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ABSTRACT
Detecting anomalies from high-dimensional multivariate temporal

data is challenging, because of the non-linear, complex relation-

ships between signals. Recently, deep learning methods based on

autoencoders have been shown to capture these relationships and

accurately discern between normal and abnormal patterns of behav-

ior, even in fully unsupervised scenarios. However, validating the

anomalies detected is difficult without additional explanations. In

this paper, we extend SHAP – a unified framework for providing ad-

ditive explanations, previously applied for supervisedmodels –with

influence weighting, in order to explain anomalies detected from

multivariate time series with a GRU-based autoencoder. Namely,

we extract the signals that contribute most to an anomaly and those

that counteract it. We evaluate our approach on two use cases and

show that we can generate insightful explanations for both single

and multiple anomalies.
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1 INTRODUCTION
Automated anomaly detection is essential for managing complex

environments and ensuring they maintain reliable operations with

minimum burden on support teams. To detect varying and continu-

ally emerging anomalies as deviations from the baseline behavior of

the system, deep learning approaches using autoencoders (AE) have

been proposed in recent years [3, 4, 9]. The idea is to encode the
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data into a lower dimensional space and reconstruct it through the

decoder. Given that most of the time a system behaves normally,

an AE will learn to properly reconstruct the baseline, whereas

anomalies will be reconstructed poorly (i.e., high reconstruction

error), therefore allowing for a fully unsupersized approach, where

the AE is trained on both normal and anomalous data simultane-

ously. While these models are effective, their outputs remain hard

to explain, making it challenging to adopt them in the wild.

To enable trust in AE-based approaches, detected anomalies

should be accompanied by explanations as to why each instance

was deemed to be anomalous. One way to achieve this is by using

an interpretable approximation of the original model. LIME [6]

builds a linear model in the vicinity of the instance to be explained,

while DeepLIFT[2] backpropagates the contributions of all neurons

in the network to the input features. SHAP (SHapley Additive exPla-

nations) [12] is a unified framework for interpreting predictions via

feature importance in supervised scenarios by using game theory.

We focus on explaining anomalies detected from unlabeled mul-

tivariate temporal data. More specifically, the type of anomalies we

are interested in are not point anomalies (i.e., single peaks or dips),

but entire time series, which is especially useful in various use cases

– for example, detecting epileptic seizures from EEG recordings. Be-

cause no labels are available at training time, we use unsupervised

methods. Our approach, based on a GRU-AE, identifies anomalies

based on the reconstruction error. To explain the anomalies, we

modify Kernel SHAP [12] to output both contributinд (i.e., pushing

the reconstructed value farther from the original) and counteractinд
signals (i.e., pushing the reconstructed value towards the original)

and use influence weighting [11] to select the neighbourhood of

time series required to compute the SHAP values for one time series

sample. We evaluate our approach on two cases. The first uses EEG

recordings to detect epileptic seizures, whereas the second detects

performance anomalies for large-scale storage based on key perfor-

mance indicators (KPIs). We show that intuitive explanations can

be generated for both individual (local ) and multiple samples, even

the entire dataset (дlobal). Such explanations can be used by do-

main experts in validating the anomalies, as well as gaining useful

insights into how anomalous events are triggered or counteracted.

2 RELATEDWORK
Various approaches that quantify feature contributions have been

proposed for supervised learning. SHAP [12] unifies attributions

produced by LIME [6], DeepLIFT [2], layer-wise relevance prop-

agation and variations on Shapley value estimation to compute

feature contributions with game theory. [5] attributes the predic-

tion of a deep network to its input features, by integrating gradients.

AVA [8] combines SHAP [12] and Integrated gradients [5], with
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antecedent event influence to build post-hoc local explanations and

global patterns in supervised classification tasks.

For anomaly detection, [10] proposes using variational autoen-

coders to detect and explain anomalies. The algorithm is based on

an approximate probabilistic model that considers the existence

of anomalies in the data, and by maximizing the log-likelihood,

it estimates which features contribute to determining data as an

anomaly. [1] learns appropriate mappings of the feature space to

detect anomalies, by minimizing intraset variance and maximizing

interset variance. Both works require training the detector with

normal data, therefore are semi-supervised. Our goal is to explain

anomalies in an unsupervised manner by using attribution methods.

To the best of our knowledge, such approaches (e.g., SHAP) have

not been applied on temporal data and in unsupervised tasks.

