
Novel method for a posteriori uncertainty 
quantification in wildland fire spread simulation

Gautam Dilip Hariharan
Sandeep Bhandari

Supervisor: Daniel Wilmes

Seminar: Uncertainty Quantification in Machine Learning



What to expect

• An overview
• Wildland fires and Probabilistic evaluation
• A posteriori uncertainty quantification
• Metropolis Hastings algorithm
• Results 
• Conclusion
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• Simulations used for prediction of wildland fire spread
• Large uncertainties exist and must be quantified for better accuracy (ensemble

forests)
• Generating calibrated ensembles
• Keywords: uncertainty quantification, Metropolis Hastings (MH), Wasserstein

distance, Gaussian process
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https://springerplus.springeropen.com/track/pdf/10.1186/s40064-016-2842-9.pdf

Overview
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https://springerplus.springeropen.com/track/pdf/10.1186/s40064-016-2842-9.pdf

•Must have Input File
•Fuel Grid

•Is used to define fuel types in the area
•Must have the same resolution and extent as the 
DEM file

•Fuel LookUp Table
•Defines the fuel types and parameters to be used 
with the fuel grid.

•Weather Information
•Hourly information of temperature,relative
humidity,precipitation,wind velocity and direction.

•Ignition location and time information
•Supported types are point,line and area ignition
•Support multiple ignition at different time.

•Optional input files
•Digital Elevation Model(DEM)

•Used to calculate the effects on fire spread rate 
and wind direction
•Must have the same resolution and extent as the 
fuel grid file.

•Physical Features
•Obstacles that can possibly halt fire 
propagation(non-fuel areas,water,roads).

•Wind Grid
•High Resolution wind velocity and direction grids.

•Information about the fuel
•Information about seasonal (green-up phase)
•Information about the trees(tress height,canopy
base height).

Input Parameters
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https://doi.org/10.6028/NIST.SP.1245

Fire Behaviour
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https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789

Wildlandfire
Packing Ratio
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https://doi.org/10.6028/NIST.SP.1245

Eulerian Level Set Method
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https://doi.org/10.6028/NIST.SP.1245
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Modeling Uncertainty in Input Data

•Time and Location, Wind Speed highly uncertain

•Solution : Several simulation of fire spread → Perturbation

•Three classes of perturbation : additive, multiplicative and transitive

•additive perturbation, xp = x+z, multiplicative perturbation, xp = x × z,

•transition perturbation : x →xp

•Probability distribution to quantify uncertainty →log or log-normal distribution
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Uncertainty Propagation in Fire Spread Simulation

• Any point xi, bi (0,1) → prediction

• qi = P[Bi = 1] , Bi follows Bernoulli law of parameters

• Estimate of qi : pi = ni / n (where ni is the number of simulations for which bi = 1.  pi is 
the MC estimate of qi and converges to it as n increases)

•pi is our burn probability and resulting 2D model is our burn probability map.
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Probabilistic Evaluation

• Accuracy 
- Measured By Brier Score
-Ranges between 0 and 1 and negatively oriented
-BSS(Brier Skill Score) = 1 – BS/BSref

• Reliability and Sharpness
- A system is reliable if ∀p ∈ [0, 1], f(p) = p.
- Reliability Diagram (plot of f(p) and p)
- g(p) as the proportion of events that are assigned a probability p among all  evaluated 
events.
- The sharpness graph is simply the plot of g(p) against p.

•Probabilistic resolution
- capacity of the system to yield relative frequencies that are different from the reference 
probability pc.
- Positively correlated
-Accessed using reliability diagram (deviation between f(p) and pc.

• Consistency
-Accessed by Rank Histogram.
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https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789

Detailed Case : Calenzana fire

Brier Score = 0.027
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• The goal: To propose and apply a method to calibrate the probability distribution of
the inputs of the model based on observed fires

• Solving a problem of inverse uncertainty quantification

• Strategy for calibration of input uncertainty
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A posteriori uncertainty quantification

• Sources of uncertainty: 
• Unknown parameters
• Model inadequacy
• Observation error

• Bayesian approach proposed for calibration that accounts for different forms of 
uncertainty. 

• Starting point:
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Observation of one burned surface

• Sobs: observed burned surface

• M: numerical model of fire spread whose inputs may vary according to an input u
of d perturbations applied to reference inputs

• Su: simulated burned surface (Su = M(u))

• g: probability density function

• f: prior density function

• The idea is to obtain g by making the best possible use of f, Sobs and M.
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Distribution based on Wasserstein distance

• Classical choice for g would be the posterior density function which is obtained
according to Bayes’s rule:

• Where L(Sobs|u) would be the likelihood of the observation Sobs knowing the
perturbation vector u.

