explanation of
a model’s uncertainty. However, this approach can be misleading

Figure 3: Noisy input configuration generated using Sensitiv-
ity Analysis

because predictive uncertainty measures are not linear functions
of the input variables. It is especially true for models like NNs that
are particularly non-linear., such as NNs. It is plausible that under
these models, a change in a low sensitivity input dimension will
result in a more significant change in the predicted uncertainty than
a similar change in a high sensitivity dimension. There is a high
likelihood that ∇xHw does not point in the direction of the data
manifold in high-dimensional input spaces. It leads to meaningless
explanations. This can be seen in the Figure 3.

4 PROPOSED METHOD
This section presents a novelmethod for uncertainty interpretability
called Counterfactual Latent Uncertainty Explanations (CLUE) [1].
The explanations given by the method are referred to as CLUEs.
CLUE helps to find the slightest change that would have had to be
made to input while maintaining it in distribution for the model to

have been more confident in its decision about said input. CLUE can
provide explanations for regression and classification tasks on both
tabular data and images. In section 4.1, the core CLUE algorithm
is explained. We describe the application of CLUE to both image
data and tabular data. In section 4.2, we propose an approach to
clustering CLUEs which allows us to generate summaries of the
sources of uncertainty in a dataset.

4.1 Workflow
A counterfactual explanation for uncertainty aims to identify a
configuration of the input parameters that makes the uncertainty
of a machine learning model drop relative to its uncertainty for
reference input. It enables us to produce counterfactual explana-
tions for classification and regression, where standard deviations
and predicted entropy can be employed as an uncertainty metric.
The model can be analyzed to find the input factors it thinks are
crucial by identifying inputs that correspond to similar predictions
but with narrower error bars.

Any model that generates an uncertainty measure differentiable
with respect to its inputs can use CLUE. It qualifies as a post-hoc
white-box interpretability method since it requires the repeated
evaluation of these gradients. CLUE is a local method since it ex-
plains specific input space points. It does not, however, rely on
rough linear approximations. CLUE’s explanations have a concrete
meaning because it is also a counterfactual approach. To ensure that
its explanations correspond to realistic input parameter settings,
CLUE employs a DGM. In the discussed study, a VAE is used.

As shown in Figure 4, the main idea of CLUE is to encode our
input to a latent space. Then, perform some optimization that aims
to minimize uncertainty. Finally, decode into some resulting input
for which our model is more certain.

4.2 Algorithm
The CLUE algorithm is shown in the Figure 5. CLUE takes a code
in latent space and decodes it using the generator from a varia-
tional autoencoder (VAE) into some point in a potentially complex
high-dimensional input space. The initial input for which we are
looking for a counterfactual explanation is denoted by x0. The VAE
characterises the latent space as a feature landscape instead of just
attempting to embed the data there, which makes the latent space
more suitable for the generation of data. The VAE’s encoder is de-
noted as 𝑞𝜙 (z | x), and the decoder is denoted as 𝑝𝜃 (x | z). Then a
probabilistic predictor like BNN is used to estimate the uncertainty
associated with predictions for this point. The differentiable uncer-
tainty metric is referred to by the abbreviation 𝐻 . The predicted
means of these models are denoted as E𝑞𝜙 (z |x) [z] = 𝜇𝜙 (z | x) and
E𝑝𝜃 (x |z) [x] = 𝜇𝜃 (x | z), respectively. A gradient optimiser is used
to minimise the CLUE objective given below.

ℒ(z) = 𝐻 (y | 𝜇𝜃 (x | z)) + 𝜆 ∥𝜇𝜃 (x | z) − x0∥1

The predictive uncertainty of our generations and the distance
measure between our original points and generations are used to
optimise the objective. The distance metric should be decided de-
pending on the task. The initial value of z is set to z0 = 𝜇𝜙 (z | x0)
to aid optimisation. The trade-off between generating outputs with
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Figure 4: Main Idea of CLUE

Figure 5: CLUE algorithm

minimal uncertainty and results similar to the initial input is con-
trolled by the hyperparameter 𝜆. In order to make this hyperpa-
rameter independent of the input dimensionality, we often set
𝜆 = 𝜆0/𝑛(x), where 𝑛(·) is a function that returns the number of
elements in a vector. Figure 6 depicts the optimisation process. The
gradient-based optimiser can be used for optimisation to update
our latent code with an estimate of uncertainty by differentiating
through both our probabilistic predictor and our VAE decoder. Tak-
ing free-form updates in this latent space ensures that our updates
result in points in manifold in our high dimensional input space.
CLUEs are obtained as:

xCLUE = 𝜇𝜃 (x | zCLUE) ; zCLUE = argmin
z

ℒ(z)

4.3 Multiplicity
For any given input, there might be a variety of plausible changes
that can be made in order to make the model more confident about
the input. It is reflected in the fact that the objective of CLUE is

Figure 6: Optimization process of CLUE

non-convex, and it finds only the local optima. Because of this,
multiple plausible explanations can be obtained. All explanations,
however, mirror the original data points being explained. So, the
non-convexity of CLUE’s objective is exploited to generate diverse
CLUEs, as seen in Figure 7.

