llvm-for-llvmta/tools/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp

3480 lines
127 KiB
C++

//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a variety of memory management related checkers, such as
// leak, double free, and use-after-free.
//
// The following checkers are defined here:
//
// * MallocChecker
// Despite its name, it models all sorts of memory allocations and
// de- or reallocation, including but not limited to malloc, free,
// relloc, new, delete. It also reports on a variety of memory misuse
// errors.
// Many other checkers interact very closely with this checker, in fact,
// most are merely options to this one. Other checkers may register
// MallocChecker, but do not enable MallocChecker's reports (more details
// to follow around its field, ChecksEnabled).
// It also has a boolean "Optimistic" checker option, which if set to true
// will cause the checker to model user defined memory management related
// functions annotated via the attribute ownership_takes, ownership_holds
// and ownership_returns.
//
// * NewDeleteChecker
// Enables the modeling of new, new[], delete, delete[] in MallocChecker,
// and checks for related double-free and use-after-free errors.
//
// * NewDeleteLeaksChecker
// Checks for leaks related to new, new[], delete, delete[].
// Depends on NewDeleteChecker.
//
// * MismatchedDeallocatorChecker
// Enables checking whether memory is deallocated with the correspending
// allocation function in MallocChecker, such as malloc() allocated
// regions are only freed by free(), new by delete, new[] by delete[].
//
// InnerPointerChecker interacts very closely with MallocChecker, but unlike
// the above checkers, it has it's own file, hence the many InnerPointerChecker
// related headers and non-static functions.
//
//===----------------------------------------------------------------------===//
#include "AllocationState.h"
#include "InterCheckerAPI.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ParentMap.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Lexer.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <climits>
#include <functional>
#include <utility>
using namespace clang;
using namespace ento;
using namespace std::placeholders;
//===----------------------------------------------------------------------===//
// The types of allocation we're modeling. This is used to check whether a
// dynamically allocated object is deallocated with the correct function, like
// not using operator delete on an object created by malloc(), or alloca regions
// aren't ever deallocated manually.
//===----------------------------------------------------------------------===//
namespace {
// Used to check correspondence between allocators and deallocators.
enum AllocationFamily {
AF_None,
AF_Malloc,
AF_CXXNew,
AF_CXXNewArray,
AF_IfNameIndex,
AF_Alloca,
AF_InnerBuffer
};
} // end of anonymous namespace
/// Print names of allocators and deallocators.
///
/// \returns true on success.
static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E);
/// Print expected name of an allocator based on the deallocator's family
/// derived from the DeallocExpr.
static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family);
/// Print expected name of a deallocator based on the allocator's
/// family.
static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family);
//===----------------------------------------------------------------------===//
// The state of a symbol, in terms of memory management.
//===----------------------------------------------------------------------===//
namespace {
class RefState {
enum Kind {
// Reference to allocated memory.
Allocated,
// Reference to zero-allocated memory.
AllocatedOfSizeZero,
// Reference to released/freed memory.
Released,
// The responsibility for freeing resources has transferred from
// this reference. A relinquished symbol should not be freed.
Relinquished,
// We are no longer guaranteed to have observed all manipulations
// of this pointer/memory. For example, it could have been
// passed as a parameter to an opaque function.
Escaped
};
const Stmt *S;
Kind K;
AllocationFamily Family;
RefState(Kind k, const Stmt *s, AllocationFamily family)
: S(s), K(k), Family(family) {
assert(family != AF_None);
}
public:
bool isAllocated() const { return K == Allocated; }
bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
bool isReleased() const { return K == Released; }
bool isRelinquished() const { return K == Relinquished; }
bool isEscaped() const { return K == Escaped; }
AllocationFamily getAllocationFamily() const { return Family; }
const Stmt *getStmt() const { return S; }
bool operator==(const RefState &X) const {
return K == X.K && S == X.S && Family == X.Family;
}
static RefState getAllocated(AllocationFamily family, const Stmt *s) {
return RefState(Allocated, s, family);
}
static RefState getAllocatedOfSizeZero(const RefState *RS) {
return RefState(AllocatedOfSizeZero, RS->getStmt(),
RS->getAllocationFamily());
}
static RefState getReleased(AllocationFamily family, const Stmt *s) {
return RefState(Released, s, family);
}
static RefState getRelinquished(AllocationFamily family, const Stmt *s) {
return RefState(Relinquished, s, family);
}
static RefState getEscaped(const RefState *RS) {
return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(K);
ID.AddPointer(S);
ID.AddInteger(Family);
}
LLVM_DUMP_METHOD void dump(raw_ostream &OS) const {
switch (K) {
#define CASE(ID) case ID: OS << #ID; break;
CASE(Allocated)
CASE(AllocatedOfSizeZero)
CASE(Released)
CASE(Relinquished)
CASE(Escaped)
}
}
LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
};
} // end of anonymous namespace
REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
/// Check if the memory associated with this symbol was released.
static bool isReleased(SymbolRef Sym, CheckerContext &C);
/// Update the RefState to reflect the new memory allocation.
/// The optional \p RetVal parameter specifies the newly allocated pointer
/// value; if unspecified, the value of expression \p E is used.
static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
ProgramStateRef State,
AllocationFamily Family,
Optional<SVal> RetVal = None);
//===----------------------------------------------------------------------===//
// The modeling of memory reallocation.
//
// The terminology 'toPtr' and 'fromPtr' will be used:
// toPtr = realloc(fromPtr, 20);
//===----------------------------------------------------------------------===//
REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef)
namespace {
/// The state of 'fromPtr' after reallocation is known to have failed.
enum OwnershipAfterReallocKind {
// The symbol needs to be freed (e.g.: realloc)
OAR_ToBeFreedAfterFailure,
// The symbol has been freed (e.g.: reallocf)
OAR_FreeOnFailure,
// The symbol doesn't have to freed (e.g.: we aren't sure if, how and where
// 'fromPtr' was allocated:
// void Haha(int *ptr) {
// ptr = realloc(ptr, 67);
// // ...
// }
// ).
OAR_DoNotTrackAfterFailure
};
/// Stores information about the 'fromPtr' symbol after reallocation.
///
/// This is important because realloc may fail, and that needs special modeling.
/// Whether reallocation failed or not will not be known until later, so we'll
/// store whether upon failure 'fromPtr' will be freed, or needs to be freed
/// later, etc.
struct ReallocPair {
// The 'fromPtr'.
SymbolRef ReallocatedSym;
OwnershipAfterReallocKind Kind;
ReallocPair(SymbolRef S, OwnershipAfterReallocKind K)
: ReallocatedSym(S), Kind(K) {}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(Kind);
ID.AddPointer(ReallocatedSym);
}
bool operator==(const ReallocPair &X) const {
return ReallocatedSym == X.ReallocatedSym &&
Kind == X.Kind;
}
};
} // end of anonymous namespace
REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
/// Tells if the callee is one of the builtin new/delete operators, including
/// placement operators and other standard overloads.
static bool isStandardNewDelete(const FunctionDecl *FD);
static bool isStandardNewDelete(const CallEvent &Call) {
if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl()))
return false;
return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl()));
}
//===----------------------------------------------------------------------===//
// Definition of the MallocChecker class.
//===----------------------------------------------------------------------===//
namespace {
class MallocChecker
: public Checker<check::DeadSymbols, check::PointerEscape,
check::ConstPointerEscape, check::PreStmt<ReturnStmt>,
check::EndFunction, check::PreCall, check::PostCall,
check::NewAllocator, check::PostStmt<BlockExpr>,
check::PostObjCMessage, check::Location, eval::Assume> {
public:
/// In pessimistic mode, the checker assumes that it does not know which
/// functions might free the memory.
/// In optimistic mode, the checker assumes that all user-defined functions
/// which might free a pointer are annotated.
DefaultBool ShouldIncludeOwnershipAnnotatedFunctions;
/// Many checkers are essentially built into this one, so enabling them will
/// make MallocChecker perform additional modeling and reporting.
enum CheckKind {
/// When a subchecker is enabled but MallocChecker isn't, model memory
/// management but do not emit warnings emitted with MallocChecker only
/// enabled.
CK_MallocChecker,
CK_NewDeleteChecker,
CK_NewDeleteLeaksChecker,
CK_MismatchedDeallocatorChecker,
CK_InnerPointerChecker,
CK_NumCheckKinds
};
using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>;
DefaultBool ChecksEnabled[CK_NumCheckKinds];
CheckerNameRef CheckNames[CK_NumCheckKinds];
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const;
void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const;
ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
bool Assumption) const;
void checkLocation(SVal l, bool isLoad, const Stmt *S,
CheckerContext &C) const;
ProgramStateRef checkPointerEscape(ProgramStateRef State,
const InvalidatedSymbols &Escaped,
const CallEvent *Call,
PointerEscapeKind Kind) const;
ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
const InvalidatedSymbols &Escaped,
const CallEvent *Call,
PointerEscapeKind Kind) const;
void printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep) const override;
private:
mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
mutable std::unique_ptr<BugType> BT_DoubleDelete;
mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
#define CHECK_FN(NAME) \
void NAME(const CallEvent &Call, CheckerContext &C) const;
CHECK_FN(checkFree)
CHECK_FN(checkIfNameIndex)
CHECK_FN(checkBasicAlloc)
CHECK_FN(checkKernelMalloc)
CHECK_FN(checkCalloc)
CHECK_FN(checkAlloca)
CHECK_FN(checkStrdup)
CHECK_FN(checkIfFreeNameIndex)
CHECK_FN(checkCXXNewOrCXXDelete)
CHECK_FN(checkGMalloc0)
CHECK_FN(checkGMemdup)
CHECK_FN(checkGMallocN)
CHECK_FN(checkGMallocN0)
CHECK_FN(checkReallocN)
CHECK_FN(checkOwnershipAttr)
void checkRealloc(const CallEvent &Call, CheckerContext &C,
bool ShouldFreeOnFail) const;
using CheckFn = std::function<void(const MallocChecker *,
const CallEvent &Call, CheckerContext &C)>;
const CallDescriptionMap<CheckFn> FreeingMemFnMap{
{{"free", 1}, &MallocChecker::checkFree},
{{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex},
{{"kfree", 1}, &MallocChecker::checkFree},
{{"g_free", 1}, &MallocChecker::checkFree},
};
bool isFreeingCall(const CallEvent &Call) const;
CallDescriptionMap<CheckFn> AllocatingMemFnMap{
{{"alloca", 1}, &MallocChecker::checkAlloca},
{{"_alloca", 1}, &MallocChecker::checkAlloca},
{{"malloc", 1}, &MallocChecker::checkBasicAlloc},
{{"malloc", 3}, &MallocChecker::checkKernelMalloc},
{{"calloc", 2}, &MallocChecker::checkCalloc},
{{"valloc", 1}, &MallocChecker::checkBasicAlloc},
{{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup},
{{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup},
{{"_strdup", 1}, &MallocChecker::checkStrdup},
{{"kmalloc", 2}, &MallocChecker::checkKernelMalloc},
{{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex},
{{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup},
{{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup},
{{"g_malloc", 1}, &MallocChecker::checkBasicAlloc},
{{"g_malloc0", 1}, &MallocChecker::checkGMalloc0},
{{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc},
{{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0},
{{"g_memdup", 2}, &MallocChecker::checkGMemdup},
{{"g_malloc_n", 2}, &MallocChecker::checkGMallocN},
{{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0},
{{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN},
{{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0},
};
CallDescriptionMap<CheckFn> ReallocatingMemFnMap{
{{"realloc", 2},
std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
{{"reallocf", 2},
std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)},
{{"g_realloc", 2},
std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
{{"g_try_realloc", 2},
std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
{{"g_realloc_n", 3}, &MallocChecker::checkReallocN},
{{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN},
};
bool isMemCall(const CallEvent &Call) const;
// TODO: Remove mutable by moving the initializtaion to the registry function.
mutable Optional<uint64_t> KernelZeroFlagVal;
using KernelZeroSizePtrValueTy = Optional<int>;
/// Store the value of macro called `ZERO_SIZE_PTR`.
