

Unsupervised Quality Estimation for Neural Machine Translation

Frederik Polachowski

Supervisor: Bin Li

Machine Translation

Sources:

https://static.deepl.com/img/favicon/deepl_logo_600_300.png https://de.wikipedia.org/wiki/Datei:Google_Translate_logo.svg https://aws.amazon.com

Machine Translation / 2

Original Jackson pidas seal kõne, öeldes, et James Brown on tema suurim inspiratsioon.

Jackson gave a speech there saying that James Brown is his greatest inspiration.

Translation Jackson gave a speech there, saying that his greatest inspiration is James Brown.

Jackson made a speech there, saying that James Brown was his biggest inspiration.

Table of contents

- Basics
- Dataset
- Methodology
- Results
- Discussion

Basics – Meteor Similarity

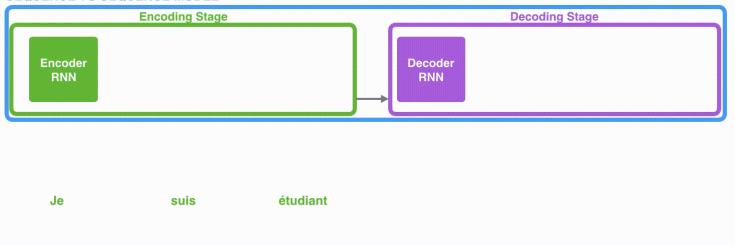
- Evaluation of translation hypotheses with reference translations
- Calculation of sentence-level similarity scores
- Depending on the space of possible word alignments
 - Exact match
 - Stemming
 - Synonym
 - Paraphrases

Basics – Transformer

Seq-2-Seq Models

Neural Machine Translation

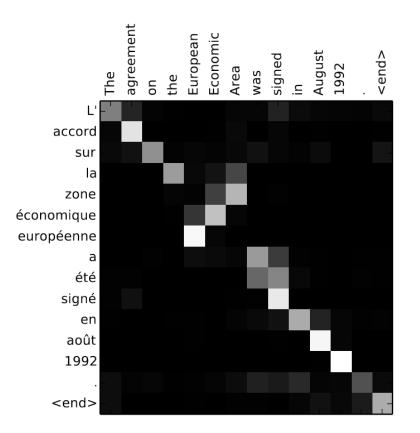
SEQUENCE TO SEQUENCE MODEL



Basics – Transformer / 2 Attention

Je suis étudiant

Basics – Transformer / 6 Attention Mechanism – word alignments



Multilingual Dataset for QE

- 6 language pairs (EN, DE, ZH, Ro, Et, Si, Na)
- 10k sentences per language
- Scraped of Wikipedia in source languages
- Top 100 documents selected by
 - Intended source language
 - Between 50-100 character
 - Not contained in any other dataset
- ensured low-quality translation in test set

Multilingual Dataset for QE - Scoring

- Scoring based on direct assessment (DA)
- 6 annotators (from 2 different service provider)
- Each annotator rates the translation from 0 100
 - 0 10 incorrect
 - 11 29 few correct words
 - 30 50 major mistakes
 - 51 69 typos and grammatical errors but conveys meaning
 - 70 90 closely preserves semantics
 - 90 100 perfect translation

Multilingual Dataset for QE – Scoring / 2

				SC	diff			
	pair	size	avg	p25	median	p75	avg	std
High-	En-De	23.7M	<mark>84.8</mark>	<mark>80.7</mark>	88.7	<mark>92.7</mark>	13.7	8.2
resource	En-Zh	22.6M	67.0	58.7	70.7	79.0	12.1	6.4
Mid-	Ro-En	3.9M	68.8	50.1	76.0	92.3	10.7	6.7
resource	Et-En	880k	64.4	40.5	72.0	89.3	13.8	9.4
Low-	Si-En	647k	51.4	26.0	51.3	77.7	13.4	8.7
resource	Ne-En	564k	37.7	23.3	33.7	49.0	11.5	5.9

• Seq-to-Seq NMT architecture produces

$$p(y|x,\theta) = \prod_{t=1}^{T} p(y_t|y_{< t}, x, \theta)$$

• The sequence-level translation probability normalized by length

$$TP = \frac{1}{T} \sum_{t=1}^{T} \log p(y_t | y_{< t}, x, \theta)$$

$$TP = \frac{1}{T} \sum_{t=1}^{T} \log p(y_t | y_{< t}, x, \theta)$$

- the more confident the network the better the translation
- only 1-best probability estimates
- tend to be overconfident

