


Diverse, Global and Amortised Counterfactual Explanations for Uncertainty Estimates

Overview

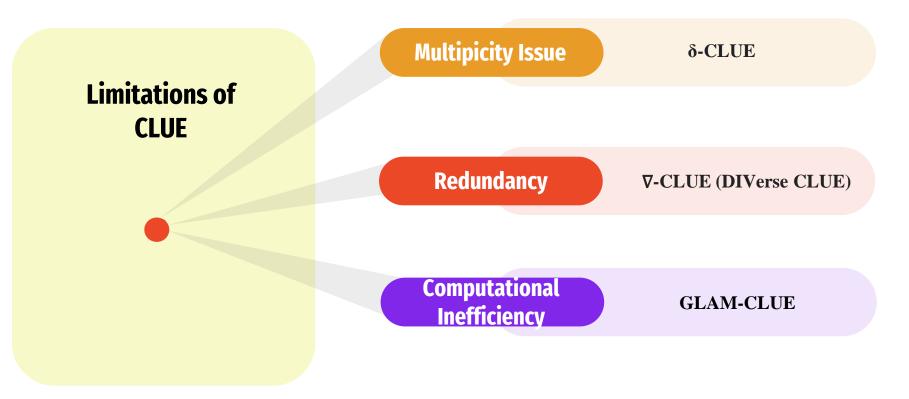
- 01 Counterfactual Latent Uncertainty Explanation (CLUE)
- 02 Why this paper?
- **03** δ-CLUE
- 04 Diversity Metrics
- **05** ∇-CLUE
- 07 GLAM-CLUE
- **08** Performance Test
- 09 Future Work

Counterfactual Explanations

Counterfactual Latent Uncertainty Explanation (CLUE)

What is the smallest on-manifold change that can be done to an input so that our model becomes more certain

High Uncertainty


Incorrect prediction

More counterfactuals

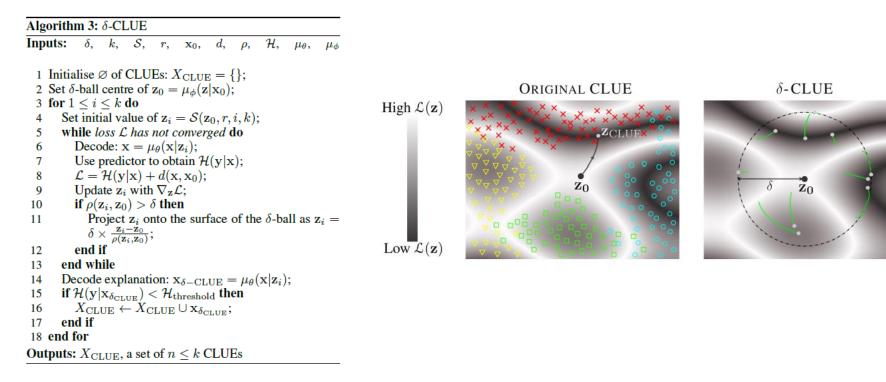
Uncertainty explanations are a precedent for model explanation

Why this paper?

δ -CLUE vs CLUE

δ-CLUE

Multiplicity is achieved by searching randomly in different areas of latent space


- Sampling around an input in latent space
- Gradient descent

CLUE also does this, but:

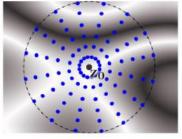
- Finds minima in a limited region of space
- Might strays far away from Counterfactuals

 $\begin{aligned} \mathbf{x}_{\delta-\text{CLUE}} &= \mu_{\theta} \left(\mathbf{x} | \mathbf{z}_{\delta-\text{CLUE}} \right) \text{ where } \mathbf{z}_{\delta-\text{CLUE}} = \arg\min_{\mathbf{z}: \ \rho(\mathbf{z}, \mathbf{z}_0) \leq \delta} \mathcal{L}(\mathbf{z}) \\ \mathbf{z}_{\mathbf{0}} &= \mu_{\phi}(\mathbf{z} | \mathbf{x}_{\mathbf{0}}) \\ \rho(\mathbf{z}, \mathbf{z}_0) &= \| \mathbf{z} - \mathbf{z}_0 \|_2 \end{aligned}$

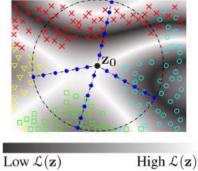
Different trials on $\delta\text{-}CLUE$ Algorithm