/// The value is initialized at first use, before first use the outer
/// Optional is empty, afterwards it contains another Optional that indicates
/// if the macro value could be determined, and if yes the value itself.
mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue;
/// Process C++ operator new()'s allocation, which is the part of C++
/// new-expression that goes before the constructor.
LLVM_NODISCARD
ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call,
CheckerContext &C,
AllocationFamily Family) const;
/// Perform a zero-allocation check.
///
/// \param [in] Call The expression that allocates memory.
/// \param [in] IndexOfSizeArg Index of the argument that specifies the size
/// of the memory that needs to be allocated. E.g. for malloc, this would be
/// 0.
/// \param [in] RetVal Specifies the newly allocated pointer value;
/// if unspecified, the value of expression \p E is used.
LLVM_NODISCARD
static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call,
const unsigned IndexOfSizeArg,
ProgramStateRef State,
Optional<SVal> RetVal = None);
/// Model functions with the ownership_returns attribute.
///
/// User-defined function may have the ownership_returns attribute, which
/// annotates that the function returns with an object that was allocated on
/// the heap, and passes the ownertship to the callee.
///
/// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t);
///
/// It has two parameters:
/// - first: name of the resource (e.g. 'malloc')
/// - (OPTIONAL) second: size of the allocated region
///
/// \param [in] Call The expression that allocates memory.
/// \param [in] Att The ownership_returns attribute.
/// \param [in] State The \c ProgramState right before allocation.
/// \returns The ProgramState right after allocation.
LLVM_NODISCARD
ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call,
const OwnershipAttr *Att,
ProgramStateRef State) const;
/// Models memory allocation.
///
/// \param [in] Call The expression that allocates memory.
/// \param [in] SizeEx Size of the memory that needs to be allocated.
/// \param [in] Init The value the allocated memory needs to be initialized.
/// with. For example, \c calloc initializes the allocated memory to 0,
/// malloc leaves it undefined.
/// \param [in] State The \c ProgramState right before allocation.
/// \returns The ProgramState right after allocation.
LLVM_NODISCARD
static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call,
const Expr *SizeEx, SVal Init,
ProgramStateRef State,
AllocationFamily Family);
/// Models memory allocation.
///
/// \param [in] Call The expression that allocates memory.
/// \param [in] Size Size of the memory that needs to be allocated.
/// \param [in] Init The value the allocated memory needs to be initialized.
/// with. For example, \c calloc initializes the allocated memory to 0,
/// malloc leaves it undefined.
/// \param [in] State The \c ProgramState right before allocation.
/// \returns The ProgramState right after allocation.
LLVM_NODISCARD
static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call,
SVal Size, SVal Init,
ProgramStateRef State,
AllocationFamily Family);
LLVM_NODISCARD
static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE,
ProgramStateRef State, SVal Target);
// Check if this malloc() for special flags. At present that means M_ZERO or
// __GFP_ZERO (in which case, treat it like calloc).
LLVM_NODISCARD
llvm::Optional<ProgramStateRef>
performKernelMalloc(const CallEvent &Call, CheckerContext &C,
const ProgramStateRef &State) const;
/// Model functions with the ownership_takes and ownership_holds attributes.
///
/// User-defined function may have the ownership_takes and/or ownership_holds
/// attributes, which annotates that the function frees the memory passed as a
/// parameter.
///
/// void __attribute((ownership_takes(malloc, 1))) my_free(void *);
/// void __attribute((ownership_holds(malloc, 1))) my_hold(void *);
///
/// They have two parameters:
/// - first: name of the resource (e.g. 'malloc')
/// - second: index of the parameter the attribute applies to
///
/// \param [in] Call The expression that frees memory.
/// \param [in] Att The ownership_takes or ownership_holds attribute.
/// \param [in] State The \c ProgramState right before allocation.
/// \returns The ProgramState right after deallocation.
LLVM_NODISCARD
ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call,
const OwnershipAttr *Att,
ProgramStateRef State) const;
/// Models memory deallocation.
///
/// \param [in] Call The expression that frees memory.
/// \param [in] State The \c ProgramState right before allocation.
/// \param [in] Num Index of the argument that needs to be freed. This is
/// normally 0, but for custom free functions it may be different.
/// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
/// attribute.
/// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
/// to have been allocated, or in other words, the symbol to be freed was
/// registered as allocated by this checker. In the following case, \c ptr
/// isn't known to be allocated.
/// void Haha(int *ptr) {
/// ptr = realloc(ptr, 67);
/// // ...
/// }
/// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
/// we're modeling returns with Null on failure.
/// \returns The ProgramState right after deallocation.
LLVM_NODISCARD
ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call,
ProgramStateRef State, unsigned Num, bool Hold,
bool &IsKnownToBeAllocated,
AllocationFamily Family,
bool ReturnsNullOnFailure = false) const;
/// Models memory deallocation.
///
/// \param [in] ArgExpr The variable who's pointee needs to be freed.
/// \param [in] Call The expression that frees the memory.
/// \param [in] State The \c ProgramState right before allocation.
/// normally 0, but for custom free functions it may be different.
/// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
/// attribute.
/// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
/// to have been allocated, or in other words, the symbol to be freed was
/// registered as allocated by this checker. In the following case, \c ptr
/// isn't known to be allocated.
/// void Haha(int *ptr) {
/// ptr = realloc(ptr, 67);
/// // ...
/// }
/// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
/// we're modeling returns with Null on failure.
/// \returns The ProgramState right after deallocation.
LLVM_NODISCARD
ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr,
const CallEvent &Call, ProgramStateRef State,
bool Hold, bool &IsKnownToBeAllocated,
AllocationFamily Family,
bool ReturnsNullOnFailure = false) const;
// TODO: Needs some refactoring, as all other deallocation modeling
// functions are suffering from out parameters and messy code due to how
// realloc is handled.
//
/// Models memory reallocation.
///
/// \param [in] Call The expression that reallocated memory
/// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied
/// memory should be freed.
/// \param [in] State The \c ProgramState right before reallocation.
/// \param [in] SuffixWithN Whether the reallocation function we're modeling
/// has an '_n' suffix, such as g_realloc_n.
/// \returns The ProgramState right after reallocation.
LLVM_NODISCARD
ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call,
bool ShouldFreeOnFail, ProgramStateRef State,
AllocationFamily Family,
bool SuffixWithN = false) const;
/// Evaluates the buffer size that needs to be allocated.
///
/// \param [in] Blocks The amount of blocks that needs to be allocated.
/// \param [in] BlockBytes The size of a block.
/// \returns The symbolic value of \p Blocks * \p BlockBytes.
LLVM_NODISCARD
static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
const Expr *BlockBytes);
/// Models zero initialized array allocation.
///
/// \param [in] Call The expression that reallocated memory
/// \param [in] State The \c ProgramState right before reallocation.
/// \returns The ProgramState right after allocation.
LLVM_NODISCARD
static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call,
ProgramStateRef State);
/// See if deallocation happens in a suspicious context. If so, escape the
/// pointers that otherwise would have been deallocated and return true.
bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call,
CheckerContext &C) const;
/// If in \p S \p Sym is used, check whether \p Sym was already freed.
bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
/// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero
/// sized memory region.
void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
const Stmt *S) const;
/// If in \p S \p Sym is being freed, check whether \p Sym was already freed.
bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
/// Check if the function is known to free memory, or if it is
/// "interesting" and should be modeled explicitly.
///
/// \param [out] EscapingSymbol A function might not free memory in general,
/// but could be known to free a particular symbol. In this case, false is
/// returned and the single escaping symbol is returned through the out
/// parameter.
///
/// We assume that pointers do not escape through calls to system functions
/// not handled by this checker.
bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
ProgramStateRef State,
SymbolRef &EscapingSymbol) const;
/// Implementation of the checkPointerEscape callbacks.
LLVM_NODISCARD
ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
const InvalidatedSymbols &Escaped,
const CallEvent *Call,
PointerEscapeKind Kind,
bool IsConstPointerEscape) const;
// Implementation of the checkPreStmt and checkEndFunction callbacks.
void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const;
///@{
/// Tells if a given family/call/symbol is tracked by the current checker.
/// Sets CheckKind to the kind of the checker responsible for this
/// family/call/symbol.
Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
bool IsALeakCheck = false) const;
Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
bool IsALeakCheck = false) const;
///@}
static bool SummarizeValue(raw_ostream &os, SVal V);
static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range,
const Expr *DeallocExpr,
AllocationFamily Family) const;
void HandleFreeAlloca(CheckerContext &C, SVal ArgVal,
SourceRange Range) const;
void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range,
const Expr *DeallocExpr, const RefState *RS,
SymbolRef Sym, bool OwnershipTransferred) const;
void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
const Expr *DeallocExpr, AllocationFamily Family,
const Expr *AllocExpr = nullptr) const;
void HandleUseAfterFree(CheckerContext &C, SourceRange Range,
SymbolRef Sym) const;
void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
SymbolRef Sym, SymbolRef PrevSym) const;
void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range,
SymbolRef Sym) const;
void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
const Expr *FreeExpr,
AllocationFamily Family) const;
/// Find the location of the allocation for Sym on the path leading to the
/// exploded node N.
static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
CheckerContext &C);
void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
/// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`.
bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C,
SVal ArgVal) const;
};
//===----------------------------------------------------------------------===//
// Definition of MallocBugVisitor.
//===----------------------------------------------------------------------===//
/// The bug visitor which allows us to print extra diagnostics along the
/// BugReport path. For example, showing the allocation site of the leaked
/// region.
class MallocBugVisitor final : public BugReporterVisitor {
protected:
enum NotificationMode { Normal, ReallocationFailed };
// The allocated region symbol tracked by the main analysis.
SymbolRef Sym;
// The mode we are in, i.e. what kind of diagnostics will be emitted.
NotificationMode Mode;
// A symbol from when the primary region should have been reallocated.
SymbolRef FailedReallocSymbol;
// A C++ destructor stack frame in which memory was released. Used for
// miscellaneous false positive suppression.
const StackFrameContext *ReleaseDestructorLC;
bool IsLeak;
public:
MallocBugVisitor(SymbolRef S, bool isLeak = false)
: Sym(S), Mode(Normal), FailedReallocSymbol(nullptr),
ReleaseDestructorLC(nullptr), IsLeak(isLeak) {}
static void *getTag() {
static int Tag = 0;
return &Tag;
}
void Profile(llvm::FoldingSetNodeID &ID) const override {
ID.AddPointer(getTag());
ID.AddPointer(Sym);
}
/// Did not track -> allocated. Other state (released) -> allocated.
static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev,
const Stmt *Stmt) {
return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
(RSCurr &&
(RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
(!RSPrev ||
!(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
}
/// Did not track -> released. Other state (allocated) -> released.