Softmax-Ent =
$$-\frac{1}{T}\sum_{t=1}^{T}\sum_{\nu=1}^{V} p(y_t^{\nu})\log p(y_t^{\nu})$$

with $p(y_t) = p(y_t | y_{< t}, x, \theta)$

- sum over entire vocabulary V
- high quality if probability mass concentrated
- low quality if uniformly distributed
- but [0.5, 0.5] and [0.9, 0.1] produce the same mean

Sent-Std =
$$\sqrt{\mathbb{E}[P^2] - \mathbb{E}[P]^2}$$
 with $P = \log p(y_1), \dots, \log p(y_T)$

- calculate the standard-deviation of
- *P*, represents word-level log-probabilities

	Low-re	source	Mid-re	source	High-resource	
Method	Si-En	Ne-En	Et-En	Ro-En	En-De	En-Zh
ТР	0.399	0.482	<u>0.486</u>	<u>0.647</u>	0.208	0.257
Softmax-Ent	<u>0.457</u>	<u>0.528</u>	0.421	0.613	0.147	0.251
Sent-Std	0.418	0.472	0.471	0.595	<u>0.264</u>	<u>0.301</u>

Pearson(r) correlation between Softmax QE and human DA judgement.

Quantifying Uncertainty

The goal is to approximate the posterior distribution that quantifies model uncertainty.

- perform *N* forward passes
- using Monte Carlo dropout
- 1. calculate mean and variance of posterior probabilities
- 2. compare the similarity of the output hypothesis

Quantifying Uncertainty – Posterior prob.

Mean

$$D-TP = \frac{1}{N} \sum_{n=1}^{N} TP_{\theta' n} \quad \text{with} \quad TP = \frac{1}{T} \sum_{t=1}^{T} \log p(y_t | y_{< t}, x, \theta)$$

Variance

$$D-Var = \mathbb{E}[TP_{\theta'}^2] - \mathbb{E}[TP_{\theta'}]^2$$

Combination of both

$$D-Combo = (1 - \frac{D-TP}{D-Var})$$

Quantifying Uncertainty – Similarity score

D-Lex-Sim =
$$\frac{1}{C} \sum_{i=1}^{|\mathbb{H}|} \sum_{j=1}^{|\mathbb{H}|} sim(h_i, h_j)$$

with
$$h_i, h_j \in \mathbb{H}, i \neq j$$
 and $C = \frac{|\mathbb{H}|(|\mathbb{H}|-1)}{2}$

and *Meteor* is used for similarity comparison

Quantifying Uncertainty – Example

	Original	Tanganjikast püütakse niiluse ahvenat ja kapentat.				
N	Reference	Nile perch and kapenta are fished from Lake Tanganyika.				
HT Outpu		There is a silver thread and candle from Tanzeri.				
Low Quality		There will be a silver thread and a penny from Tanzer.				
× 0	Dropout	There is an attempt at a silver greed and a carpenter from Tanzeri.				
-	Dropout	There will be a silver bullet and a candle from Tanzer.				
		The puzzle is being caught in the chicken's gavel and the coffin.				
	Original	Siis aga võib tekkida seesmise ja välise vaate vahele lõhe.				
N	Reference	This could however lead to a split between the inner and outer view.				
ıalit	MT Output	Then there may be a split between internal and external viewpoints.				
nb ւ		Then, however, there may be a split between internal and external viewpoints.				
High quality	Dropout	Then, however, there may be a gap between internal and external viewpoints.				
		Then there may be a split between internal and external viewpoints.				
		Then there may be a split between internal and external viewpoints.				

Quantifying Uncertainty

	Low-resource		Mid-re	source	High-resource	
Method	Si-En	Ne-En	Et-En	Ro-En	En-De	En-Zh
D-TP	0.460	0.558	<u>0.642</u>	<u>0.693</u>	<u>0.259</u>	<u>0.321</u>
D-Var	0.307	0.299	0.356	0.332	0.164	0.232
D-Combo	0.286	0.418	0.475	0.383	0.189	0.225
D-Lex-Sim	<u>0.513</u>	<u>0.600</u>	0.612	0.669	0.172	<u>0.313</u>

Pearson(r) correlation between Uncertainty QE and human DA judgement.