3 APPROACH
Consider a dataset S with n samples for which we want to de-

tect the anomalous samples. Each sample is represented by a mul-

tivariate time series of length L, MTSi , where MTSi is a matrix

X = {xvtk } ∈ R
vxT

(v is the number of signals andT is the number

of time steps in {t1, ..., tT }). We use a symmetric GRU-based AE to

encode the high-dimensional input space into a lower-dimension

embedding through a nonlinear mapping and to reconstruct the

original input, f : MTSi → zi → MTS
′

i . The reconstruction error

at time tk is the sum of errors of each signal Lr (MTSitk ,MTS
′

itk
) =∑v

i=1(xitk − x
′

itk
)2 and is used to detect anomalous samplesMTSi

with the properties: 1) reconstruction error at each timestamp tk
exceeds d standard deviations from the mean (e.g., d = 3); 2) recon-

struction error ofMTSi is the mean of reconstruction errors at each

timestamp tk inMTSi . Our challenge is to explain for each anoma-

lous MTSi which input signals have contributed to it and which

signals have counteracted it, by computing the SHAP values of the

reconstructed signals. Not only that, but we also want to identify

the most contributing signals for all or subsets of the anomalies.

3.1 Shapley Additive Explanations (SHAP)
SHAP [12] unifies methods like LIME [6] and DeepLIFT [2] under

the class of additive feature attribution methods. These methods

are explanation models in the form of a linear function of simplified

binary variables, as in f (x) = д(z) = θ0 +
∑m
i=1 θizi , where f is the

original model (i.e., GRU-based AE in this paper), д is the expla-

nation model, z is the simplified input, x = hx (z) is the mapping

function to the original model,m is the number of simplified input

features and θi is the effect attributed to each feature. Summing the

effects of all feature attributions approximates f .
SHAP uses Shapley values from game theory to explain a predic-

tion by assigning an importance value to each feature that meets

the following criteria: (1) local accuracy - the explanation model

matches the original model; (2)missingness - features missing in the

original input have no impact; (3) consistency - if a model changes

so that some simplified input’s contribution increases or stays the

same regardless of other inputs, that input’s attribution should

not decrease. Since the exact computation of SHAP values is chal-

lenging, we use Kernel SHAP, a model-agnostic approximation

method which combines LIME with Shapley values to build a local

explanation model.

Algorithm 1 Compute SHAP values for {MTSi }
b≤n
i=1

1: procedure getSHAPvals({MTSi }
b≤n
i=1 , top

siдnals
m , f ,N i

p )

2: weigths← f .weights

3: for each sдnl ∈ top
siдnals
m do

4: explainer = shap.KernelExplainer (д)

5: shapsдnl = explainer .shapvalues({MTSi }
b≤n
i=1 ,N

i
p )

6: shaptop
siдnals
m .add(shapsдnl )

7: return shapsдnl

3.2 Generating Explanations for Anomalies
Since the reconstruction error of an anomalyMTSi is the mean of

reconstruction errors at each of its timestamps tk , Lr (MTSi ,MTS
′

i )

=

∑k
l=1

∑v
i=1(xitl −x

′

itl
)2

k . Henceforth, we simplify the notation by re-

moving the timestamp tk . Let x(1), ..., x(v) be a reordering of the

signals such that (x(1) - x
′

(1)
)2 ≥ ... ≥ (x(v) - x

′

(v))
2
for MTSi , and

top
siдnals
m = {x(1), ..., x(m)} contains theminimal set of reconstructed

signals that account for at least 85% of Lr (MTSi ,MTS
′

i ).

For each sampleMTSi or set of samples {MTSi }
b≤n
i=1 , we want to

detect the signals that had an impact on the reconstruction error by

using Kernel SHAP (Alg. 1). We compute the SHAP values, namely

the importance of each signal x1, ..., xv in predicting whether a

sample (or subset) is anomalous. Kernel SHAP receives the model

д and a background set of s samples, smplsi , for building the local
explanation model and calculating the SHAP values (line 4). As

more samples lead to lower variance estimates of the SHAP values

(i.e., triggers as many re-evaluations of the model as the number of

instances), [12] recommends using at least s=2*v instances. In lines

5-6, we build a two-dimensional vector shaptop
siдnals
m , in which

each row holds the SHAP values for one signal from top
siдnals
m .

Since Kernel SHAP expects one-dimensional vectors, we average

over the timestamps per each signal and collapse them into single

values, namelyMTSci ∈ R
vx1

.

Selecting background samples – By default, Kernel SHAP

requires a fixed number of background samples smplsi randomly

chosen from S to compute the SHAP values for a sample MTSi .
Instead, we use influence weighting [11] to generate a neighbour-

hood around MTSi . The influence weight ρ j of sample MTSj on

MTSi is ρ j = Iup,loss (MTSj ,MTSi ) =
d
dϵ L(fϵ,MTSj ,MTSi )|ϵ=0.

