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Labeling Data

Source: https://www.cloudfactory.com/data-labeling-guide
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Semi-supervised Learning

Labeled Data

Source: https://medium.com/dataseries/two-minutes-of-semi-supervised-learning-f0eb62729530
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Smoothness Assumption

If two points x1 and x2
are close, then so 
should be the
corresponding
outputs y1 and y2.
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Source: Maschinelles Lernen
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Architecture

• Partly labeled Dataset

• Supervised teacher network

• „Trained“ student network

• Uncertainty measurement

• Teacher gets knowledge from
student
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Dropout

https://wenkangwei.github.io/2020/11/13/DL-DropOut/
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Dropout
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Augmentation

https://towardsdatascience.com/machinex-image-data-augmentation-using-keras-b459ef87cd22
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Augmentation
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Procedure:

1. Take batch B
2. Classify with teacher every 𝑥! in B 20 times with dropout and augmentation
3. Calculate Criteria
4. Learn depending on the criteria

Criteria:
• Measure variance over T times random samples
• Reflect the probability distribution of different classes
• Continuous scalar as output

e.g. Predictive Variance (PV):
• Variance of multiple soft predictions
• The larger the variance, the higher uncertainty

𝑃𝑉 =$
!

𝑉𝑎𝑟 𝑝 𝑦 = 𝑐 𝑥, ,Θ", .𝜂" , … , 𝑝 𝑦 = 𝑐 𝑥, ,Θ# , .𝜂#
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Temperature CCL
• Idea: Learn more from certain targets and less from uncertain

• „dark knowledge“ could be helpful
• e.g. similarity between classes

• Procedure:
• Use softmax activation with temperature

𝑞$ =
exp( ⁄𝑧$ 𝑉$)
∑% exp( ⁄𝑧% 𝑉%)

• 𝑉$ depends on certainty of 𝑥$
• If 𝑉$ = 1: softmax activation
• For large 𝑉$: equal distribution
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CIFAR
• 60.000 images
• CIFAR-10 and CIFAR-100

Source: https://www.cs.toronto.edu/~kriz/cifar.html
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SVHN
• Street View House Numbers Dataset
• 73.257 images

Source: http://ufldl.stanford.edu/housenumbers/
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Experiments overview
• Run every method 10 times (average)
• Metric: Error rate (%), ± standard deviation
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Accuracy vs. PV

• Measurement of PV and accuracy in the CIFAR data set
• Inverse relationship between class accuracy and predictive variance
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Robustness to noisy labels
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Sum up

26

• Semi-supervised Learning
• Labeling is expensive
• Learn from partly labeled data set

• Only learn from certain data points

• Determine uncertainty with dropout and augmentation
• Classify one data point multiple times with random dropout and 

augmentation
• Compute criteria and get uncertainty

• Use filtering or temperature to learn
from certain data points


