3480 lines
127 KiB
C++
3480 lines
127 KiB
C++
//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a variety of memory management related checkers, such as
|
|
// leak, double free, and use-after-free.
|
|
//
|
|
// The following checkers are defined here:
|
|
//
|
|
// * MallocChecker
|
|
// Despite its name, it models all sorts of memory allocations and
|
|
// de- or reallocation, including but not limited to malloc, free,
|
|
// relloc, new, delete. It also reports on a variety of memory misuse
|
|
// errors.
|
|
// Many other checkers interact very closely with this checker, in fact,
|
|
// most are merely options to this one. Other checkers may register
|
|
// MallocChecker, but do not enable MallocChecker's reports (more details
|
|
// to follow around its field, ChecksEnabled).
|
|
// It also has a boolean "Optimistic" checker option, which if set to true
|
|
// will cause the checker to model user defined memory management related
|
|
// functions annotated via the attribute ownership_takes, ownership_holds
|
|
// and ownership_returns.
|
|
//
|
|
// * NewDeleteChecker
|
|
// Enables the modeling of new, new[], delete, delete[] in MallocChecker,
|
|
// and checks for related double-free and use-after-free errors.
|
|
//
|
|
// * NewDeleteLeaksChecker
|
|
// Checks for leaks related to new, new[], delete, delete[].
|
|
// Depends on NewDeleteChecker.
|
|
//
|
|
// * MismatchedDeallocatorChecker
|
|
// Enables checking whether memory is deallocated with the correspending
|
|
// allocation function in MallocChecker, such as malloc() allocated
|
|
// regions are only freed by free(), new by delete, new[] by delete[].
|
|
//
|
|
// InnerPointerChecker interacts very closely with MallocChecker, but unlike
|
|
// the above checkers, it has it's own file, hence the many InnerPointerChecker
|
|
// related headers and non-static functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AllocationState.h"
|
|
#include "InterCheckerAPI.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/Lexer.h"
|
|
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <climits>
|
|
#include <functional>
|
|
#include <utility>
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
using namespace std::placeholders;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// The types of allocation we're modeling. This is used to check whether a
|
|
// dynamically allocated object is deallocated with the correct function, like
|
|
// not using operator delete on an object created by malloc(), or alloca regions
|
|
// aren't ever deallocated manually.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
// Used to check correspondence between allocators and deallocators.
|
|
enum AllocationFamily {
|
|
AF_None,
|
|
AF_Malloc,
|
|
AF_CXXNew,
|
|
AF_CXXNewArray,
|
|
AF_IfNameIndex,
|
|
AF_Alloca,
|
|
AF_InnerBuffer
|
|
};
|
|
|
|
} // end of anonymous namespace
|
|
|
|
/// Print names of allocators and deallocators.
|
|
///
|
|
/// \returns true on success.
|
|
static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E);
|
|
|
|
/// Print expected name of an allocator based on the deallocator's family
|
|
/// derived from the DeallocExpr.
|
|
static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family);
|
|
|
|
/// Print expected name of a deallocator based on the allocator's
|
|
/// family.
|
|
static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// The state of a symbol, in terms of memory management.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class RefState {
|
|
enum Kind {
|
|
// Reference to allocated memory.
|
|
Allocated,
|
|
// Reference to zero-allocated memory.
|
|
AllocatedOfSizeZero,
|
|
// Reference to released/freed memory.
|
|
Released,
|
|
// The responsibility for freeing resources has transferred from
|
|
// this reference. A relinquished symbol should not be freed.
|
|
Relinquished,
|
|
// We are no longer guaranteed to have observed all manipulations
|
|
// of this pointer/memory. For example, it could have been
|
|
// passed as a parameter to an opaque function.