{ρ j }MTSj ∈ S is the set of influence weights for all samples in S

apart fromMTSi , where ρ j > 0. These weights induce a probability

distribution over the signal space centered at MTSi . We select a

local neighbourhood N i
p of the most p most influential samples on

MTSi , defined as N i
p (MTSi ,S) = arдmax

∑
MTSj ∈N ρ j , and use it

to compute the SHAP values (line 6 in Alg. 1).

Finally, we divide the signals into contributinд to the anomaly

MTSi and counteractinд the anomaly. Depending on how the re-

constructed value of the signal relates to the original, we divide the

signals as follows: if xi > x
′

i , contributinд signals are those with

negative SHAP values, while counteractinд signals have positive

SHAP values. The opposite applies when xi < x
′

i . We maintain

two lists, shapcontr ibutinд and shapcounteractinд for each signal
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in top
siдnals
m . In both lists, the signals with higher SHAP values are

of most interest to explain the detected anomaly.

4 EVALUATION
GRU-based AE – The AE dimensions are v-50-5-50-v . We set batch

size to 32, learning rate to 0.01, use Adam and stop training if the

loss does not improve over 10 consecutive epochs. The activation

function for each layer is ReLU. Our implementation is in Keras.

Datasets – We generate additive explanations for two datasets.

In the first, we use EEG recordings [7] to detect abnormal brain

activity that leads to epileptic seizures. The dataset contains one

signal collected in 178 consecutive windows of 23 seconds each, for

500 patients and is labeled into seizure (20%) and noseizure (80%).
We treat each of the consecutive windows as individual features.

Thus, our objective is to provide temporal explanations, namely to

identify the 23s windows that mostly contribute to and counteract
a seizure . We use the labels to compute the precision and recall of

the anomaly detection, as the model is fully unsupervised. In the

second dataset, we use KPIs collected with 5-minute granularity

for large-scale storage. The dataset contains 798 signals for 100+

environments over 24h windows. While no labels are available, a

fraction of the anomalies detected has been validated by domain

experts. We will refer to some of them as illustrating examples for

generating feature explanations.

4.1 Epileptic seizure detection use case
First, we report on the precision and recall of the anomaly detector

when Lr exceeds d standard deviations from the mean (Table 1).

Since detecting seizure samples is our objective, we are specifically

interested in the precision and recall for this class (Precs and Recs ).
With d = 1, the false positive rate is 1.6%, and reduces to 0 when d ≥
2. At the same time, as the detector filters more anomalies when

increasing d , recall drops as expected. For the noseizure samples,

precision and recall (Precns and Recns ) are 1 independent of d .

d=1 d=2 d=3 d=1 d=2 d=3

Precs 0.984 1 1 Precns 1 1 1

Recs 0.75 0.42 0.34 Recns 1 1 1

Table 1: Precision and recall when reconstruction error ex-
ceeds d standard deviations from the mean.

For every detected anomaly, the AE reconstructs poorly on an

average of 26 out of 178 windows. An example of ranked windows

based on their reconstruction error for a correctly detected seizure
sample when d = 2 is shown in Fig. 1. While such a representation

is easy to understand, we identify the following severe limitations:

(1) contributing windows can only be identified for each individ-

ual sample, which inherently induces a strong per-sample locality

factor; across the 75 (out of 100) seizure anomalies correctly de-

tected, 96 out of 178 windows (54%) contribute to the anomalies,

therefore making it impossible for a domain expert to narrow down

the most contributing windows over all or a subset of the seizure
anomalies; (2) counteracting windows cannot be identified, as their

reconstruction error would be lower than the set threshold.

By applying our approach, we can alleviate these limitations.

First, we compute the SHAP values for the seizure anomaly shown

in Fig. 1. In this example, the 26 reconstructed windows have a

cummulated Lr = 0.565. Since they explain 85% of the error, the

total Lr = 0.67 (Note: input signal is normalized prior to training

the AE). As shown in Fig. 2, the smallest overall reconstruction

loss for a sample is 0.09, while the largest is 1.42. The base value

represents the average AE reconstruction error over the training

samples passed (i.e., in our case, the entire dataset). Given that

the set is imbalanced (only 20% of samples are anomalies), the

neighbourhood of samples built around any seizure sample still

contains many noseizure samples, which explains the low base

value. The output value is the total reconstruction error for the

example anomaly. By computing the SHAP values, we are able to

generate the lists of contributinд and counteractinд 23s windows.