Range of δ values from 0.5 to 3.5

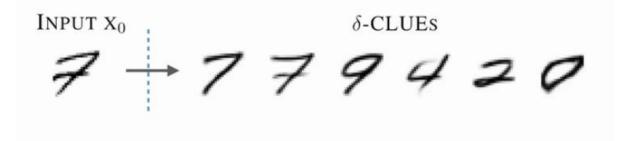
Two latent space loss functions:


- Uncertainty: $\mathcal{L}_{\mathcal{H}} = \mathcal{H}$
- Distance: $\mathcal{L}_{\mathcal{H}+d} = \mathcal{H} + d$

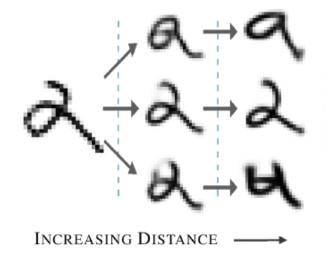
03


Two initialisation schemes like:

- Radially Uniform
- Nearest Neighbour

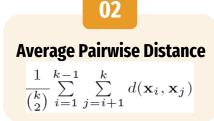

S_1 : RADIALLY UNIFORM

 \mathcal{S}_2 : Nearest Neighbour Path



Uncertainty vs Distance Trade-off

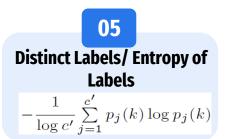
← INCREASING UNCERTAINTY

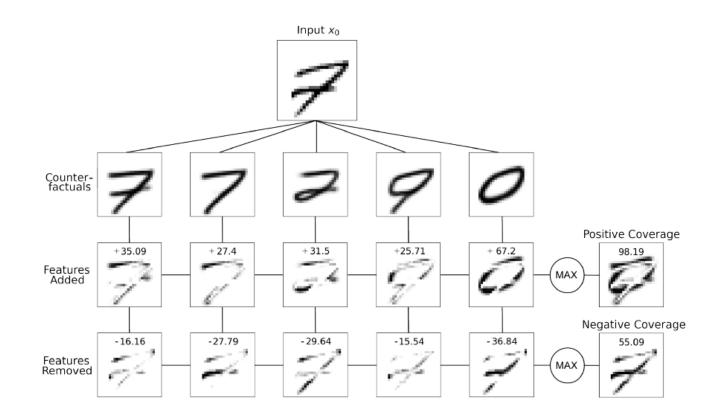

The hyperparameters (λ_x, λ_y) controls this trade-off

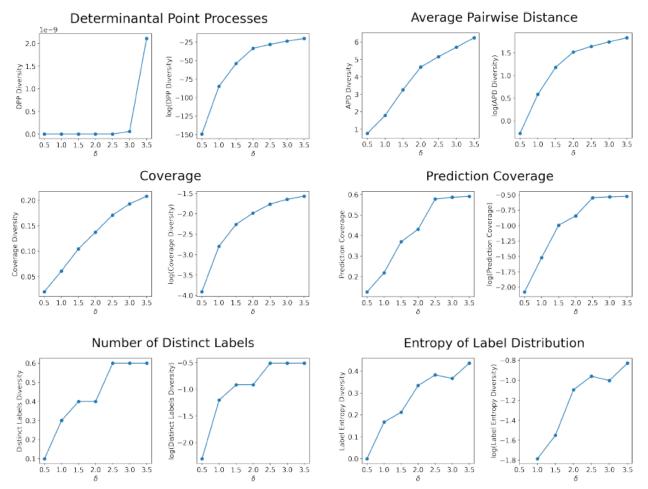
Diversity Metrics (D)