Exposure to this diversity may alert practitioners to the similari-
ties between a model’s original input and various classes that make
it uncertain. As a result of different initializations, various amounts
of uncertainty get eliminated by CLUEs. Occasionally, CLUE may
also fail to provide a feature configuration with a considerable
reduction in uncertainty over the original input.

5 EVALUATING COUNTERFACTUAL
EXPLANATIONS OF UNCERTAINTY

Counterfactuals should be relevant, lying close to the original inputs
and representing plausible parameter values close to the data mani-
fold. They should also be informative, highlighting elements that
affect the uncertainty of our BNN. Access to the data’s generative
process is necessary for evaluating these criteria.
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Figure 7: Multiplicity of CLUE

Figure 8: Evaluation of Counterfactual Explanations of Un-
certainty Computationally

Figure 8 shows how the evaluation of counterfactual explana-
tions of uncertainty computationally. The VAEAC, which we con-
sider a data generation process, is highlighted in green, and the
auxiliary DGM used by the technique under evaluation is high-
lighted in orange.

First, a g.t. VAEAC is trained on a real dataset to model the
inputs and targets jointly. It also allows us to query the conditional
distribution over targets given inputs. After that, the BNN and an

auxiliary DGM are trained on artificial data, which has the same
distribution. In the third step, additional artificial data is sampled,
and counterfactual explanations are generated for the uncertain
samples. Finally, the g.t. VAEAC is used to obtain the conditional
distribution over targets given counterfactual inputs 𝑝gt (y | x𝑐 )
and the input’s true uncertainty Hgt. It helps evaluate whether
counterfactuals are on-manifold through log𝑝gt (x𝑐 ). Also, Hgt
allows us to evaluate if the generated counterfactuals address the
actual sources of uncertainty in the data.

6 EXPERIMENTAL VALIDATION
In this section, we evaluate CLUE’s performance relative to baseline
uncertainty interpretability methods and discuss the user study
performed.

6.1 Computational Evaluation
There are no methods that CLUE can be directly compared to be-
cause there hasn’t been much work done on interpreting uncer-
tainty estimations. To produce counterfactual uncertainty expla-
nations, two current ML interpretability algorithms are modified.
These give us benchmarks against which to evaluate CLUE. Us-
ing the evaluation framework presented in Section 5, we compare
CLUE, Localized Sensitivity, and U-FIDO.

In local sensitivity analysis, a single datapoint is used to produce
a local analogue of uncertainty sensitivity analysis [4]. A counter-
factual explanation that reduces the uncertainty of the BNN can
be constructed by just moving in the gradient direction. FIDO [2],
a counterfactual interpretability method for images, is adopted as
the second baseline to explain uncertainty (U-FIDO). To reduce
the classification score, FIDO seeks to identify the smallest region
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Figure 9: Informativeness to relevance trade-off

that must be removed and replaced with an uninformative input.
We accomplish this by substituting an uncertainty metric for the
classification score. The counterfactuals should retain as much of
the original input as possible while explaining as much uncertainty.
With the use of the hyperparameters 𝜂, 𝜆𝑥 , and 𝜆𝑏 for Local Sensi-
tivity, CLUE, and U-FIDO, respectively, the informativeness (large
ΔHgt ) to relevance (small ∥Δx∥1 ) trade-off is controlled. In order
to plot Pareto-like curves, a logarithmic grid search across hyperpa-
rameters is carried out. The minimum values for our two measures
are 0, but their maximum values depend on the dataset and the
approach used. Relevance for Sensitivity increases linearly with
𝜂. These measurements saturate for both high and small values of
𝜆𝑥 (or 𝜆𝑏 ) for CLUE and U-FIDO. The values acquired using these
methods do not overlap as a result. As seen in Figure 9, CLUE is bet-
ter equipped to account for uncertainty than U-FIDO, and U-FIDO
consistently generates smaller relevance values than CLUE.