Figure 1: Reconstruction errors for 26 windows that explain
85% of a seizure sample’s Lr .

We remark the following. First, the windows contributing to

the anomaly (shown in red) are far fewer than the 26 identified

through the reconstruction loss (42%). Second, there is agreement

between SHAP and Lr for the top-4 windows (i.e., 30, 31, 67, 68)

in terms of ranking. Since Lr is specific to the example anomaly,

but SHAP values are computed based on neighbourhood samples,

this agreement suggests that these 4 windows vary wildly between

seizure and noseizure samples, indicating different dynamic prop-

erties of brain electrical activity. Indeed this is the case and we show

the EEG signal measured from windows 12 to 31 for the example

anomaly in comparison to a noseizure sample in Fig. 3. Third, 15

of the 26 poorly reconstructed windows are neither contributinд
nor counteractinд the anomaly, because they have positive recon-

struction errors for noseizure samples as well, a fact captured due

to the neighbourhoods built with influence weighting. Fourth, our

model identifies 4 counteractinд windows (shown in blue), which

are pushing the AE’s output towards zero, but by a small margin.

Fig. 3 captures 3 of these 4 windows (i.e., 12, 14, 17), whose signals

deviate both from the baseline (i.e., 13, 16, 17 and 18-29) and from

the contributinд windows. Such counteractinд windows could not

be identified by using the reconstruction loss and are extremely

useful for a domain expert to understand whether the patient’s

activity during those windows could potentially reduce the risk

of epileptic seizures. Based on Fig. 3, it is clear that our approach

indeed focuses on the windows that show abnormal brain activ-

ity (contributinд) and those that exhibit an increased, but normal

activity (counteractinд) to derive explanations.

Finally, we compute the SHAP values for all 178 windows across

all detected anomalies and identify the overall contributinд and

counteractinд windows (Table 2). There are 24 contributinд and 9
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Figure 2: Contributinд and counteractinд signals identified via computed SHAP values for the seizure anomaly in Fig. 1.

Figure 3: EEG signal in windows 12 to 31 compared for the seizure anomaly in Fig. 1 and a noseizure sample.

counteractinд signals. Their contributions to either push the model

output to higher (max. is 1.42) or lower values (min. is 0.09) are

shown in gradient reds and blues, respectively.

Contr.

30 161 162 125 107 156 124 31 68

157 168 106 151 29 44 67 45 126

155 177 178 108

Countr. 12 20 27 128 135 64 40 146

Table 2: Overall contributinд and counteractinд windows
across all seizure anomalies.

4.2 Performance anomaly detection use case
Due to the high-dimensionality in the KPI space (798 metrics), the

complexity of the storage environment and the value of d , the num-

ber of poorly reconstructed KPIs explaining 85% of Lr for a sample

varies from 20 to 95. For a domain expert, inspecting 95 different

KPIs is extremely tedious. By applying our approach, we are able

to reduce the contributinд KPIs by 30-50%. For instance, in the case

of a storage environment with 4 ports and 32 nodes, computing the

SHAP values indicates that the 12 contributinд KPIs to the detected
performance anomaly are read cache hits, write cache hits, write-

cache delay, write I/O rate, read I/O rate, cache-to-disk transfer

rate, peak read response time, read response time, read transfer

size, write transfer size, write data rate and read data rate, in that

order. At the same time, disk and CPU utilization, as well as port

to local node send queue time are identified as counteractinд KPIs.

This suggests that the example anomaly points to an I/O perfor-

mance problem in the environment, rather than intensive loads on

the disks or node CPUs. Finally, being able to reduce the volume

of contributinд KPIs allows domain experts to validate anomalies

faster and reduces their inspection time into the anomalies them-

selves. Even more so, with the help of additive explanations, such as

the ones generated by our approach, it is possible to further narrow

down the profile of a performance anomaly, which should speed

up problem resolution times.

5 CONCLUSIONS
In this paper, we have shown how to extend Kernel SHAP to provide

additive explanations for anomalies detected via an unsupervised

GRU-based AE from high-dimensional multivariate temporal data.

Specifically, we use influence weighting to generate informative

neighbourhoods of samples used to compute SHAP values per

each signal of a time series sample. Then, we generate lists of

contributinд and counteractinд signals for individual or multiple

(even all) anomalies. We evaluate our approach on two use cases

and show that we can provide both local and global explanations

in space or time, that can be used by domain experts to validate

anomalies and gain useful insights into how anomalous events are

triggered or counteracted.
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