/// The statement associated with the release might be missing.
static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev,
const Stmt *Stmt) {
bool IsReleased =
(RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased());
assert(!IsReleased ||
(Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) ||
(!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer));
return IsReleased;
}
/// Did not track -> relinquished. Other state (allocated) -> relinquished.
static inline bool isRelinquished(const RefState *RSCurr,
const RefState *RSPrev, const Stmt *Stmt) {
return (Stmt &&
(isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
isa<ObjCPropertyRefExpr>(Stmt)) &&
(RSCurr && RSCurr->isRelinquished()) &&
(!RSPrev || !RSPrev->isRelinquished()));
}
/// If the expression is not a call, and the state change is
/// released -> allocated, it must be the realloc return value
/// check. If we have to handle more cases here, it might be cleaner just
/// to track this extra bit in the state itself.
static inline bool hasReallocFailed(const RefState *RSCurr,
const RefState *RSPrev,
const Stmt *Stmt) {
return ((!Stmt || !isa<CallExpr>(Stmt)) &&
(RSCurr &&
(RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
(RSPrev &&
!(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
}
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) override;
PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC,
const ExplodedNode *EndPathNode,
PathSensitiveBugReport &BR) override {
if (!IsLeak)
return nullptr;
PathDiagnosticLocation L = BR.getLocation();
// Do not add the statement itself as a range in case of leak.
return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(),
false);
}
private:
class StackHintGeneratorForReallocationFailed
: public StackHintGeneratorForSymbol {
public:
StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
: StackHintGeneratorForSymbol(S, M) {}
std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override {
// Printed parameters start at 1, not 0.
++ArgIndex;
SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
<< " parameter failed";
return std::string(os.str());
}
std::string getMessageForReturn(const CallExpr *CallExpr) override {
return "Reallocation of returned value failed";
}
};
};
} // end anonymous namespace
// A map from the freed symbol to the symbol representing the return value of
// the free function.
REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
namespace {
class StopTrackingCallback final : public SymbolVisitor {
ProgramStateRef state;
public:
StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {}
ProgramStateRef getState() const { return state; }
bool VisitSymbol(SymbolRef sym) override {
state = state->remove<RegionState>(sym);
return true;
}
};
} // end anonymous namespace
static bool isStandardNewDelete(const FunctionDecl *FD) {
if (!FD)
return false;
OverloadedOperatorKind Kind = FD->getOverloadedOperator();
if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete &&
Kind != OO_Array_Delete)
return false;
// This is standard if and only if it's not defined in a user file.
SourceLocation L = FD->getLocation();
// If the header for operator delete is not included, it's still defined
// in an invalid source location. Check to make sure we don't crash.
return !L.isValid() ||
FD->getASTContext().getSourceManager().isInSystemHeader(L);
}
//===----------------------------------------------------------------------===//
// Methods of MallocChecker and MallocBugVisitor.
//===----------------------------------------------------------------------===//
bool MallocChecker::isFreeingCall(const CallEvent &Call) const {
if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call))
return true;
const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl());
if (Func && Func->hasAttrs()) {
for (const auto *I : Func->specific_attrs<OwnershipAttr>()) {
OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds)
return true;
}
}
return false;
}
bool MallocChecker::isMemCall(const CallEvent &Call) const {
if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) ||
ReallocatingMemFnMap.lookup(Call))
return true;
if (!ShouldIncludeOwnershipAnnotatedFunctions)
return false;
const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl());
return Func && Func->hasAttr<OwnershipAttr>();
}
llvm::Optional<ProgramStateRef>
MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C,
const ProgramStateRef &State) const {
// 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
//
// void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
//
// One of the possible flags is M_ZERO, which means 'give me back an
// allocation which is already zeroed', like calloc.
// 2-argument kmalloc(), as used in the Linux kernel:
//
// void *kmalloc(size_t size, gfp_t flags);
//
// Has the similar flag value __GFP_ZERO.
// This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
// code could be shared.
ASTContext &Ctx = C.getASTContext();
llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
if (!KernelZeroFlagVal.hasValue()) {
if (OS == llvm::Triple::FreeBSD)
KernelZeroFlagVal = 0x0100;
else if (OS == llvm::Triple::NetBSD)
KernelZeroFlagVal = 0x0002;
else if (OS == llvm::Triple::OpenBSD)
KernelZeroFlagVal = 0x0008;
else if (OS == llvm::Triple::Linux)
// __GFP_ZERO
KernelZeroFlagVal = 0x8000;
else
// FIXME: We need a more general way of getting the M_ZERO value.
// See also: O_CREAT in UnixAPIChecker.cpp.
// Fall back to normal malloc behavior on platforms where we don't
// know M_ZERO.
return None;
}
// We treat the last argument as the flags argument, and callers fall-back to
// normal malloc on a None return. This works for the FreeBSD kernel malloc
// as well as Linux kmalloc.
if (Call.getNumArgs() < 2)
return None;
const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1);
const SVal V = C.getSVal(FlagsEx);
if (!V.getAs<NonLoc>()) {
// The case where 'V' can be a location can only be due to a bad header,
// so in this case bail out.
return None;
}
NonLoc Flags = V.castAs<NonLoc>();
NonLoc ZeroFlag = C.getSValBuilder()
.makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
.castAs<NonLoc>();
SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
Flags, ZeroFlag,
FlagsEx->getType());
if (MaskedFlagsUC.isUnknownOrUndef())
return None;
DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
// Check if maskedFlags is non-zero.
ProgramStateRef TrueState, FalseState;
std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
// If M_ZERO is set, treat this like calloc (initialized).
if (TrueState && !FalseState) {
SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState,
AF_Malloc);
}
return None;
}
SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
const Expr *BlockBytes) {
SValBuilder &SB = C.getSValBuilder();
SVal BlocksVal = C.getSVal(Blocks);
SVal BlockBytesVal = C.getSVal(BlockBytes);
ProgramStateRef State = C.getState();
SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal,
SB.getContext().getSizeType());
return TotalSize;
}
void MallocChecker::checkBasicAlloc(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
AF_Malloc);
State = ProcessZeroAllocCheck(Call, 0, State);
C.addTransition(State);
}
void MallocChecker::checkKernelMalloc(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
llvm::Optional<ProgramStateRef> MaybeState =
performKernelMalloc(Call, C, State);
if (MaybeState.hasValue())
State = MaybeState.getValue();
else
State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
AF_Malloc);
C.addTransition(State);
}
static bool isStandardRealloc(const CallEvent &Call) {
const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl());
assert(FD);
ASTContext &AC = FD->getASTContext();
if (isa<CXXMethodDecl>(FD))
return false;
return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy &&
FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy &&
FD->getParamDecl(1)->getType().getDesugaredType(AC) ==
AC.getSizeType();
}
static bool isGRealloc(const CallEvent &Call) {
const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl());
assert(FD);
ASTContext &AC = FD->getASTContext();
if (isa<CXXMethodDecl>(FD))
return false;
return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy &&
FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy &&
FD->getParamDecl(1)->getType().getDesugaredType(AC) ==
AC.UnsignedLongTy;
}
void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C,
bool ShouldFreeOnFail) const {
// HACK: CallDescription currently recognizes non-standard realloc functions
// as standard because it doesn't check the type, or wether its a non-method
// function. This should be solved by making CallDescription smarter.
// Mind that this came from a bug report, and all other functions suffer from
// this.
// https://bugs.llvm.org/show_bug.cgi?id=46253
if (!isStandardRealloc(Call) && !isGRealloc(Call))
return;
ProgramStateRef State = C.getState();
State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc);
State = ProcessZeroAllocCheck(Call, 1, State);
C.addTransition(State);
}
void MallocChecker::checkCalloc(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
State = CallocMem(C, Call, State);
State = ProcessZeroAllocCheck(Call, 0, State);
State = ProcessZeroAllocCheck(Call, 1, State);
C.addTransition(State);
}
void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const {
ProgramStateRef State = C.getState();
bool IsKnownToBeAllocatedMemory = false;
if (suppressDeallocationsInSuspiciousContexts(Call, C))
return;
State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
AF_Malloc);
C.addTransition(State);
}
void MallocChecker::checkAlloca(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
AF_Alloca);
State = ProcessZeroAllocCheck(Call, 0, State);
C.addTransition(State);
}
void MallocChecker::checkStrdup(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
if (!CE)
return;
State = MallocUpdateRefState(C, CE, State, AF_Malloc);
C.addTransition(State);
}
void MallocChecker::checkIfNameIndex(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
// Should we model this differently? We can allocate a fixed number of
// elements with zeros in the last one.
State =
MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex);
C.addTransition(State);
}
void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
bool IsKnownToBeAllocatedMemory = false;
State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
AF_IfNameIndex);
C.addTransition(State);
}
void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
bool IsKnownToBeAllocatedMemory = false;
const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
if (!CE)
return;
assert(isStandardNewDelete(Call));
// Process direct calls to operator new/new[]/delete/delete[] functions
// as distinct from new/new[]/delete/delete[] expressions that are
// processed by the checkPostStmt callbacks for CXXNewExpr and
// CXXDeleteExpr.
const FunctionDecl *FD = C.getCalleeDecl(CE);
switch (FD->getOverloadedOperator()) {
case OO_New:
State =
MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew);
State = ProcessZeroAllocCheck(Call, 0, State);
break;
case OO_Array_New:
State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State,
AF_CXXNewArray);
State = ProcessZeroAllocCheck(Call, 0, State);
break;
case OO_Delete:
State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
AF_CXXNew);
break;
case OO_Array_Delete:
State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
AF_CXXNewArray);
break;
default:
llvm_unreachable("not a new/delete operator");
}
C.addTransition(State);
}
void MallocChecker::checkGMalloc0(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
SValBuilder &svalBuilder = C.getSValBuilder();
SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc);
State = ProcessZeroAllocCheck(Call, 0, State);
C.addTransition(State);
}
void MallocChecker::checkGMemdup(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
State = MallocMemAux(C, Call, Call.getArgExpr(1), UndefinedVal(), State,
AF_Malloc);
State = ProcessZeroAllocCheck(Call, 1, State);
C.addTransition(State);
}
void MallocChecker::checkGMallocN(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
SVal Init = UndefinedVal();
SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc);
State = ProcessZeroAllocCheck(Call, 0, State);
State = ProcessZeroAllocCheck(Call, 1, State);
C.addTransition(State);
}
void MallocChecker::checkGMallocN0(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
SValBuilder &SB = C.getSValBuilder();
SVal Init = SB.makeZeroVal(SB.getContext().CharTy);
SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc);
State = ProcessZeroAllocCheck(Call, 0, State);
State = ProcessZeroAllocCheck(Call, 1, State);
C.addTransition(State);
}
void MallocChecker::checkReallocN(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc,
/*SuffixWithN=*/true);
State = ProcessZeroAllocCheck(Call, 1, State);
State = ProcessZeroAllocCheck(Call, 2, State);
C.addTransition(State);
}
void MallocChecker::checkOwnershipAttr(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
if (!CE)
return;
const FunctionDecl *FD = C.getCalleeDecl(CE);
if (!FD)
return;
if (ShouldIncludeOwnershipAnnotatedFunctions ||
ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
// Check all the attributes, if there are any.
// There can be multiple of these attributes.
if (FD->hasAttrs())
for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
switch (I->getOwnKind()) {
case OwnershipAttr::Returns:
State = MallocMemReturnsAttr(C, Call, I, State);
break;
case OwnershipAttr::Takes:
case OwnershipAttr::Holds:
State = FreeMemAttr(C, Call, I, State);
break;
}
}
}
C.addTransition(State);
}
void MallocChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
if (C.wasInlined)
return;
if (!Call.getOriginExpr())
return;
ProgramStateRef State = C.getState();
if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) {
(*Callback)(this, Call, C);
return;
}
if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) {
(*Callback)(this, Call, C);
return;
}
if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) {
(*Callback)(this, Call, C);
return;
}
if (isStandardNewDelete(Call)) {
checkCXXNewOrCXXDelete(Call, C);
return;
}
checkOwnershipAttr(Call, C);
}
// Performs a 0-sized allocations check.
