A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing

Supervisor: Carina Newen

Hemalatha Sekar.

Aleatory uncertainty

Uncertainty Types

Two types of uncertainty in scientific computing are described

> Epistemic uncertainty

Uncertainty Types

- Representative of randomness that differ for each iteration for the same experiment.
- Also known as irreducible uncertainty.
- Characterized either by PDF or CDF
- Uncertainity could be changed only if there is a change in manufacturing or quality control process.

Aleatory uncertainty **Epistemic uncertainty**

- Lack of knowledge during the phase of analysis.
- Also known as reducible uncertainty.
- Characterized by interval.
- Reduced through conducting
	- experiments, Improved
	- numerical approximation,
	- experts opinion etc.

Aleatoric + Epsidermic uncertainty

Length of the part random variable -Aleatoric • Not accuracy because of few samples from a population - Epsidermic

. With large number of samples, PDF is determined more accurately and precisely

Purely Aleatoric uncertainty

Sources of uncertainty

- Model Inputs
	- Parameters used in system
	- System surroundings
- Numerical approximations
	- The iterative convergence error, discretization error, roundoff error and computer programming mistakes.
	- Model form
		- Model validation.
		- Episdermic uncertainty.

Estimate model form uncertainity

Propagate i/p uncertainities through model

Estimate uncertainity (numerical approximation)

Characterize Uncertainity

Identify all sources of uncertainity

Determine total uncertainity in

The steps in Vertification, Validation and Uncertainity framework (**Hypersonic nozzel**

flow)

Uncertainty framework

Hypersonic nozzel Flow

- Replicates the air movement over aircrafts, vehicles and other objects.
- Engineers use it for further improvement in design, stability and cost effective etc.

Reference:https://boomsupersonic.com/flyby/post/what-is-wind-tunnel-testing

Arnold Engineering Development Complex crew members lower the NASA/Army Tiltrotor Test Rig into the 40-by 80-foot wind tunnel at Moffett Field in California. (Photo credit: U.S. Air Force)

- Temperature < 80k ----> Condensation Occurs
- Decreases the flow quality with that high speed could damage the aircraft model.

Hypothesis Stated

To determine that the test section temperature should be greater than or equal to 80k with 95% confidence.

Scenario

Test section static temperature of 85.3k is resulted through deterministic simulation which is 6% greater than the temperature specified.

Findings

Ref:https://imgur.com/gallery/qgxI5

1.Identify all sources of uncertainty

Primary sources

- Wind tunnel stagnation temperature
- Area downstream of the tunnel throat

Other sources

- stagnation pressure
- Specific gas constant
- Ratio of specific heats
- Tunnel throat radius

Reference:https://en.wikipedia.org/wiki/Wind_tunnel

NASA wind tunnel with the scale model of an airplane

2. Characterize uncertainties

- It is an aleatory uncertainty
- Through run-to-run experiments, variations are normally distributed with mean stagnation temperature of 1200k with 3.33% coefficient of variation and 40k of standard deviation.

Wind tunnel stagnation temperature

Area downstream of the tunnel throat

- The wind tunnel **side-wall** boundary layer is not measured.
- The **state** of the boundary layer (laminar, transitional, or turbulent)is not known.
- Separate boundary layer simulations are performed(i.e fully laminar and turbulent)
	- Laminar boundary layer 0.13m
	- Turbulent boundary layer 0.14m

Reference:https://www.youtube.com/watch?v=5vGQFp_0C-Al

3. Estimate uncertainty due to numerical approximation

Code Verification

- Removing bugs in the code.
- verification the exact solution.

Round-off and iterative error

- Simulations are advanced to achieve a steady state.
- Inserting the current solution of the discrete equations and evaluating the non-zero remainder.
- Iterative residuals are converged 12 orders of magnitude from their initial levels.

Discretization error

Estimated by running simulations on three systematically-refined meshes 128, 256, and 512 cells, the test section static temperature was found to be 85.307, 85.824, and 85.954 K, respectively.