01

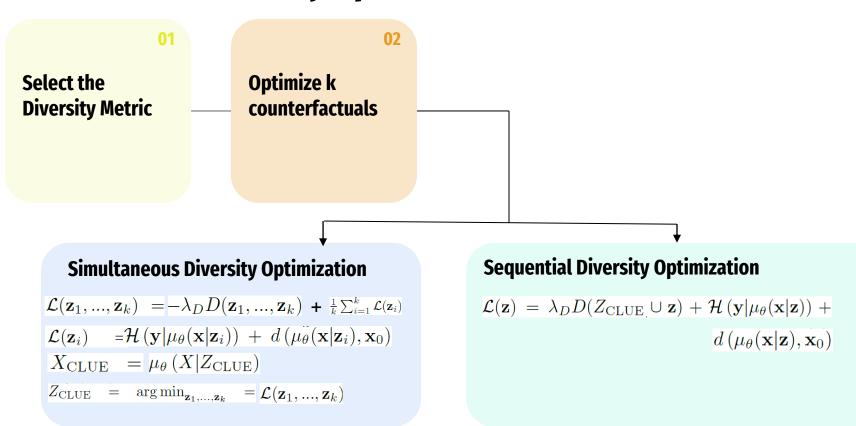
Determinantal Point Process

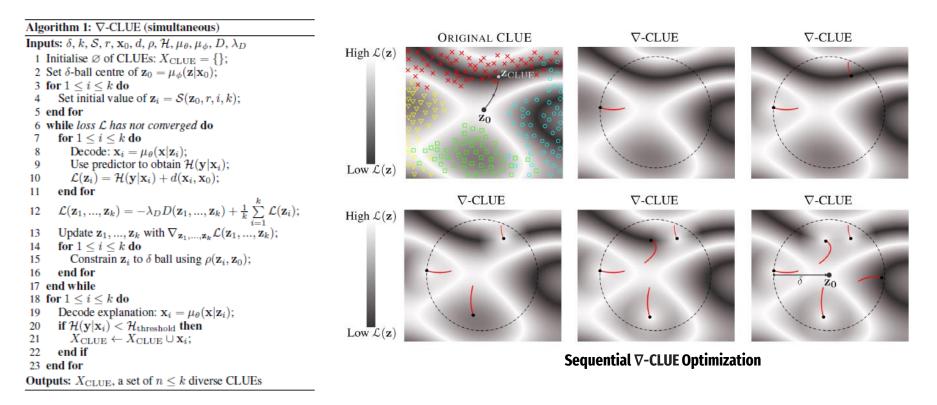

 $\det(\mathbf{K}) \text{ where } \mathbf{K}_{i,j} = \frac{1}{1 + d(\mathbf{x}_i, \mathbf{x}_j)}$

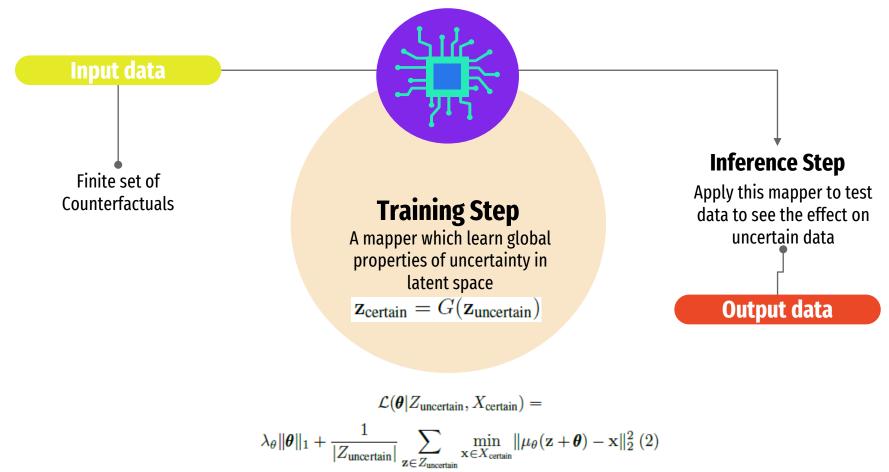




Coverage as a Metric




Source: Ley, Dan, Umang Bhatt, and Adrian Weller. "Diverse, Global and Amortised Counterfactual Explanations for Uncertainty Estimates." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 36. No. 7. 2022.


Source: Ley, Dan, Umang Bhatt, and Adrian Weller. "Diverse, Global and Amortised Counterfactual Explanations for Uncertainty Estimates." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 36. No. 7. 2022.