ProgramStateRef MallocChecker::ProcessZeroAllocCheck(
const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State,
Optional<SVal> RetVal) {
if (!State)
return nullptr;
if (!RetVal)
RetVal = Call.getReturnValue();
const Expr *Arg = nullptr;
if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) {
Arg = CE->getArg(IndexOfSizeArg);
} else if (const CXXNewExpr *NE =
dyn_cast<CXXNewExpr>(Call.getOriginExpr())) {
if (NE->isArray()) {
Arg = *NE->getArraySize();
} else {
return State;
}
} else
llvm_unreachable("not a CallExpr or CXXNewExpr");
assert(Arg);
auto DefArgVal =
State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>();
if (!DefArgVal)
return State;
// Check if the allocation size is 0.
ProgramStateRef TrueState, FalseState;
SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder();
DefinedSVal Zero =
SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
std::tie(TrueState, FalseState) =
State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
if (TrueState && !FalseState) {
SymbolRef Sym = RetVal->getAsLocSymbol();
if (!Sym)
return State;
const RefState *RS = State->get<RegionState>(Sym);
if (RS) {
if (RS->isAllocated())
return TrueState->set<RegionState>(Sym,
RefState::getAllocatedOfSizeZero(RS));
else
return State;
} else {
// Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as
// 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not
// tracked. Add zero-reallocated Sym to the state to catch references
// to zero-allocated memory.
return TrueState->add<ReallocSizeZeroSymbols>(Sym);
}
}
// Assume the value is non-zero going forward.
assert(FalseState);
return FalseState;
}
static QualType getDeepPointeeType(QualType T) {
QualType Result = T, PointeeType = T->getPointeeType();
while (!PointeeType.isNull()) {
Result = PointeeType;
PointeeType = PointeeType->getPointeeType();
}
return Result;
}
/// \returns true if the constructor invoked by \p NE has an argument of a
/// pointer/reference to a record type.
static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) {
const CXXConstructExpr *ConstructE = NE->getConstructExpr();
if (!ConstructE)
return false;
if (!NE->getAllocatedType()->getAsCXXRecordDecl())
return false;
const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
// Iterate over the constructor parameters.
for (const auto *CtorParam : CtorD->parameters()) {
QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
if (CtorParamPointeeT.isNull())
continue;
CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
if (CtorParamPointeeT->getAsCXXRecordDecl())
return true;
}
return false;
}
ProgramStateRef
MallocChecker::processNewAllocation(const CXXAllocatorCall &Call,
CheckerContext &C,
AllocationFamily Family) const {
if (!isStandardNewDelete(Call))
return nullptr;
const CXXNewExpr *NE = Call.getOriginExpr();
const ParentMap &PM = C.getLocationContext()->getParentMap();
ProgramStateRef State = C.getState();
// Non-trivial constructors have a chance to escape 'this', but marking all
// invocations of trivial constructors as escaped would cause too great of
// reduction of true positives, so let's just do that for constructors that
// have an argument of a pointer-to-record type.
if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE))
return State;
// The return value from operator new is bound to a specified initialization
// value (if any) and we don't want to loose this value. So we call
// MallocUpdateRefState() instead of MallocMemAux() which breaks the
// existing binding.
SVal Target = Call.getObjectUnderConstruction();
State = MallocUpdateRefState(C, NE, State, Family, Target);
State = addExtentSize(C, NE, State, Target);
State = ProcessZeroAllocCheck(Call, 0, State, Target);
return State;
}
void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call,
CheckerContext &C) const {
if (!C.wasInlined) {
ProgramStateRef State = processNewAllocation(
Call, C,
(Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew));
C.addTransition(State);
}
}
// Sets the extent value of the MemRegion allocated by
// new expression NE to its size in Bytes.
//
ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C,
const CXXNewExpr *NE,
ProgramStateRef State,
SVal Target) {
if (!State)
return nullptr;
SValBuilder &svalBuilder = C.getSValBuilder();
SVal ElementCount;
const SubRegion *Region;
if (NE->isArray()) {
const Expr *SizeExpr = *NE->getArraySize();
ElementCount = C.getSVal(SizeExpr);
// Store the extent size for the (symbolic)region
// containing the elements.
Region = Target.getAsRegion()
->castAs<SubRegion>()
->StripCasts()
->castAs<SubRegion>();
} else {
ElementCount = svalBuilder.makeIntVal(1, true);
Region = Target.getAsRegion()->castAs<SubRegion>();
}
// Set the region's extent equal to the Size in Bytes.
QualType ElementType = NE->getAllocatedType();
ASTContext &AstContext = C.getASTContext();
CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType);
if (ElementCount.getAs<NonLoc>()) {
DefinedOrUnknownSVal DynSize = getDynamicSize(State, Region, svalBuilder);
// size in Bytes = ElementCount*TypeSize
SVal SizeInBytes = svalBuilder.evalBinOpNN(
State, BO_Mul, ElementCount.castAs<NonLoc>(),
svalBuilder.makeArrayIndex(TypeSize.getQuantity()),
svalBuilder.getArrayIndexType());
DefinedOrUnknownSVal DynSizeMatchesSize = svalBuilder.evalEQ(
State, DynSize, SizeInBytes.castAs<DefinedOrUnknownSVal>());
State = State->assume(DynSizeMatchesSize, true);
}
return State;
}
static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
// If the first selector piece is one of the names below, assume that the
// object takes ownership of the memory, promising to eventually deallocate it
// with free().
// Ex: [NSData dataWithBytesNoCopy:bytes length:10];
// (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
return FirstSlot == "dataWithBytesNoCopy" ||
FirstSlot == "initWithBytesNoCopy" ||
FirstSlot == "initWithCharactersNoCopy";
}
static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
Selector S = Call.getSelector();
// FIXME: We should not rely on fully-constrained symbols being folded.
for (unsigned i = 1; i < S.getNumArgs(); ++i)
if (S.getNameForSlot(i).equals("freeWhenDone"))
return !Call.getArgSVal(i).isZeroConstant();
return None;
}
void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
CheckerContext &C) const {
if (C.wasInlined)
return;
if (!isKnownDeallocObjCMethodName(Call))
return;
if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
if (!*FreeWhenDone)
return;
if (Call.hasNonZeroCallbackArg())
return;
bool IsKnownToBeAllocatedMemory;
ProgramStateRef State =
FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(),
/*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc,
/*RetNullOnFailure=*/true);
C.addTransition(State);
}
ProgramStateRef
MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call,
const OwnershipAttr *Att,
ProgramStateRef State) const {
if (!State)
return nullptr;
if (Att->getModule()->getName() != "malloc")
return nullptr;
OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
if (I != E) {
return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()),
UndefinedVal(), State, AF_Malloc);
}
return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc);
}
ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
const CallEvent &Call,
const Expr *SizeEx, SVal Init,
ProgramStateRef State,
AllocationFamily Family) {
if (!State)
return nullptr;
assert(SizeEx);
return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family);
}
ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
const CallEvent &Call, SVal Size,
SVal Init, ProgramStateRef State,
AllocationFamily Family) {
if (!State)
return nullptr;
const Expr *CE = Call.getOriginExpr();
// We expect the malloc functions to return a pointer.
if (!Loc::isLocType(CE->getType()))
return nullptr;
// Bind the return value to the symbolic value from the heap region.
// TODO: We could rewrite post visit to eval call; 'malloc' does not have
// side effects other than what we model here.
unsigned Count = C.blockCount();
SValBuilder &svalBuilder = C.getSValBuilder();
const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
.castAs<DefinedSVal>();
State = State->BindExpr(CE, C.getLocationContext(), RetVal);
// Fill the region with the initialization value.
State = State->bindDefaultInitial(RetVal, Init, LCtx);
// Set the region's extent equal to the Size parameter.
const SymbolicRegion *R =
dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
if (!R)
return nullptr;
if (Optional<DefinedOrUnknownSVal> DefinedSize =
Size.getAs<DefinedOrUnknownSVal>()) {
DefinedOrUnknownSVal DynSize = getDynamicSize(State, R, svalBuilder);
DefinedOrUnknownSVal DynSizeMatchesSize =
svalBuilder.evalEQ(State, DynSize, *DefinedSize);
State = State->assume(DynSizeMatchesSize, true);
assert(State);
}
return MallocUpdateRefState(C, CE, State, Family);
}
static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
ProgramStateRef State,
AllocationFamily Family,
Optional<SVal> RetVal) {
if (!State)
return nullptr;
// Get the return value.
if (!RetVal)
RetVal = C.getSVal(E);
// We expect the malloc functions to return a pointer.
if (!RetVal->getAs<Loc>())
return nullptr;
SymbolRef Sym = RetVal->getAsLocSymbol();
// This is a return value of a function that was not inlined, such as malloc()
// or new(). We've checked that in the caller. Therefore, it must be a symbol.
assert(Sym);
// Set the symbol's state to Allocated.
return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
}
ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
const CallEvent &Call,
const OwnershipAttr *Att,
ProgramStateRef State) const {
if (!State)
return nullptr;
if (Att->getModule()->getName() != "malloc")
return nullptr;
bool IsKnownToBeAllocated = false;
for (const auto &Arg : Att->args()) {
ProgramStateRef StateI =
FreeMemAux(C, Call, State, Arg.getASTIndex(),
Att->getOwnKind() == OwnershipAttr::Holds,
IsKnownToBeAllocated, AF_Malloc);
if (StateI)
State = StateI;
}
return State;
}
ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
const CallEvent &Call,
ProgramStateRef State, unsigned Num,
bool Hold, bool &IsKnownToBeAllocated,
AllocationFamily Family,
bool ReturnsNullOnFailure) const {
if (!State)
return nullptr;
if (Call.getNumArgs() < (Num + 1))
return nullptr;
return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold,
IsKnownToBeAllocated, Family, ReturnsNullOnFailure);
}
/// Checks if the previous call to free on the given symbol failed - if free
/// failed, returns true. Also, returns the corresponding return value symbol.
static bool didPreviousFreeFail(ProgramStateRef State,
SymbolRef Sym, SymbolRef &RetStatusSymbol) {
const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
if (Ret) {
assert(*Ret && "We should not store the null return symbol");
ConstraintManager &CMgr = State->getConstraintManager();
ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
RetStatusSymbol = *Ret;
return FreeFailed.isConstrainedTrue();
}
return false;
}
static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) {
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
// FIXME: This doesn't handle indirect calls.
const FunctionDecl *FD = CE->getDirectCallee();
if (!FD)
return false;
os << *FD;
if (!FD->isOverloadedOperator())
os << "()";
return true;
}
if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
if (Msg->isInstanceMessage())
os << "-";
else
os << "+";
Msg->getSelector().print(os);
return true;
}
if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
os << "'"
<< getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
<< "'";
return true;
}
if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
os << "'"
<< getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
<< "'";
return true;
}
return false;
}
static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) {
switch(Family) {
case AF_Malloc: os << "malloc()"; return;
case AF_CXXNew: os << "'new'"; return;
case AF_CXXNewArray: os << "'new[]'"; return;
case AF_IfNameIndex: os << "'if_nameindex()'"; return;
case AF_InnerBuffer: os << "container-specific allocator"; return;
case AF_Alloca:
case AF_None: llvm_unreachable("not a deallocation expression");
}
}
static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) {
switch(Family) {
case AF_Malloc: os << "free()"; return;
case AF_CXXNew: os << "'delete'"; return;
case AF_CXXNewArray: os << "'delete[]'"; return;
case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
case AF_InnerBuffer: os << "container-specific deallocator"; return;
case AF_Alloca:
case AF_None: llvm_unreachable("suspicious argument");
}
}
ProgramStateRef MallocChecker::FreeMemAux(
CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call,
ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated,
AllocationFamily Family, bool ReturnsNullOnFailure) const {
if (!State)
return nullptr;
SVal ArgVal = C.getSVal(ArgExpr);
if (!ArgVal.getAs<DefinedOrUnknownSVal>())
return nullptr;
DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
// Check for null dereferences.
if (!location.getAs<Loc>())
return nullptr;
// The explicit NULL case, no operation is performed.