Attention weights

"Attention weights represent the strength of connection between source and target token"

Att-Ent =
$$-\frac{1}{I}\sum_{i=1}^{I}\sum_{j=1}^{J}\alpha_{ji}\log\alpha_{ji}$$

with α the attention weight *I* the number of target tokens *J* the number of source tokens

Attention weights / 2 – Multi head attention

 $[H \times L]$ matrices of attention weights

AW:Ent-Min = $\min_{hl} Att-Ent_{hl}$

AW:Ent-Avg =
$$\frac{1}{H \times L} \sum_{h=1}^{H} \sum_{l=1}^{L} \text{Att-Ent}_{hl}$$

Attention weights / 3

	Low-resource		Mid-re	source	High-resource	
Method	Si-En	Ne-En	Et-En	Ro-En	En-De	En-Zh
AW:Ent-Min	0.097	0.265	0.329	<u>0.524</u>	0.000	0.067
AW:Ent-Avg	0.1	0.205	0.377	0.382	0.090	0.112
AW:best head/layer	<u>0.255</u>	<u>0.381</u>	<u>0.416</u>	<u>0.636</u>	<u>0.241</u>	<u>0.168</u>

Pearson(r) correlation between Attention QE and human DA judgement.

Supervised QE

- PredEst Model
 - Encoder-decoder RNN
 - Unidirectional RNN
- BiRNN Model
 - BERT Model
 - Bidirectional RNN
 - Bidirectional RNN
 - Sigmoid layer

- word predictor
- quality estimator
- word predictor
- source sentence encoder
- target sentence encoder
- sentence-level quality estimator

Kim et. al., Predictor-estimator using multilevel task learning with stack propagation for neural quality estimation, 2017 Blain et al. Quality in, quality out: Learning from actual mistakes, 2020

Supervised QE / 2

	Low-resource		Mid-re	source	High-resource	
Method	Si-En	Ne-En	Et-En	Ro-En	En-De	En-Zh
PredEst	0.374	0.386	0.477	0.685	0.145	0.190
BERT-BiRNN	0.473	0.546	0.635	0.763	0.273	0.371

Pearson(r) correlation between supervised QE and human DA judgement.

Methodology – Comparison

	Low-resource		Mid-re	source	High-resource	
Method	Si-En	Ne-En	Et-En	Ro-En	En-De	En-Zh
Sent-Std	0.418	0.472	0.471	0.595	0.264	0.301
D-Lex-Sim	0.513	0.600	0.612	0.669	0.172	0.313
AW:best head/layer	0.255	0.381	0.416	0.636	0.241	0.168
BERT-BIRNN	0.473	0.546	0.635	0.763	0.273	0.371

Future work

- Extend to other levels (word, phrase, document)
- Combined as features in supervised QE
- Different problem domain
 - Machine transcription
 - Semi-supervised labelling
 - Classification
 - Regression
- Quality measure for ensemble systems
- Information of translation quality in translation systems

Discussion – Not good aspects

- Sentences are rated in isolation
 - no context for information
- Non conform ratings are not truly rejected
 - they are repeated till "consensus"
- Rated by only two different sources of truth
 - done by "professionals"

Discussion – Good aspects

- High complexity of dataset
- Extensive result analysis
- Good visualization of important concepts / findings
- Validation of additional aspects

Thank you for your attention!

Bibliography

- Fomicheva et. al., Unsupervised Quality Estimation for Neural Machine Translation. Transactions of the Association for Computational Linguistics, 2020
- Bahdanau et al., *Neural Machine Translation by Jointly Learning to Align and Translate.* 3rd International Conference on Learning Representations, 2015
- Denkowski & Lavie, *Meteor Universal: Language Specific Translation Evaluation for Any Target Language.* Proceedings of the EACL 2014 Workshop on Statistical Machine Translation, 2014
- Kim et. al., *Predictor-estimator using multilevel task learning with stack propagation for neural quality estimation.* Proceedings of the Second Conference on Machine Translation, pages 562–568, 2017
- Blain et al. Quality in, quality out: Learning from actual mistakes. Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, 2020
- http://jalammar.github.io