> Coarse temp - 85.954k med temp - 85.824 fine temp - 85.307

Order of convergence

$$
\hat{p} = \frac{\ln\left(\frac{T_{\text{onarse}} - T_{\text{med}}}{T_{\text{med}} - T_{\text{fine}}}\right)}{\ln(r)},
$$

 $To = 1200 K$ $rts = 0.14m$ $r = 2$

 $^{\circ}$ p = 1.99

Richardson extrapolation: Uses two fines grids to obtain an estimate of the value

$$
\overline{T} = T_{fine} + \frac{T_{fine} - T_{med}}{r^p - 1} = 85.998 \text{ K}.
$$

Roache's Grid Convergence Index uncertainty estimate due to discretization on the coarse mesh of 128 cells

 $U_{NUM}=U_{DE}\cong 1.25|T_{CQM}-T|=0.86$ K.
Ref:C.J. Roy, W.L. Oberkampf / Comput. Methods Appl. Mech. Engrg. 200 (2011) 2131–2144

4. Propagate input uncertainties through the model

Monte Carlo sampling

A leatoricuncertainty

C.J. Roy, W.L. Oberkampf / Comput. Methods Appl. Mech. Engrg. 200 (2011) 2131–2144

Latin hypercube sampling

Epistemic uncertainty

widest extent used to construct P- box

5. Estimate model form uncertainty

- Consider an example, for stagnation pressure of 20 MPa, the area validation metric is unknown. Provided three random validation experiment outcomes as sample for stagnation pressure 7MPa,10MPa, 12MPa.
	- 1. Ten synthetic measurements of the SRQ (test section static temperature) are chosen to be: SRQEXP = [78.5, 80.2, 81.6,81.8, 81.9,82.5, 82.7,83.6, 84.7,86.4] K
	- 2. Propagating the input uncertainty (aleatory and epistemic) through the model to form CDF.
	- 3. Retrieving the CDF formed from experimental observation.
	- Area between these two CDF is known to be the area 4. validation metric d = 2.89K.

- 5. Similarly,
- 7Mpa 3.1k
- 10MPa 2.89k
- 12Mpa 2.8k are computed.
- 6. Compute Simple Linear Regression from the obtained value considering the stagnation temperature as an independent variable, and area validation metric as the dependent variable $y^{\wedge} = 3.518 - 0.0608xk.$
- 7. Compute prediction interval

$$
\hat{y} \pm t_{\alpha/2,N-d} s \sqrt{1 + \frac{1}{N} + \frac{N(x - \bar{x})^2}{N \sum_N x_i^2 - (\sum_N x_i)^2}}.
$$

-
- x stagnation pressure [x=20MPa]
- d degrees of freedom [d=2]
- s sqrt.MSE [s=0.02433k]
- 8. The resulting 95% prediction interval for the area validation metric at p = 20 MPa is $d = 2.30 \pm 0.97$ K $[d=3.27k]$

6. Determine total uncertainty in the SRQ

- 1. The p-box is determined by propagating aleatory and epistemic uncertainties model inputs through the model in condition ($p = 20$ MPa).
- 2. Append the area validation metric, i.e., d = 3.27 K, to the left and right sides of the pbox.
- Uncertainty due to numerical 3. approximation UNUM = 0.86 K is appended to the left and right sides of the p-box.
- 4. There is a 25% chance that the test static **Nondeterministic prediction of uncertainty** temperature would fall below 80k at 95% CI.

6. Conclusion

- This predicted uncertainty is precisely shown to the decision-makers to avoid putting customers or environments at risk from uncertainties.
- It separates the aleatory and epistermic uncertainty and focus on numerical solution error and model form uncertainty directly.

When it can be used? :

When the decision-makers find the observations or system response quantities to be inaccurate.

Where it can be used? :

Predictions of high consequences of the system (human lives, national security, safety measures)

Thank you

HEMALATHA SEKAR

hemalatha.sekar@tu-dortmund.de