Diversity Optimization : \nabla-CLUE

GLobal AMortised CLUE (GLAM-CLUE)

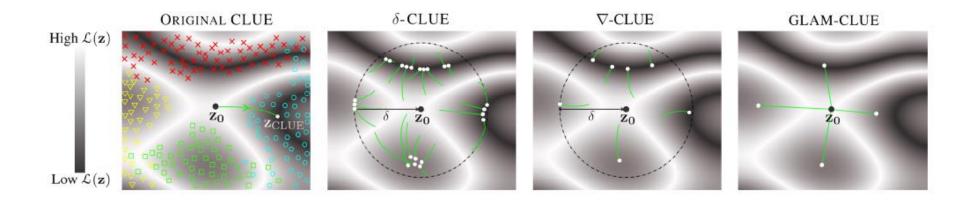
Algorithm 2: GLAM-CLUE (Training Step)

Inputs: Inputs $X_{\text{uncertain}}, X_{\text{certain}}$, groups $Y_{\text{uncertain}}, Y_{\text{certain}}$, DGM encoder μ_{ϕ} , loss \mathcal{L} , trainable parameters $\boldsymbol{\theta}$

1 for all groups $(i \rightarrow j)$ in $(Y_{\text{uncertain}}, Y_{\text{certain}})$ do

- 2 Select X_i from $X_{\text{uncertain}}, Y_{\text{uncertain}};$
- 3 Select X_j from $X_{certain}$, $Y_{certain}$;
- 4 Encode: $Z_i = \mu_{\phi}(Z|X_i);$
- 5 while loss *L* has not converged do

6 Update
$$\boldsymbol{\theta}_{i \to j}$$
 with $\nabla_{\boldsymbol{\theta}_{i \to j}} \mathcal{L}(\boldsymbol{\theta}_{i \to j} | Z_i, X_j);$


7 end while

8 end for

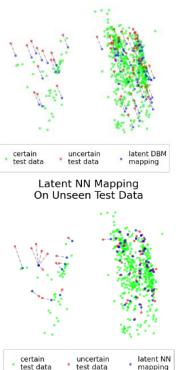
Outputs: A collection of mapping parameters $\theta_{i \to j}$ for given mappers $G_{i \to j}$ that take uncertain inputs from group i and produce nearby certain outputs in group j

UNCERTAIN GROUPSAB \cdots X** \downarrow \downarrow \downarrow \checkmark \checkmark \downarrow \downarrow CERTAIN GROUPSAB \cdots XAB \cdots X

$$\mathbf{z}_j = G_{i \to j}(\mathbf{z}_i) = \mathbf{z}_i + \boldsymbol{\theta}_{i \to j}$$

Performance Test

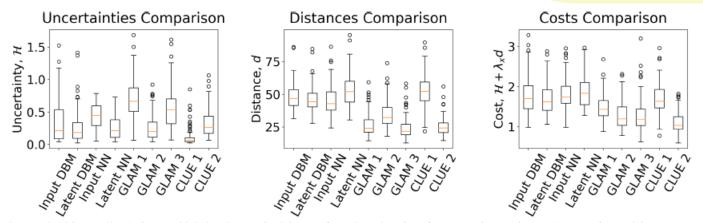
Latent DBM Mapping On Unseen Test Data


01

Difference Between Means (DBM)

Uncertain data to certain data in input or latent space

Used in high certainty training data in input or latent space



Performance Comparison

Input DBM	Latent DBM	Input NN
0.0306	0.0262	0.0236
Latent NN	GLAM-CLUE	CLUE
0.0245	0.0238	4.68

GLAM-CLUE outperforms these baselines*almost* **200** *times faster*

Source: Ley, Dan, Umang Bhatt, and Adrian Weller. "Diverse, Global and Amortised Counterfactual Explanations for Uncertainty Estimates." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 36. No. 7. 2022.

Future Work

Data set dimensions

Using higher dimensional data set

Introduce different metric

Use FID scores to replace simple distance metric in evaluation and optimisation

Use different DGMs

Use DGM alternative like GANs instead of VAEs

Conclusion

- 01 Making CLUE more useful in practice
- **02 Proposed** δ-CLUE and ∇ -CLUE to tackle the multiplicity and diversity issues
- **03** Introduced GLAM-CLUE which tackles the computational inefficiency caused on

large data sets with $\,\delta\text{-}CLUE$ and $\nabla\text{-}CLUE$

References

- <u>https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73</u>
- Antorán, Javier, et al. "Getting a clue: A method for explaining uncertainty estimates." *arXiv preprint arXiv:2006.06848* (2020).
- Ley, Dan, Umang Bhatt, and Adrian Weller. "{\delta}-CLUE: Diverse Sets of Explanations for Uncertainty Estimates." *arXiv preprint arXiv:2104.06323* (2021).
- https://slideslive.com/38955757/deltaclue-diverse-sets-of-explanations-for-uncertainty-estimates?ref=recommended

THANK YOU

Sruthi Aikkara Matriculation number: **229386**

Supervisor: Jelle Hüntelmann