ProgramStateRef notNullState, nullState;
std::tie(notNullState, nullState) = State->assume(location);
if (nullState && !notNullState)
return nullptr;
// Unknown values could easily be okay
// Undefined values are handled elsewhere
if (ArgVal.isUnknownOrUndef())
return nullptr;
const MemRegion *R = ArgVal.getAsRegion();
const Expr *ParentExpr = Call.getOriginExpr();
// NOTE: We detected a bug, but the checker under whose name we would emit the
// error could be disabled. Generally speaking, the MallocChecker family is an
// integral part of the Static Analyzer, and disabling any part of it should
// only be done under exceptional circumstances, such as frequent false
// positives. If this is the case, we can reasonably believe that there are
// serious faults in our understanding of the source code, and even if we
// don't emit an warning, we should terminate further analysis with a sink
// node.
// Nonlocs can't be freed, of course.
// Non-region locations (labels and fixed addresses) also shouldn't be freed.
if (!R) {
// Exception:
// If the macro ZERO_SIZE_PTR is defined, this could be a kernel source
// code. In that case, the ZERO_SIZE_PTR defines a special value used for a
// zero-sized memory block which is allowed to be freed, despite not being a
// null pointer.
if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal))
HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
Family);
return nullptr;
}
R = R->StripCasts();
// Blocks might show up as heap data, but should not be free()d
if (isa<BlockDataRegion>(R)) {
HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
Family);
return nullptr;
}
const MemSpaceRegion *MS = R->getMemorySpace();
// Parameters, locals, statics, globals, and memory returned by
// __builtin_alloca() shouldn't be freed.
if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
// FIXME: at the time this code was written, malloc() regions were
// represented by conjured symbols, which are all in UnknownSpaceRegion.
// This means that there isn't actually anything from HeapSpaceRegion
// that should be freed, even though we allow it here.
// Of course, free() can work on memory allocated outside the current
// function, so UnknownSpaceRegion is always a possibility.
// False negatives are better than false positives.
if (isa<AllocaRegion>(R))
HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
else
HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
Family);
return nullptr;
}
const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
// Various cases could lead to non-symbol values here.
// For now, ignore them.
if (!SrBase)
return nullptr;
SymbolRef SymBase = SrBase->getSymbol();
const RefState *RsBase = State->get<RegionState>(SymBase);
SymbolRef PreviousRetStatusSymbol = nullptr;
IsKnownToBeAllocated =
RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero());
if (RsBase) {
// Memory returned by alloca() shouldn't be freed.
if (RsBase->getAllocationFamily() == AF_Alloca) {
HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
return nullptr;
}
// Check for double free first.
if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
!didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
SymBase, PreviousRetStatusSymbol);
return nullptr;
// If the pointer is allocated or escaped, but we are now trying to free it,
// check that the call to free is proper.
} else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
RsBase->isEscaped()) {
// Check if an expected deallocation function matches the real one.
bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family;
if (!DeallocMatchesAlloc) {
HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr,
RsBase, SymBase, Hold);
return nullptr;
}
// Check if the memory location being freed is the actual location
// allocated, or an offset.
RegionOffset Offset = R->getAsOffset();
if (Offset.isValid() &&
!Offset.hasSymbolicOffset() &&
Offset.getOffset() != 0) {
const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
Family, AllocExpr);
return nullptr;
}
}
}
if (SymBase->getType()->isFunctionPointerType()) {
HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
Family);
return nullptr;
}
// Clean out the info on previous call to free return info.
State = State->remove<FreeReturnValue>(SymBase);
// Keep track of the return value. If it is NULL, we will know that free
// failed.
if (ReturnsNullOnFailure) {
SVal RetVal = C.getSVal(ParentExpr);
SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
if (RetStatusSymbol) {
C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
}
}
// If we don't know anything about this symbol, a free on it may be totally
// valid. If this is the case, lets assume that the allocation family of the
// freeing function is the same as the symbols allocation family, and go with
// that.
assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family));
// Normal free.
if (Hold)
return State->set<RegionState>(SymBase,
RefState::getRelinquished(Family,
ParentExpr));
return State->set<RegionState>(SymBase,
RefState::getReleased(Family, ParentExpr));
}
Optional<MallocChecker::CheckKind>
MallocChecker::getCheckIfTracked(AllocationFamily Family,
bool IsALeakCheck) const {
switch (Family) {
case AF_Malloc:
case AF_Alloca:
case AF_IfNameIndex: {
if (ChecksEnabled[CK_MallocChecker])
return CK_MallocChecker;
return None;
}
case AF_CXXNew:
case AF_CXXNewArray: {
if (IsALeakCheck) {
if (ChecksEnabled[CK_NewDeleteLeaksChecker])
return CK_NewDeleteLeaksChecker;
}
else {
if (ChecksEnabled[CK_NewDeleteChecker])
return CK_NewDeleteChecker;
}
return None;
}
case AF_InnerBuffer: {
if (ChecksEnabled[CK_InnerPointerChecker])
return CK_InnerPointerChecker;
return None;
}
case AF_None: {
llvm_unreachable("no family");
}
}
llvm_unreachable("unhandled family");
}
Optional<MallocChecker::CheckKind>
MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
bool IsALeakCheck) const {
if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym))
return CK_MallocChecker;
const RefState *RS = C.getState()->get<RegionState>(Sym);
assert(RS);
return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
}
bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
os << "an integer (" << IntVal->getValue() << ")";
else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
os << "a constant address (" << ConstAddr->getValue() << ")";
else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
os << "the address of the label '" << Label->getLabel()->getName() << "'";
else
return false;
return true;
}
bool MallocChecker::SummarizeRegion(raw_ostream &os,
const MemRegion *MR) {
switch (MR->getKind()) {
case MemRegion::FunctionCodeRegionKind: {
const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
if (FD)
os << "the address of the function '" << *FD << '\'';
else
os << "the address of a function";
return true;
}
case MemRegion::BlockCodeRegionKind:
os << "block text";
return true;
case MemRegion::BlockDataRegionKind:
// FIXME: where the block came from?
os << "a block";
return true;
default: {
const MemSpaceRegion *MS = MR->getMemorySpace();
if (isa<StackLocalsSpaceRegion>(MS)) {
const VarRegion *VR = dyn_cast<VarRegion>(MR);
const VarDecl *VD;
if (VR)
VD = VR->getDecl();
else
VD = nullptr;
if (VD)
os << "the address of the local variable '" << VD->getName() << "'";
else
os << "the address of a local stack variable";
return true;
}
if (isa<StackArgumentsSpaceRegion>(MS)) {
const VarRegion *VR = dyn_cast<VarRegion>(MR);
const VarDecl *VD;
if (VR)
VD = VR->getDecl();
else
VD = nullptr;
if (VD)
os << "the address of the parameter '" << VD->getName() << "'";
else
os << "the address of a parameter";
return true;
}
if (isa<GlobalsSpaceRegion>(MS)) {
const VarRegion *VR = dyn_cast<VarRegion>(MR);
const VarDecl *VD;
if (VR)
VD = VR->getDecl();
else
VD = nullptr;
if (VD) {
if (VD->isStaticLocal())
os << "the address of the static variable '" << VD->getName() << "'";
else
os << "the address of the global variable '" << VD->getName() << "'";
} else
os << "the address of a global variable";
return true;
}
return false;
}
}
}
void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal,
SourceRange Range,
const Expr *DeallocExpr,
AllocationFamily Family) const {
if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
C.addSink();
return;
}
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
if (!CheckKind.hasValue())
return;
if (ExplodedNode *N = C.generateErrorNode()) {
if (!BT_BadFree[*CheckKind])
BT_BadFree[*CheckKind].reset(new BugType(
CheckNames[*CheckKind], "Bad free", categories::MemoryError));
SmallString<100> buf;
llvm::raw_svector_ostream os(buf);
const MemRegion *MR = ArgVal.getAsRegion();
while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
MR = ER->getSuperRegion();
os << "Argument to ";
if (!printMemFnName(os, C, DeallocExpr))
os << "deallocator";
os << " is ";
bool Summarized = MR ? SummarizeRegion(os, MR)
: SummarizeValue(os, ArgVal);
if (Summarized)
os << ", which is not memory allocated by ";
else
os << "not memory allocated by ";
printExpectedAllocName(os, Family);
auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
os.str(), N);
R->markInteresting(MR);
R->addRange(Range);
C.emitReport(std::move(R));
}
}
void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal,
SourceRange Range) const {
Optional<MallocChecker::CheckKind> CheckKind;
if (ChecksEnabled[CK_MallocChecker])
CheckKind = CK_MallocChecker;
else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
CheckKind = CK_MismatchedDeallocatorChecker;
else {
C.addSink();
return;
}
if (ExplodedNode *N = C.generateErrorNode()) {
if (!BT_FreeAlloca[*CheckKind])
BT_FreeAlloca[*CheckKind].reset(new BugType(
CheckNames[*CheckKind], "Free alloca()", categories::MemoryError));
auto R = std::make_unique<PathSensitiveBugReport>(
*BT_FreeAlloca[*CheckKind],
"Memory allocated by alloca() should not be deallocated", N);
R->markInteresting(ArgVal.getAsRegion());
R->addRange(Range);
C.emitReport(std::move(R));
}
}
void MallocChecker::HandleMismatchedDealloc(CheckerContext &C,
SourceRange Range,
const Expr *DeallocExpr,
const RefState *RS, SymbolRef Sym,
bool OwnershipTransferred) const {
if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
C.addSink();
return;
}
if (ExplodedNode *N = C.generateErrorNode()) {
if (!BT_MismatchedDealloc)
BT_MismatchedDealloc.reset(
new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
"Bad deallocator", categories::MemoryError));
SmallString<100> buf;
llvm::raw_svector_ostream os(buf);
const Expr *AllocExpr = cast<Expr>(RS->getStmt());
SmallString<20> AllocBuf;
llvm::raw_svector_ostream AllocOs(AllocBuf);
SmallString<20> DeallocBuf;
llvm::raw_svector_ostream DeallocOs(DeallocBuf);
if (OwnershipTransferred) {
if (printMemFnName(DeallocOs, C, DeallocExpr))
os << DeallocOs.str() << " cannot";
else
os << "Cannot";
os << " take ownership of memory";
if (printMemFnName(AllocOs, C, AllocExpr))
os << " allocated by " << AllocOs.str();
} else {
os << "Memory";
if (printMemFnName(AllocOs, C, AllocExpr))
os << " allocated by " << AllocOs.str();
os << " should be deallocated by ";
printExpectedDeallocName(os, RS->getAllocationFamily());
if (printMemFnName(DeallocOs, C, DeallocExpr))
os << ", not " << DeallocOs.str();
}
auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc,
os.str(), N);
R->markInteresting(Sym);
R->addRange(Range);
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
C.emitReport(std::move(R));
}
}
void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal,
SourceRange Range, const Expr *DeallocExpr,
AllocationFamily Family,
const Expr *AllocExpr) const {
if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
C.addSink();
return;
}
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
if (!CheckKind.hasValue())
return;
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
if (!BT_OffsetFree[*CheckKind])
BT_OffsetFree[*CheckKind].reset(new BugType(
CheckNames[*CheckKind], "Offset free", categories::MemoryError));
SmallString<100> buf;
llvm::raw_svector_ostream os(buf);
SmallString<20> AllocNameBuf;
llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
const MemRegion *MR = ArgVal.getAsRegion();
assert(MR && "Only MemRegion based symbols can have offset free errors");
RegionOffset Offset = MR->getAsOffset();