• While defining a likelihood for a vector is feasible, this may not be the case for a
random surface. Therefore, a calibrated distribution inspired by Bayes’ rule may
be used where g written in the form:

• Where β>0 and E is a positive energy function equal to 0 when Su = Sobs and
increases with dissimilarity between Su and Sobs.
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Distribution based on Wasserstein distance (contd...)

• The present study introduces a novel score that makes use of the Wasserstein
distance, which is a metric between probability distributions.

• The square of Wasserstein distance is defined as follows:

• Where W2(𝜇, 𝜈) is the Wasserstein distance between two probability measures 𝜇
and 𝜈 both defined on Rq, ||.||2 is the Euclidian distance and Г(𝜇, 𝜈) is the
ensemble of the measures defined on Rq x Rq such that their conditional measure
relatively to the first variable is 𝜇 and their conditional measure on the second
variable is 𝜈.
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Distribution based on Wasserstein distance (contd...)

• For comparison between surfaces, it is natural to consider q = 2 and choose
uniform measures whose support is respectively Sobs and Su for the probability
measures 𝜇 and 𝜈.

• By making these choices, E(u) is defined as:

• Where 1 is the indicator function, ||.||2 is the Euclidian distance and |S| is the
surface area of S.
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Distribution based on Wasserstein distance (contd...)

• Except for some particular cases, there is no simple analytic formula for the
Wasserstein distance.

• This led us to consider a discrete approximation of E(u) instead, which can be
obtained numerically via a discretization of the PDF’s by a sum of Dirac delta
distributions.

• From this point, E(u) is now defined as:

• Where 𝛿x is the Dirac delta distribution at point x ϵ R2, and each xj belongs to Sobs, 
whereas yk belongs to Su
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Distribution based on Wasserstein distance (contd...)

• In this discrete setting, the admissible distributions 𝛾 can be represented by a
matrix of size J x K where each cell 𝛾jk is positive and indicates the “probability
mass” that is transferred from xj to yk.

• In this case, the infimum of the equation in the previous slide is reached and is the
solution of the following linear programming problem:

• Which is also referred to as Earth Mover’s Distance. It is known from graph theory
that the optimal 𝛾 is a sparse matrix that has at most J + K – 1 non-zero cells.
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Distribution based on Wasserstein distance (contd...)

• An issue in the denominator of gE, β (from the equation in slide 18) which is an
intractable high-dimensional integral.

• But this integral does not depend on the perturbation vector u, so for a given β, the
PDF is known up to some constant factor.

• Another question arises: how do we draw samples from the distribution when it is
known up to a factor?
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Emulation

• Lot of iterations of MH algorithm required to obtain a sufficiently large sample, takes
too much time

• Emulator (Ẽ) used to speed up MH
• Ẽ(u) provides good approximation of E(u) while being considerably fast to compute.
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Gaussian Process Modelling

• Emulation method, also called kriging
• In statistics, Gaussian process emulator is one name for a general type of

statistical model that has been used in contexts where the problem is to make
maximum use of the outputs of a complicated computer-based simulation
model.
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Design of experiments and error metrics

• Inputs of training sample are obtained via Latin hypersquare sample with 
optimized discrepancy

• Complementary test sample generated to evaluate approximation error of 
emulator far from training points (obtained with an algorithm for an optimal 
validation design)

• Based on test sample, several error metrics used to evaluate emulator, here Mean 
Absolute Error (MAE), standardized mean square error (SMSE) and Q2 metric

• As the error of the emulator gets lower, MAE gets closer to 0 and Q2 metric gets 
closer to 1
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Extension to several fire cases

• Considering K fire cases, it is possible to compute the energy functions that
correspond to each fire (E1,...,EK)

• An issue arises when the variations of one energy function are much higher than
for the other fires in which case the variations of pseudo-likelihood will mostly be
determined by that one energy function and the calibrated distribution will mostly
be representative of that one fire at the expense of the other observations

• How do we fix this? Weigh each fire depending on the values taken by EK(u) and
define the energy functions as the weighted sum of squared Wasserstein distances:
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Sampling from a calibrated distribution

• As already explained before, emulator used instead of energy function to run the
algorithm in reasonable time

• m: number of chains
• n: number of samples per chain
• ui,j: ith element of the jth chain
• uc,j: candidate
• This algorithm is motivated by the convergence diagnosis
• Recommended to choose u1,1,...,u1,m quite far from each other
• Based on chains returned by the MH algorithm, the matrices B/n (size d) and W

are computed as:

• ūj is the sample mean of the jth chain and ū is the sample mean over all chains
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Sampling from a calibrated distribution (contd...)

