

Uncertainty in Semi-Supervised Learning

Jonas Dauer, 11.07.2022

Table of Contents

- 1. Motivation
- 2. Basics
- 3. Certainty-Driven Consistency Loss for Semi-supervised Learning
 - 1. Architecture
 - 2. Uncertainty in neural networks
 - 3. Integration of Uncertainty
 - 4. Experiments
- 4. Conclusion

Table of Contents

1. Motivation

- 2. Basics
- 3. Certainty-Driven Consistency Loss for Semi-supervised Learning
 - 1. Architecture
 - 2. Uncertainty in neural networks
 - 3. Integration of Uncertainty
 - 4. Experiments
- 4. Conclusion

Labeling Data

Table of Contents

- 1. Motivation
- 2. Basics
- 3. Certainty-Driven Consistency Loss for Semi-supervised Learning
 - 1. Architecture
 - 2. Uncertainty in neural networks
 - 3. Integration of Uncertainty
 - 4. Experiments
- 4. Conclusion

Labeled Data

Labeled Data

Supervised Learning

Labeled Data

Supervised Learning

Supervised Learning

Semi-Supervised Learning

Smoothness Assumption

If two points x_1 and x_2 are close, then so should be the corresponding outputs y_1 and y_2 .

Table of Contents

- 1. Motivation
- 2. Basics
- 3. Certainty-Driven Consistency Loss for Semi-supervised Learning
 - 1. Architecture
 - 2. Uncertainty in neural networks
 - 3. Integration of Uncertainty
 - 4. Experiments
- 4. Conclusion

• Partly labeled Dataset

labels

input data batch

- Partly labeled Dataset
- Supervised teacher network

- Partly labeled Dataset
- Supervised teacher network
- "Trained" student network

- Partly labeled Dataset
- Supervised teacher network
- "Trained" student network
- Uncertainty measurement

- Partly labeled Dataset
- Supervised teacher network
- "Trained" student network
- Uncertainty measurement
- Teacher gets knowledge from student

Table of Contents

- 1. Motivation
- 2. Basics
- 3. Certainty-Driven Consistency Loss for Semi-supervised Learning
 - 1. Architecture
 - 2. Uncertainty in neural networks
 - 3. Integration of Uncertainty
 - 4. Experiments
- 4. Conclusion

Dropout

Classification Classification Dropout on hidden layer Input layer

Without Dropout

With Dropout

Dropout

Augmentation

https://towardsdatascience.com/machinex-image-data-augmentation-using-keras-b459ef87cd22

Augmentation

Determine Uncertainty

Procedure:

- 1. Take batch B
- 2. Classify with teacher every x_i in B 20 times with dropout and augmentation
- 3. Calculate Criteria
- 4. Learn depending on the criteria

Determine Uncertainty

Procedure:

- 1. Take batch B
- 2. Classify with teacher every x_i in B 20 times with dropout and augmentation
- 3. Calculate Criteria
- 4. Learn depending on the criteria

Criteria:

- Measure variance over T times random samples
- Reflect the probability distribution of different classes
- Continuous scalar as output

Determine Uncertainty

Procedure:

- 1. Take batch B
- 2. Classify with teacher every x_i in B 20 times with dropout and augmentation
- 3. Calculate Criteria
- 4. Learn depending on the criteria

Criteria:

- Measure variance over T times random samples
- Reflect the probability distribution of different classes
- Continuous scalar as output
- e.g. Predictive Variance (PV):
 - Variance of multiple soft predictions
 - The larger the variance, the higher uncertainty

$$PV = \sum_{c} Var[p(y = c | x, \widehat{\Theta}^{1}, \widehat{\eta}^{1}), \dots, p(y = c | x, \widehat{\Theta}^{T}, \widehat{\eta}^{T})]$$

Table of Contents

- 1. Motivation
- 2. Basics
- 3. Certainty-Driven Consistency Loss for Semi-supervised Learning
 - 1. Architecture
 - 2. Uncertainty in neural networks
 - 3. Integration of Uncertainty
 - 4. Experiments
- 4. Conclusion

• Idea: Learn only from certain targets

- Idea: Learn only from certain targets
- Procedure:
 - 1. Compute criteria for data points in input Batch B
 - 2. Sort data points according to uncertainty values
 - 3. Chose the top-k certain data points
 - 4. Filter these randomly dependent on their uncertainty
 - 5. Train student network with these data points

- Idea: Learn only from certain targets
- Procedure:
 - 1. Compute criteria for data points in input Batch B
 - 2. Sort data points according to uncertainty values
 - 3. Chose the top-k certain data points
 - 4. Filter these randomly dependent on their uncertainty
 - 5. Train student network with these data points
- Increase k with every epoche
 - Consistency loss decreases
 - More data points should be certain