assert((Offset.isValid() &&
!Offset.hasSymbolicOffset() &&
Offset.getOffset() != 0) &&
"Only symbols with a valid offset can have offset free errors");
int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
os << "Argument to ";
if (!printMemFnName(os, C, DeallocExpr))
os << "deallocator";
os << " is offset by "
<< offsetBytes
<< " "
<< ((abs(offsetBytes) > 1) ? "bytes" : "byte")
<< " from the start of ";
if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr))
os << "memory allocated by " << AllocNameOs.str();
else
os << "allocated memory";
auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind],
os.str(), N);
R->markInteresting(MR->getBaseRegion());
R->addRange(Range);
C.emitReport(std::move(R));
}
void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range,
SymbolRef Sym) const {
if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] &&
!ChecksEnabled[CK_InnerPointerChecker]) {
C.addSink();
return;
}
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
if (!CheckKind.hasValue())
return;
if (ExplodedNode *N = C.generateErrorNode()) {
if (!BT_UseFree[*CheckKind])
BT_UseFree[*CheckKind].reset(new BugType(
CheckNames[*CheckKind], "Use-after-free", categories::MemoryError));
AllocationFamily AF =
C.getState()->get<RegionState>(Sym)->getAllocationFamily();
auto R = std::make_unique<PathSensitiveBugReport>(
*BT_UseFree[*CheckKind],
AF == AF_InnerBuffer
? "Inner pointer of container used after re/deallocation"
: "Use of memory after it is freed",
N);
R->markInteresting(Sym);
R->addRange(Range);
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
if (AF == AF_InnerBuffer)
R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym));
C.emitReport(std::move(R));
}
}
void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range,
bool Released, SymbolRef Sym,
SymbolRef PrevSym) const {
if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
C.addSink();
return;
}
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
if (!CheckKind.hasValue())
return;
if (ExplodedNode *N = C.generateErrorNode()) {
if (!BT_DoubleFree[*CheckKind])
BT_DoubleFree[*CheckKind].reset(new BugType(
CheckNames[*CheckKind], "Double free", categories::MemoryError));
auto R = std::make_unique<PathSensitiveBugReport>(
*BT_DoubleFree[*CheckKind],
(Released ? "Attempt to free released memory"
: "Attempt to free non-owned memory"),
N);
R->addRange(Range);
R->markInteresting(Sym);
if (PrevSym)
R->markInteresting(PrevSym);
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
C.emitReport(std::move(R));
}
}
void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
if (!ChecksEnabled[CK_NewDeleteChecker]) {
C.addSink();
return;
}
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
if (!CheckKind.hasValue())
return;
if (ExplodedNode *N = C.generateErrorNode()) {
if (!BT_DoubleDelete)
BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
"Double delete",
categories::MemoryError));
auto R = std::make_unique<PathSensitiveBugReport>(
*BT_DoubleDelete, "Attempt to delete released memory", N);
R->markInteresting(Sym);
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
C.emitReport(std::move(R));
}
}
void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range,
SymbolRef Sym) const {
if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
C.addSink();
return;
}
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
if (!CheckKind.hasValue())
return;
if (ExplodedNode *N = C.generateErrorNode()) {
if (!BT_UseZerroAllocated[*CheckKind])
BT_UseZerroAllocated[*CheckKind].reset(
new BugType(CheckNames[*CheckKind], "Use of zero allocated",
categories::MemoryError));
auto R = std::make_unique<PathSensitiveBugReport>(
*BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N);
R->addRange(Range);
if (Sym) {
R->markInteresting(Sym);
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
}
C.emitReport(std::move(R));
}
}
void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal,
SourceRange Range,
const Expr *FreeExpr,
AllocationFamily Family) const {
if (!ChecksEnabled[CK_MallocChecker]) {
C.addSink();
return;
}
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
if (!CheckKind.hasValue())
return;
if (ExplodedNode *N = C.generateErrorNode()) {
if (!BT_BadFree[*CheckKind])
BT_BadFree[*CheckKind].reset(new BugType(
CheckNames[*CheckKind], "Bad free", categories::MemoryError));
SmallString<100> Buf;
llvm::raw_svector_ostream Os(Buf);
const MemRegion *MR = ArgVal.getAsRegion();
while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
MR = ER->getSuperRegion();
Os << "Argument to ";
if (!printMemFnName(Os, C, FreeExpr))
Os << "deallocator";
Os << " is a function pointer";
auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
Os.str(), N);
R->markInteresting(MR);
R->addRange(Range);
C.emitReport(std::move(R));
}
}
ProgramStateRef
MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call,
bool ShouldFreeOnFail, ProgramStateRef State,
AllocationFamily Family, bool SuffixWithN) const {
if (!State)
return nullptr;
const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr());
if (SuffixWithN && CE->getNumArgs() < 3)
return nullptr;
else if (CE->getNumArgs() < 2)
return nullptr;
const Expr *arg0Expr = CE->getArg(0);
SVal Arg0Val = C.getSVal(arg0Expr);
if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
return nullptr;
DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
SValBuilder &svalBuilder = C.getSValBuilder();
DefinedOrUnknownSVal PtrEQ =
svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());
// Get the size argument.
const Expr *Arg1 = CE->getArg(1);
// Get the value of the size argument.
SVal TotalSize = C.getSVal(Arg1);
if (SuffixWithN)
TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2));
if (!TotalSize.getAs<DefinedOrUnknownSVal>())
return nullptr;
// Compare the size argument to 0.
DefinedOrUnknownSVal SizeZero =
svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(),
svalBuilder.makeIntValWithPtrWidth(0, false));
ProgramStateRef StatePtrIsNull, StatePtrNotNull;
std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
ProgramStateRef StateSizeIsZero, StateSizeNotZero;
std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
// We only assume exceptional states if they are definitely true; if the
// state is under-constrained, assume regular realloc behavior.
bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
// If the ptr is NULL and the size is not 0, the call is equivalent to
// malloc(size).
if (PrtIsNull && !SizeIsZero) {
ProgramStateRef stateMalloc = MallocMemAux(
C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family);
return stateMalloc;
}
if (PrtIsNull && SizeIsZero)
return State;
assert(!PrtIsNull);
bool IsKnownToBeAllocated = false;
// If the size is 0, free the memory.
if (SizeIsZero)
// The semantics of the return value are:
// If size was equal to 0, either NULL or a pointer suitable to be passed
// to free() is returned. We just free the input pointer and do not add
// any constrains on the output pointer.
if (ProgramStateRef stateFree = FreeMemAux(
C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family))
return stateFree;
// Default behavior.
if (ProgramStateRef stateFree =
FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) {
ProgramStateRef stateRealloc =
MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family);
if (!stateRealloc)
return nullptr;
OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure;
if (ShouldFreeOnFail)
Kind = OAR_FreeOnFailure;
else if (!IsKnownToBeAllocated)
Kind = OAR_DoNotTrackAfterFailure;
// Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
SymbolRef FromPtr = arg0Val.getLocSymbolInBase();
SVal RetVal = C.getSVal(CE);
SymbolRef ToPtr = RetVal.getAsSymbol();
assert(FromPtr && ToPtr &&
"By this point, FreeMemAux and MallocMemAux should have checked "
"whether the argument or the return value is symbolic!");
// Record the info about the reallocated symbol so that we could properly
// process failed reallocation.
stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
ReallocPair(FromPtr, Kind));
// The reallocated symbol should stay alive for as long as the new symbol.
C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
return stateRealloc;
}
return nullptr;
}
ProgramStateRef MallocChecker::CallocMem(CheckerContext &C,
const CallEvent &Call,
ProgramStateRef State) {
if (!State)
return nullptr;
if (Call.getNumArgs() < 2)
return nullptr;
SValBuilder &svalBuilder = C.getSValBuilder();
SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
SVal TotalSize =
evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc);
}
MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N,
SymbolRef Sym,
CheckerContext &C) {
const LocationContext *LeakContext = N->getLocationContext();
// Walk the ExplodedGraph backwards and find the first node that referred to
// the tracked symbol.
const ExplodedNode *AllocNode = N;
const MemRegion *ReferenceRegion = nullptr;
while (N) {
ProgramStateRef State = N->getState();
if (!State->get<RegionState>(Sym))
break;
// Find the most recent expression bound to the symbol in the current
// context.
if (!ReferenceRegion) {
if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
SVal Val = State->getSVal(MR);
if (Val.getAsLocSymbol() == Sym) {
const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>();
// Do not show local variables belonging to a function other than
// where the error is reported.
if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame()))
ReferenceRegion = MR;
}
}
}
// Allocation node, is the last node in the current or parent context in
// which the symbol was tracked.
const LocationContext *NContext = N->getLocationContext();
if (NContext == LeakContext ||
NContext->isParentOf(LeakContext))
AllocNode = N;
N = N->pred_empty() ? nullptr : *(N->pred_begin());
}
return LeakInfo(AllocNode, ReferenceRegion);
}
void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N,
CheckerContext &C) const {
if (!ChecksEnabled[CK_MallocChecker] &&
!ChecksEnabled[CK_NewDeleteLeaksChecker])
return;
const RefState *RS = C.getState()->get<RegionState>(Sym);
assert(RS && "cannot leak an untracked symbol");
AllocationFamily Family = RS->getAllocationFamily();
if (Family == AF_Alloca)
return;
Optional<MallocChecker::CheckKind>
CheckKind = getCheckIfTracked(Family, true);
if (!CheckKind.hasValue())
return;
assert(N);
if (!BT_Leak[*CheckKind]) {
// Leaks should not be reported if they are post-dominated by a sink:
// (1) Sinks are higher importance bugs.
// (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
// with __noreturn functions such as assert() or exit(). We choose not
// to report leaks on such paths.
BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak",
categories::MemoryError,
/*SuppressOnSink=*/true));
}
// Most bug reports are cached at the location where they occurred.
// With leaks, we want to unique them by the location where they were
// allocated, and only report a single path.
PathDiagnosticLocation LocUsedForUniqueing;
const ExplodedNode *AllocNode = nullptr;
const MemRegion *Region = nullptr;
std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics();
if (AllocationStmt)
LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
C.getSourceManager(),
AllocNode->getLocationContext());
SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
if (Region && Region->canPrintPretty()) {
os << "Potential leak of memory pointed to by ";
Region->printPretty(os);
} else {
os << "Potential memory leak";
}
auto R = std::make_unique<PathSensitiveBugReport>(
*BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
AllocNode->getLocationContext()->getDecl());
R->markInteresting(Sym);
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true));
C.emitReport(std::move(R));
}
void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
CheckerContext &C) const
{
ProgramStateRef state = C.getState();
RegionStateTy OldRS = state->get<RegionState>();
RegionStateTy::Factory &F = state->get_context<RegionState>();
RegionStateTy RS = OldRS;
SmallVector<SymbolRef, 2> Errors;
for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
if (SymReaper.isDead(I->first)) {
if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
Errors.push_back(I->first);
// Remove the dead symbol from the map.