6.2 User Study
The Machine Learning interpretability method’s ultimate purpose
is to enable humans to use it to help with real-world tasks. Human-
based evaluation is a crucial step in confirming the effectiveness
of ML explainability tools [8]. It is essential to evaluate how much
CLUEs, as opposed to human intuition or local sensitivity, assist
machine learning practitioners in identifying the sources of uncer-
tainty in ML models. To achieve this, a forward-simulation task that
focuses on a suitable local test to assess CLUEs has been suggested.
The user study makes use of the LSAT and COMPAS datasets. Each
variation of the main survey has ten distinct participants. Graduate
ML students who act as stand-ins for professionals in the industry
are the participants. There are 18 questions in the main survey, 9
for each dataset. Figure 10 displays a sample question.

The practitioners are shown two context points: the certain con-
text point, which is below the rejection threshold, and the uncertain
context point, which is above the threshold. The certain context
point serves as a local counterfactual explanation for the uncertain
context point. Using both context points as references, practition-
ers are asked to predict whether a new test point will be above or

Figure 10: Example of data user study

Table 1: Results of the user study

Combined LSAT COMPAS
CLUE 82.22 83.33 81.11
Human CLUE 62.22 61.11 63.33
Random 61.67 62.22 61.11
Local Sensitivity 52.78 56.67 48.89

below the set threshold. In general, this will indicate whether the
uncertainty of the BNN for the new point will be high or low. The
utility of particular context points created by CLUE is compared in
the survey to four distinct approaches, which differ in how certain
context points are selected. The four methods are random selec-
tion of a certain point from the test set as a control, generation
of a counterfactual certain point with Local Sensitivity, CLUE, or
Human CLUE.

Participants who will not take the main survey are requested to
pair uncertain context points with related certain points in order to
produce a Human CLUE. As seen in Figure 11, a pilot procedure was
used to choose the points used in our main survey. It avoids biases
being added to the point selection process and guarantees that
context points are relevant to test points. A participant in the pilot
procedure sees a pool of randomly chosen certain and uncertain
points, and the participant is required to choose test points from
this pool of options. The participant is then instructed to map each
test point into an equivalent uncertain point without replacement.
In this manner, uncertain context points relevant to test points are
acquired.

2022-07-31 21:35. Page 6 of 1–8.
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Table 1 shows the results of the user study. The average accu-
racy of the participant using CLUE was 82.22%, Human CLUE was
62.22%, Randomwas 61.67%, and Local Sensitivitywas 52.78%. CLUE
outperformed the other three, and the Local Sensitivity performed
worse than even Random.

7 ADVANTAGES AND DISADVANTAGES
The significant advantage of CLUE is that it helps make the un-
certainty estimates from BNNs more interpretable. It helps the
user understand why specific inputs generate uncertain predictions.
There is very little prior work related to this. The features in the
inputs can be found tomake themodel generatemore certain predic-
tions using CLUE. Overall, it helps in improving the transparency
of models.

However, there are disadvantages to CLUE as well. There can
be scenarios where the explanations generated and the alternative
suggestions proposed, even though in the same data manifold, are
not in the user’s control. For instance, suggesting someone change
their age is not actionable.

8 CONCLUSION
This report briefly discusses the method of Counterfactual Latent
Uncertainty Explanations (CLUE). It is a method that can explain
uncertainty estimates provided by BNNs. Despite the rapidly grow-
ing body of work in ML interpretability, this topic has been mostly
ignored. Uncertainty sensitivity analysis [4], the only method cur-
rently in use to determine how interpretable uncertainty is, attempts
to model each input feature’s contribution to each type of uncer-
tainty using a sum of linear approximations made at each test point.
However, this approximation does not hold for complex models
like BNNs.

Counterfactual interpretability methods attempt to explain a
complex model’s decisions for specific inputs by generating alter-
native inputs similar to the original ones but for which the model’s
decisions would have been different. This concept was extended
to uncertainty, and alternative input configurations to which the
model allocates low uncertainty make up counterfactual uncer-
tainty explanations.

A VAE’s latent space is searched by CLUE for latent vectors
that produce input configurations similar to the input yet have
low uncertainty. Images and tabular data can both be explained
using CLUE. More intriguingly, CLUE may produce explanations
for classification and regression models, in contrast to other ML
interpretability techniques, which are restricted to explaining classi-
fication decisions. Additionally, a functionally-grounded framework
for assessing counterfactual uncertainty interpretability method-
ologies was put forward.

This process requires employing a conditional generative model
to generate ground truth data. It is used to create training samples
for the model and to provide accurate estimates of the uncertainty
and likelihood of an explanation. After that, we conduct a user
study. It discovers that after being exposed to CLUEs, users can
better forecast their model’s behaviour.
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