- Idea: Learn only from certain targets
- Procedure:
 - 1. Compute criteria for data points in input Batch B
 - 2. Sort data points according to uncertainty values
 - 3. Chose the top-k certain data points
 - 4. Filter these randomly dependent on their uncertainty
 - 5. Train student network with these data points
- Increase k with every epoche
 - Consistency loss decreases
 - More data points should be certain

guide

AND

Temperature CCL

- Idea: Learn more from certain targets and less from uncertain
 - "dark knowledge" could be helpful
 - e.g. similarity between classes
- Procedure:
 - Use softmax activation with temperature

$$q_i = \frac{\exp(z_i/V_i)}{\sum_j \exp(z_j/V_j)}$$

- V_i depends on certainty of x_i
- If $V_i = 1$: softmax activation
- For large V_i : equal distribution

Table of Contents

- 1. Motivation
- 2. Basics
- 3. Certainty-Driven Consistency Loss for Semi-supervised Learning
 - 1. Architecture
 - 2. Uncertainty in neural networks
 - 3. Integration of Uncertainty
 - 4. Experiments
- 4. Conclusion

CIFAR

- 60.000 images
- CIFAR-10 and CIFAR-100

airplane	and a second	W.	-	X	*	-	2	-7		-
automobile					-	No.			1-0	*
bird	S.	5	12			4	1	N.	2	4
cat				64		1	E.	Å.	No.	1
deer	1	40	X	RA	1	Y	Y	N.	-	5
dog	374.	1.	-	S .	1	(A)		C?	1	The second
frog		1	-		23			5		3
horse	- Mar	The second	197	7	P	HOAS	-3	2h	(A)	T.
ship			ditte	-	MA	-	2	19	and in	-
truck	AT THE		1			1		1		died.

SVHN

- Street View House Numbers Dataset
- 73.257 images

Experiments overview

- Run every method 10 times (average)
- Metric: Error rate (%), ± standard deviation

Model		CIFAR-10	SVHN	CIFAR-100	
	1000 labels	2000 labels	4000 labels	1000 labels	10000 labels
Supervised-only	46.43 ± 1.21	33.94 ± 0.73	20.66 ± 0.57	12.32 ± 0.95	44.56 ± 0.30
Π model	_	—	12.36 ± 0.31	4.82 ± 0.17	39.19 ± 0.36
TempEns	_	—	12.16 ± 0.24	4.42 ± 0.16	38.65 ± 0.51
VAT+Ent	_	—	10.55 ± 0.05	3.86 ± 0.11	_
MT	21.55 ± 1.48	15.73 ± 0.31	12.31 ± 0.28	3.95 ± 0.19	37.91 ± 0.37
Π+SNTG	21.23 ± 1.27	14.65 ± 0.31	11.00 ± 0.13	$\textbf{3.82} \pm \textbf{0.25}$	37.97 ± 0.29
MT+SNTG	_	—	_	3.86 ± 0.27	_
TempEns+SNTG	18.41 ± 0.52	13.64 ± 0.32	10.93 ± 0.14	3.98 ± 0.21	_
MA-DNN	_	_	11.91 ± 0.22	4.21 ± 0.12	$\textbf{34.51} \pm \textbf{0.61}$
Filtering CCL (ours)	$\mid \textbf{16.99} \pm \textbf{0.71}$	12.57 ± 0.47	$\textbf{10.63} \pm \textbf{0.22}$	3.86 ± 0.19	34.81 ± 0.52
Temperature CCL (ours)	17.26 ± 0.69	$\textbf{12.45} \pm \textbf{0.33}$	10.73 ± 0.26	3.93 ± 0.21	35.15 ± 0.62

Accuracy vs. PV

- Measurement of PV and accuracy in the CIFAR data set
- Inverse relationship between class accuracy and predictive variance

Robustness to noisy labels

Table of Contents

- 1. Motivation
- 2. Basics
- 3. Certainty-Driven Consistency Loss for Semi-supervised Learning
 - 1. Architecture
 - 2. Uncertainty in neural networks
 - 3. Integration of Uncertainty
 - 4. Experiments
- 4. Conclusion

- Semi-supervised Learning
 - Labeling is expensive
 - Learn from partly labeled data set

- Semi-supervised Learning
 - Labeling is expensive
 - Learn from partly labeled data set
- Only learn from certain data points

- Semi-supervised Learning
 - Labeling is expensive
 - Learn from partly labeled data set
- Only learn from certain data points
- Determine uncertainty with dropout

- Semi-supervised Learning
 - Labeling is expensive
 - Learn from partly labeled data set
- Only learn from certain data points
- Determine uncertainty with dropout and augmentation

- Semi-supervised Learning
 - Labeling is expensive
 - Learn from partly labeled data set
- Only learn from certain data points
- Determine uncertainty with dropout and augmentation
 - Classify one data point multiple times with random dropout and augmentation

26

• Compute criteria and get uncertainty

Datapoints

prediction curve (dropout)

prediction curve

Classification

augmented datapoints

- Semi-supervised Learning
 - Labeling is expensive
 - Learn from partly labeled data set
- Only learn from certain data points
- Determine uncertainty with dropout and augmentation
 - Classify one data point multiple times with random dropout and augmentation
 - Compute criteria and get uncertainty
- Use filtering or temperature to learn from certain data points