RS = F.remove(RS, I->first);
}
}
if (RS == OldRS) {
// We shouldn't have touched other maps yet.
assert(state->get<ReallocPairs>() ==
C.getState()->get<ReallocPairs>());
assert(state->get<FreeReturnValue>() ==
C.getState()->get<FreeReturnValue>());
return;
}
// Cleanup the Realloc Pairs Map.
ReallocPairsTy RP = state->get<ReallocPairs>();
for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
if (SymReaper.isDead(I->first) ||
SymReaper.isDead(I->second.ReallocatedSym)) {
state = state->remove<ReallocPairs>(I->first);
}
}
// Cleanup the FreeReturnValue Map.
FreeReturnValueTy FR = state->get<FreeReturnValue>();
for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
if (SymReaper.isDead(I->first) ||
SymReaper.isDead(I->second)) {
state = state->remove<FreeReturnValue>(I->first);
}
}
// Generate leak node.
ExplodedNode *N = C.getPredecessor();
if (!Errors.empty()) {
static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
N = C.generateNonFatalErrorNode(C.getState(), &Tag);
if (N) {
for (SmallVectorImpl<SymbolRef>::iterator
I = Errors.begin(), E = Errors.end(); I != E; ++I) {
HandleLeak(*I, N, C);
}
}
}
C.addTransition(state->set<RegionState>(RS), N);
}
void MallocChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) {
const CXXDeleteExpr *DE = DC->getOriginExpr();
if (!ChecksEnabled[CK_NewDeleteChecker])
if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
checkUseAfterFree(Sym, C, DE->getArgument());
if (!isStandardNewDelete(DC->getDecl()))
return;
ProgramStateRef State = C.getState();
bool IsKnownToBeAllocated;
State = FreeMemAux(C, DE->getArgument(), Call, State,
/*Hold*/ false, IsKnownToBeAllocated,
(DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew));
C.addTransition(State);
return;
}
if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) {
SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
if (!Sym || checkDoubleDelete(Sym, C))
return;
}
// We will check for double free in the post visit.
if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
const FunctionDecl *FD = FC->getDecl();
if (!FD)
return;
if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call))
return;
}
// Check if the callee of a method is deleted.
if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
return;
}
// Check arguments for being used after free.
for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
SVal ArgSVal = Call.getArgSVal(I);
if (ArgSVal.getAs<Loc>()) {
SymbolRef Sym = ArgSVal.getAsSymbol();
if (!Sym)
continue;
if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
return;
}
}
}
void MallocChecker::checkPreStmt(const ReturnStmt *S,
CheckerContext &C) const {
checkEscapeOnReturn(S, C);
}
// In the CFG, automatic destructors come after the return statement.
// This callback checks for returning memory that is freed by automatic
// destructors, as those cannot be reached in checkPreStmt().
void MallocChecker::checkEndFunction(const ReturnStmt *S,
CheckerContext &C) const {
checkEscapeOnReturn(S, C);
}
void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S,
CheckerContext &C) const {
if (!S)
return;
const Expr *E = S->getRetValue();
if (!E)
return;
// Check if we are returning a symbol.
ProgramStateRef State = C.getState();
SVal RetVal = C.getSVal(E);
SymbolRef Sym = RetVal.getAsSymbol();
if (!Sym)
// If we are returning a field of the allocated struct or an array element,
// the callee could still free the memory.
// TODO: This logic should be a part of generic symbol escape callback.
if (const MemRegion *MR = RetVal.getAsRegion())
if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
if (const SymbolicRegion *BMR =
dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
Sym = BMR->getSymbol();
// Check if we are returning freed memory.
if (Sym)
checkUseAfterFree(Sym, C, E);
}
// TODO: Blocks should be either inlined or should call invalidate regions
// upon invocation. After that's in place, special casing here will not be
// needed.
void MallocChecker::checkPostStmt(const BlockExpr *BE,
CheckerContext &C) const {
// Scan the BlockDecRefExprs for any object the retain count checker
// may be tracking.
if (!BE->getBlockDecl()->hasCaptures())
return;
ProgramStateRef state = C.getState();
const BlockDataRegion *R =
cast<BlockDataRegion>(C.getSVal(BE).getAsRegion());
BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
E = R->referenced_vars_end();
if (I == E)
return;
SmallVector<const MemRegion*, 10> Regions;
const LocationContext *LC = C.getLocationContext();
MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
for ( ; I != E; ++I) {
const VarRegion *VR = I.getCapturedRegion();
if (VR->getSuperRegion() == R) {
VR = MemMgr.getVarRegion(VR->getDecl(), LC);
}
Regions.push_back(VR);
}
state =
state->scanReachableSymbols<StopTrackingCallback>(Regions).getState();
C.addTransition(state);
}
static bool isReleased(SymbolRef Sym, CheckerContext &C) {
assert(Sym);
const RefState *RS = C.getState()->get<RegionState>(Sym);
return (RS && RS->isReleased());
}
bool MallocChecker::suppressDeallocationsInSuspiciousContexts(
const CallEvent &Call, CheckerContext &C) const {
if (Call.getNumArgs() == 0)
return false;
StringRef FunctionStr = "";
if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl()))
if (const Stmt *Body = FD->getBody())
if (Body->getBeginLoc().isValid())
FunctionStr =
Lexer::getSourceText(CharSourceRange::getTokenRange(
{FD->getBeginLoc(), Body->getBeginLoc()}),
C.getSourceManager(), C.getLangOpts());
// We do not model the Integer Set Library's retain-count based allocation.
if (!FunctionStr.contains("__isl_"))
return false;
ProgramStateRef State = C.getState();
for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments())
if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol())
if (const RefState *RS = State->get<RegionState>(Sym))
State = State->set<RegionState>(Sym, RefState::getEscaped(RS));
C.addTransition(State);
return true;
}
bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
const Stmt *S) const {
if (isReleased(Sym, C)) {
HandleUseAfterFree(C, S->getSourceRange(), Sym);
return true;
}
return false;
}
void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
const Stmt *S) const {
assert(Sym);
if (const RefState *RS = C.getState()->get<RegionState>(Sym)) {
if (RS->isAllocatedOfSizeZero())
HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym);
}
else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) {
HandleUseZeroAlloc(C, S->getSourceRange(), Sym);
}
}
bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
if (isReleased(Sym, C)) {
HandleDoubleDelete(C, Sym);
return true;
}
return false;
}
// Check if the location is a freed symbolic region.
void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
CheckerContext &C) const {
SymbolRef Sym = l.getLocSymbolInBase();
if (Sym) {
checkUseAfterFree(Sym, C, S);
checkUseZeroAllocated(Sym, C, S);
}
}
// If a symbolic region is assumed to NULL (or another constant), stop tracking
// it - assuming that allocation failed on this path.
ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
SVal Cond,
bool Assumption) const {
RegionStateTy RS = state->get<RegionState>();
for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
// If the symbol is assumed to be NULL, remove it from consideration.
ConstraintManager &CMgr = state->getConstraintManager();
ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
if (AllocFailed.isConstrainedTrue())
state = state->remove<RegionState>(I.getKey());
}
// Realloc returns 0 when reallocation fails, which means that we should
// restore the state of the pointer being reallocated.
ReallocPairsTy RP = state->get<ReallocPairs>();
for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
// If the symbol is assumed to be NULL, remove it from consideration.
ConstraintManager &CMgr = state->getConstraintManager();
ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
if (!AllocFailed.isConstrainedTrue())
continue;
SymbolRef ReallocSym = I.getData().ReallocatedSym;
if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
if (RS->isReleased()) {
switch (I.getData().Kind) {
case OAR_ToBeFreedAfterFailure:
state = state->set<RegionState>(ReallocSym,
RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
break;
case OAR_DoNotTrackAfterFailure:
state = state->remove<RegionState>(ReallocSym);
break;
default:
assert(I.getData().Kind == OAR_FreeOnFailure);
}
}
}
state = state->remove<ReallocPairs>(I.getKey());
}
return state;
}
bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
const CallEvent *Call,
ProgramStateRef State,
SymbolRef &EscapingSymbol) const {
assert(Call);
EscapingSymbol = nullptr;
// For now, assume that any C++ or block call can free memory.
// TODO: If we want to be more optimistic here, we'll need to make sure that
// regions escape to C++ containers. They seem to do that even now, but for
// mysterious reasons.
if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
return true;
// Check Objective-C messages by selector name.
if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
// If it's not a framework call, or if it takes a callback, assume it
// can free memory.
if (!Call->isInSystemHeader() || Call->argumentsMayEscape())
return true;
// If it's a method we know about, handle it explicitly post-call.
// This should happen before the "freeWhenDone" check below.
if (isKnownDeallocObjCMethodName(*Msg))
return false;
// If there's a "freeWhenDone" parameter, but the method isn't one we know
// about, we can't be sure that the object will use free() to deallocate the
// memory, so we can't model it explicitly. The best we can do is use it to
// decide whether the pointer escapes.
if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
return *FreeWhenDone;
// If the first selector piece ends with "NoCopy", and there is no
// "freeWhenDone" parameter set to zero, we know ownership is being
// transferred. Again, though, we can't be sure that the object will use
// free() to deallocate the memory, so we can't model it explicitly.
StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
if (FirstSlot.endswith("NoCopy"))
return true;
// If the first selector starts with addPointer, insertPointer,
// or replacePointer, assume we are dealing with NSPointerArray or similar.
// This is similar to C++ containers (vector); we still might want to check
// that the pointers get freed by following the container itself.
if (FirstSlot.startswith("addPointer") ||
FirstSlot.startswith("insertPointer") ||
FirstSlot.startswith("replacePointer") ||
FirstSlot.equals("valueWithPointer")) {
return true;
}
// We should escape receiver on call to 'init'. This is especially relevant
// to the receiver, as the corresponding symbol is usually not referenced
// after the call.
if (Msg->getMethodFamily() == OMF_init) {
EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
return true;
}
// Otherwise, assume that the method does not free memory.
// Most framework methods do not free memory.
return false;
}
// At this point the only thing left to handle is straight function calls.
const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
if (!FD)
return true;
// If it's one of the allocation functions we can reason about, we model
// its behavior explicitly.
if (isMemCall(*Call))
return false;
// If it's not a system call, assume it frees memory.
if (!Call->isInSystemHeader())
return true;
// White list the system functions whose arguments escape.
const IdentifierInfo *II = FD->getIdentifier();
if (!II)
return true;
StringRef FName = II->getName();
// White list the 'XXXNoCopy' CoreFoundation functions.
// We specifically check these before
if (FName.endswith("NoCopy")) {
// Look for the deallocator argument. We know that the memory ownership
// is not transferred only if the deallocator argument is
// 'kCFAllocatorNull'.
for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
StringRef DeallocatorName = DE->getFoundDecl()->getName();
if (DeallocatorName == "kCFAllocatorNull")
return false;
}
}
return true;
}
// Associating streams with malloced buffers. The pointer can escape if
// 'closefn' is specified (and if that function does free memory),
// but it will not if closefn is not specified.
// Currently, we do not inspect the 'closefn' function (PR12101).
if (FName == "funopen")
if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
return false;
// Do not warn on pointers passed to 'setbuf' when used with std streams,
// these leaks might be intentional when setting the buffer for stdio.
// http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
if (FName == "setbuf" || FName =="setbuffer" ||
FName == "setlinebuf" || FName == "setvbuf") {
if (Call->getNumArgs() >= 1) {
const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
return true;
}
}
// A bunch of other functions which either take ownership of a pointer or
// wrap the result up in a struct or object, meaning it can be freed later.