• The metric used for analysing convergence is:

• Where λ1 is the largest eigenvalue of the symmetric, positive definite matrix
W-1B/n

• At convergence, Ȓd tends to 1 and one may consider that a sufficient number
of MH iterations has been carried out if Ȓd < 1.1 for the second half of the
chains

• From this, it follows that the set comprising the second half of all m chains
constitutes a representative sample of the target distribution when Ȓd < 1.1

30



Metropolis Hastings algorithm (Sampling from the calibrated distribution)
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Fire spread simulation

• Open source fire spread solver ForeFire is used
• Input variables of ROS model subject to perturbation:

• Fuel moisture content of dead fuel
• Surface volume ratio
• Heat content
• The fuel load
• The particle density
• The fuel bed depth
• “effective” wind speed in the direction of fire spread

• Some assumptions:
• Mineral damping coefficient = 1
• Fuel mineral content is negligible (net initial fuel loading is equal to fuel load)
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Fire spread simulation (contd...)

• Additionally, to account for wind speed at mid-height of the flame being lower than
that of the prediction, a 0.4 factor in ROS computations is applied to W so that WS =
0.4 W.n

• The scheme used to advance the markers of the fire front is based on a first-order
approximation

• Considering a marker that is located at xi at time ti, with its normal to the front
denoted as ni (oriented toward the unburned area), its next location is determined
by:

• The advance in time depends on ROSi, the ROS computed with the values of the
environmental inputs at location xi and time ti, as follows:
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Application to seven Corsican wildland fires

•K = 7 fires
•Previous Study Ensembles to as “reference ensembles”[1]
•Emulator training size of 4000,test sample size of 2000
•Resolution = 20m for small surface and 40m for large surface
•Package ot from the Python toolbox POT[2]
• MH algorithm is applied for different distribution with different values of
β={1/20,1/7,1/4,1/2,1}
•For each value of β , n = 150000 iterations are carried out form = 8 chains
•The distribution is then truncated to the perturbation range.
•Take the latter half of chain of MH→m × n/2 = 600000 for each β
•Ensembles of wildland fire simulation is carried out→ calibrated ensembles
•size of a calibrated ensemble ranges between 2000 and 10000
•ensemble generation based on prior distribution→ prior ensembles
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Results

MAE = 0.73
Q2 = 95.3%

• Use of Logarithm favoured
•Without logarithm: MAE = 0.97, 
Q2 = 93.2%
•0.6s for one energy function
•150000 iteration of MH 
algorithm-> more than a day

https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789
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Results : Calibrated Distribution

https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789
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Results : Calibrated Distribution

https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789
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Results : Calibrated Distribution

Marginal calibrated distribution of ΔH for 
different values of β

Marginal calibrated distribution of wind 
speed norm for different values of β
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Results : Ensemble Evaluation

https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789
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Results : Ensemble Evaluation

https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789
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Results : Ensemble Evaluation

https://www.sciencedirect.com/science/article/abs/pii/S0307904X20304789
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Conclusion

• Here’s what we know so far:
• Led to generation of calibrated ensembles (input distributions defined by posterior PDF) with a pseudo 

likelihood function that involves the Wasserstein distance between simulated and burned surfaces
• Gaussian process emulator was built to obtain calibrated sample because of high dimensionality and 

computational requirements
• Emulation showed good accuracy (Q2 > 95%)
• Calibration was successful in modifying the probability distribution of the input so that the fire spread 

predictions have better overall accuracy
• Safe to assume that increasing ẞ lead to distributions that favour lower ROS
• Best overall BSS ranking for ẞ = ½, not best globally but very good one for most fires
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For consideration

• Could take into account other sources of uncertainty in calibration like model error—not really
straightforward because of the nature of model input

• All large fires for one season and from one region were chosen. No guarantee that there will still be an
overall improvement if other fires are included

• More fires in the training sample would provide more information, should limit overfitting
• Improving prediction accuracy is crucial because many important parts of our ecosystem are endangered

here

Further research

Main research perspective is now to combine these calibrated ensembles with models for probability of
ignition and values at stake to assess next day wildfire risk, which is relevant to fire managers, and help in the
decision of firefighting actions and fire prevention planning.
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