// (See RetainCountChecker.) Not all the parameters here are invalidated,
// but the Malloc checker cannot differentiate between them. The right way
// of doing this would be to implement a pointer escapes callback.
if (FName == "CGBitmapContextCreate" ||
FName == "CGBitmapContextCreateWithData" ||
FName == "CVPixelBufferCreateWithBytes" ||
FName == "CVPixelBufferCreateWithPlanarBytes" ||
FName == "OSAtomicEnqueue") {
return true;
}
if (FName == "postEvent" &&
FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
return true;
}
if (FName == "connectImpl" &&
FD->getQualifiedNameAsString() == "QObject::connectImpl") {
return true;
}
// Handle cases where we know a buffer's /address/ can escape.
// Note that the above checks handle some special cases where we know that
// even though the address escapes, it's still our responsibility to free the
// buffer.
if (Call->argumentsMayEscape())
return true;
// Otherwise, assume that the function does not free memory.
// Most system calls do not free the memory.
return false;
}
ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
const InvalidatedSymbols &Escaped,
const CallEvent *Call,
PointerEscapeKind Kind) const {
return checkPointerEscapeAux(State, Escaped, Call, Kind,
/*IsConstPointerEscape*/ false);
}
ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
const InvalidatedSymbols &Escaped,
const CallEvent *Call,
PointerEscapeKind Kind) const {
// If a const pointer escapes, it may not be freed(), but it could be deleted.
return checkPointerEscapeAux(State, Escaped, Call, Kind,
/*IsConstPointerEscape*/ true);
}
static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
return (RS->getAllocationFamily() == AF_CXXNewArray ||
RS->getAllocationFamily() == AF_CXXNew);
}
ProgramStateRef MallocChecker::checkPointerEscapeAux(
ProgramStateRef State, const InvalidatedSymbols &Escaped,
const CallEvent *Call, PointerEscapeKind Kind,
bool IsConstPointerEscape) const {
// If we know that the call does not free memory, or we want to process the
// call later, keep tracking the top level arguments.
SymbolRef EscapingSymbol = nullptr;
if (Kind == PSK_DirectEscapeOnCall &&
!mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
EscapingSymbol) &&
!EscapingSymbol) {
return State;
}
for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
E = Escaped.end();
I != E; ++I) {
SymbolRef sym = *I;
if (EscapingSymbol && EscapingSymbol != sym)
continue;
if (const RefState *RS = State->get<RegionState>(sym))
if (RS->isAllocated() || RS->isAllocatedOfSizeZero())
if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS))
State = State->set<RegionState>(sym, RefState::getEscaped(RS));
}
return State;
}
bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C,
SVal ArgVal) const {
if (!KernelZeroSizePtrValue)
KernelZeroSizePtrValue =
tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor());
const llvm::APSInt *ArgValKnown =
C.getSValBuilder().getKnownValue(State, ArgVal);
return ArgValKnown && *KernelZeroSizePtrValue &&
ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue;
}
static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
ProgramStateRef prevState) {
ReallocPairsTy currMap = currState->get<ReallocPairs>();
ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
for (const ReallocPairsTy::value_type &Pair : prevMap) {
SymbolRef sym = Pair.first;
if (!currMap.lookup(sym))
return sym;
}
return nullptr;
}
static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) {
if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) {
StringRef N = II->getName();
if (N.contains_lower("ptr") || N.contains_lower("pointer")) {
if (N.contains_lower("ref") || N.contains_lower("cnt") ||
N.contains_lower("intrusive") || N.contains_lower("shared")) {
return true;
}
}
}
return false;
}
PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N,
BugReporterContext &BRC,
PathSensitiveBugReport &BR) {
ProgramStateRef state = N->getState();
ProgramStateRef statePrev = N->getFirstPred()->getState();
const RefState *RSCurr = state->get<RegionState>(Sym);
const RefState *RSPrev = statePrev->get<RegionState>(Sym);
const Stmt *S = N->getStmtForDiagnostics();
// When dealing with containers, we sometimes want to give a note
// even if the statement is missing.
if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer))
return nullptr;
const LocationContext *CurrentLC = N->getLocationContext();
// If we find an atomic fetch_add or fetch_sub within the destructor in which
// the pointer was released (before the release), this is likely a destructor
// of a shared pointer.
// Because we don't model atomics, and also because we don't know that the
// original reference count is positive, we should not report use-after-frees
// on objects deleted in such destructors. This can probably be improved
// through better shared pointer modeling.
if (ReleaseDestructorLC) {
if (const auto *AE = dyn_cast<AtomicExpr>(S)) {
AtomicExpr::AtomicOp Op = AE->getOp();
if (Op == AtomicExpr::AO__c11_atomic_fetch_add ||
Op == AtomicExpr::AO__c11_atomic_fetch_sub) {
if (ReleaseDestructorLC == CurrentLC ||
ReleaseDestructorLC->isParentOf(CurrentLC)) {
BR.markInvalid(getTag(), S);
}
}
}
}
// FIXME: We will eventually need to handle non-statement-based events
// (__attribute__((cleanup))).
// Find out if this is an interesting point and what is the kind.
StringRef Msg;
std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr;
SmallString<256> Buf;
llvm::raw_svector_ostream OS(Buf);
if (Mode == Normal) {
if (isAllocated(RSCurr, RSPrev, S)) {
Msg = "Memory is allocated";
StackHint = std::make_unique<StackHintGeneratorForSymbol>(
Sym, "Returned allocated memory");
} else if (isReleased(RSCurr, RSPrev, S)) {
const auto Family = RSCurr->getAllocationFamily();
switch (Family) {
case AF_Alloca:
case AF_Malloc:
case AF_CXXNew:
case AF_CXXNewArray:
case AF_IfNameIndex:
Msg = "Memory is released";
StackHint = std::make_unique<StackHintGeneratorForSymbol>(
Sym, "Returning; memory was released");
break;
case AF_InnerBuffer: {
const MemRegion *ObjRegion =
allocation_state::getContainerObjRegion(statePrev, Sym);
const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion);
QualType ObjTy = TypedRegion->getValueType();
OS << "Inner buffer of '" << ObjTy.getAsString() << "' ";
if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) {
OS << "deallocated by call to destructor";
StackHint = std::make_unique<StackHintGeneratorForSymbol>(
Sym, "Returning; inner buffer was deallocated");
} else {
OS << "reallocated by call to '";
const Stmt *S = RSCurr->getStmt();
if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) {
OS << MemCallE->getMethodDecl()->getDeclName();
} else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) {
OS << OpCallE->getDirectCallee()->getDeclName();
} else if (const auto *CallE = dyn_cast<CallExpr>(S)) {
auto &CEMgr = BRC.getStateManager().getCallEventManager();
CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC);
if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()))
OS << D->getDeclName();
else
OS << "unknown";
}
OS << "'";
StackHint = std::make_unique<StackHintGeneratorForSymbol>(
Sym, "Returning; inner buffer was reallocated");
}
Msg = OS.str();
break;
}
case AF_None:
llvm_unreachable("Unhandled allocation family!");
}
// See if we're releasing memory while inlining a destructor
// (or one of its callees). This turns on various common
// false positive suppressions.
bool FoundAnyDestructor = false;
for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) {
if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) {
if (isReferenceCountingPointerDestructor(DD)) {
// This immediately looks like a reference-counting destructor.
// We're bad at guessing the original reference count of the object,
// so suppress the report for now.
BR.markInvalid(getTag(), DD);
} else if (!FoundAnyDestructor) {
assert(!ReleaseDestructorLC &&
"There can be only one release point!");
// Suspect that it's a reference counting pointer destructor.
// On one of the next nodes might find out that it has atomic
// reference counting operations within it (see the code above),
// and if so, we'd conclude that it likely is a reference counting
// pointer destructor.
ReleaseDestructorLC = LC->getStackFrame();
// It is unlikely that releasing memory is delegated to a destructor
// inside a destructor of a shared pointer, because it's fairly hard
// to pass the information that the pointer indeed needs to be
// released into it. So we're only interested in the innermost
// destructor.
FoundAnyDestructor = true;
}
}
}
} else if (isRelinquished(RSCurr, RSPrev, S)) {
Msg = "Memory ownership is transferred";
StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, "");
} else if (hasReallocFailed(RSCurr, RSPrev, S)) {
Mode = ReallocationFailed;
Msg = "Reallocation failed";
StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>(
Sym, "Reallocation failed");
if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
// Is it possible to fail two reallocs WITHOUT testing in between?
assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
"We only support one failed realloc at a time.");
BR.markInteresting(sym);
FailedReallocSymbol = sym;
}
}
// We are in a special mode if a reallocation failed later in the path.
} else if (Mode == ReallocationFailed) {
assert(FailedReallocSymbol && "No symbol to look for.");
// Is this is the first appearance of the reallocated symbol?
if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
// We're at the reallocation point.
Msg = "Attempt to reallocate memory";
StackHint = std::make_unique<StackHintGeneratorForSymbol>(
Sym, "Returned reallocated memory");
FailedReallocSymbol = nullptr;
Mode = Normal;
}
}
if (Msg.empty()) {
assert(!StackHint);
return nullptr;
}
assert(StackHint);
// Generate the extra diagnostic.
PathDiagnosticLocation Pos;
if (!S) {
assert(RSCurr->getAllocationFamily() == AF_InnerBuffer);
auto PostImplCall = N->getLocation().getAs<PostImplicitCall>();
if (!PostImplCall)
return nullptr;
Pos = PathDiagnosticLocation(PostImplCall->getLocation(),
BRC.getSourceManager());
} else {
Pos = PathDiagnosticLocation(S, BRC.getSourceManager(),
N->getLocationContext());
}
auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true);
BR.addCallStackHint(P, std::move(StackHint));
return P;
}
void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep) const {
RegionStateTy RS = State->get<RegionState>();
if (!RS.isEmpty()) {
Out << Sep << "MallocChecker :" << NL;
for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
const RefState *RefS = State->get<RegionState>(I.getKey());
AllocationFamily Family = RefS->getAllocationFamily();
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
if (!CheckKind.hasValue())
CheckKind = getCheckIfTracked(Family, true);
I.getKey()->dumpToStream(Out);
Out << " : ";
I.getData().dump(Out);
if (CheckKind.hasValue())
Out << " (" << CheckNames[*CheckKind].getName() << ")";
Out << NL;
}
}
}
namespace clang {
namespace ento {
namespace allocation_state {
ProgramStateRef
markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) {
AllocationFamily Family = AF_InnerBuffer;
return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin));
}
} // end namespace allocation_state
} // end namespace ento
} // end namespace clang
// Intended to be used in InnerPointerChecker to register the part of
// MallocChecker connected to it.
void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) {
MallocChecker *checker = mgr.getChecker<MallocChecker>();
checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true;
checker->CheckNames[MallocChecker::CK_InnerPointerChecker] =
mgr.getCurrentCheckerName();
}
void ento::registerDynamicMemoryModeling(CheckerManager &mgr) {
auto *checker = mgr.registerChecker<MallocChecker>();
checker->ShouldIncludeOwnershipAnnotatedFunctions =
mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic");
}
bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) {
return true;
}
#define REGISTER_CHECKER(name) \
void ento::register##name(CheckerManager &mgr) { \
MallocChecker *checker = mgr.getChecker<MallocChecker>(); \
checker->ChecksEnabled[MallocChecker::CK_##name] = true; \
checker->CheckNames[MallocChecker::CK_##name] = \
mgr.getCurrentCheckerName(); \
} \
\
bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
REGISTER_CHECKER(MallocChecker)
REGISTER_CHECKER(NewDeleteChecker)
REGISTER_CHECKER(NewDeleteLeaksChecker)
REGISTER_CHECKER(MismatchedDeallocatorChecker)