|
|
Escaped
|
|
};
|
|
|
|
const Stmt *S;
|
|
|
|
Kind K;
|
|
AllocationFamily Family;
|
|
|
|
RefState(Kind k, const Stmt *s, AllocationFamily family)
|
|
: S(s), K(k), Family(family) {
|
|
assert(family != AF_None);
|
|
}
|
|
|
|
public:
|
|
bool isAllocated() const { return K == Allocated; }
|
|
bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
|
|
bool isReleased() const { return K == Released; }
|
|
bool isRelinquished() const { return K == Relinquished; }
|
|
bool isEscaped() const { return K == Escaped; }
|
|
AllocationFamily getAllocationFamily() const { return Family; }
|
|
const Stmt *getStmt() const { return S; }
|
|
|
|
bool operator==(const RefState &X) const {
|
|
return K == X.K && S == X.S && Family == X.Family;
|
|
}
|
|
|
|
static RefState getAllocated(AllocationFamily family, const Stmt *s) {
|
|
return RefState(Allocated, s, family);
|
|
}
|
|
static RefState getAllocatedOfSizeZero(const RefState *RS) {
|
|
return RefState(AllocatedOfSizeZero, RS->getStmt(),
|
|
RS->getAllocationFamily());
|
|
}
|
|
static RefState getReleased(AllocationFamily family, const Stmt *s) {
|
|
return RefState(Released, s, family);
|
|
}
|
|
static RefState getRelinquished(AllocationFamily family, const Stmt *s) {
|
|
return RefState(Relinquished, s, family);
|
|
}
|
|
static RefState getEscaped(const RefState *RS) {
|
|
return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
|
ID.AddInteger(K);
|
|
ID.AddPointer(S);
|
|
ID.AddInteger(Family);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void dump(raw_ostream &OS) const {
|
|
switch (K) {
|
|
#define CASE(ID) case ID: OS << #ID; break;
|
|
CASE(Allocated)
|
|
CASE(AllocatedOfSizeZero)
|
|
CASE(Released)
|
|
CASE(Relinquished)
|
|
CASE(Escaped)
|
|
}
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
|
|
};
|
|
|
|
} // end of anonymous namespace
|
|
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
|
|
|
|
/// Check if the memory associated with this symbol was released.
|
|
static bool isReleased(SymbolRef Sym, CheckerContext &C);
|
|
|
|
/// Update the RefState to reflect the new memory allocation.
|
|
/// The optional \p RetVal parameter specifies the newly allocated pointer
|
|
/// value; if unspecified, the value of expression \p E is used.
|
|
static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
|
|
ProgramStateRef State,
|
|
AllocationFamily Family,
|
|
Optional<SVal> RetVal = None);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// The modeling of memory reallocation.
|
|
//
|
|
// The terminology 'toPtr' and 'fromPtr' will be used:
|
|
// toPtr = realloc(fromPtr, 20);
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef)
|
|
|
|
namespace {
|
|
|
|
/// The state of 'fromPtr' after reallocation is known to have failed.
|
|
enum OwnershipAfterReallocKind {
|
|
// The symbol needs to be freed (e.g.: realloc)
|
|
OAR_ToBeFreedAfterFailure,
|
|
// The symbol has been freed (e.g.: reallocf)
|
|
OAR_FreeOnFailure,
|
|
// The symbol doesn't have to freed (e.g.: we aren't sure if, how and where
|
|
// 'fromPtr' was allocated:
|
|
// void Haha(int *ptr) {
|
|
// ptr = realloc(ptr, 67);
|
|
// // ...
|
|
// }
|
|
// ).
|
|
OAR_DoNotTrackAfterFailure
|
|
};
|
|
|
|
/// Stores information about the 'fromPtr' symbol after reallocation.
|
|
///
|
|
/// This is important because realloc may fail, and that needs special modeling.
|
|
/// Whether reallocation failed or not will not be known until later, so we'll
|
|
/// store whether upon failure 'fromPtr' will be freed, or needs to be freed
|
|
/// later, etc.
|
|
struct ReallocPair {
|
|
|
|
// The 'fromPtr'.
|
|
SymbolRef ReallocatedSym;
|
|
OwnershipAfterReallocKind Kind;
|
|
|
|
ReallocPair(SymbolRef S, OwnershipAfterReallocKind K)
|
|
: ReallocatedSym(S), Kind(K) {}
|
|
void Profile(llvm::FoldingSetNodeID &ID) const {
|
|
ID.AddInteger(Kind);
|
|
ID.AddPointer(ReallocatedSym);
|
|
}
|
|
bool operator==(const ReallocPair &X) const {
|
|
return ReallocatedSym == X.ReallocatedSym &&
|
|
Kind == X.Kind;
|
|
}
|
|
};
|
|
|
|
} // end of anonymous namespace
|
|
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
|
|
|
|
/// Tells if the callee is one of the builtin new/delete operators, including
|
|
/// placement operators and other standard overloads.
|
|
static bool isStandardNewDelete(const FunctionDecl *FD);
|
|
static bool isStandardNewDelete(const CallEvent &Call) {
|
|
if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl()))
|
|
return false;
|
|
return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Definition of the MallocChecker class.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class MallocChecker
|
|
: public Checker<check::DeadSymbols, check::PointerEscape,
|
|
check::ConstPointerEscape, check::PreStmt<ReturnStmt>,
|
|
check::EndFunction, check::PreCall, check::PostCall,
|
|
check::NewAllocator, check::PostStmt<BlockExpr>,
|
|
check::PostObjCMessage, check::Location, eval::Assume> {
|
|
public:
|
|
/// In pessimistic mode, the checker assumes that it does not know which
|
|
/// functions might free the memory.
|
|
/// In optimistic mode, the checker assumes that all user-defined functions
|
|
/// which might free a pointer are annotated.
|
|
DefaultBool ShouldIncludeOwnershipAnnotatedFunctions;
|
|
|
|
/// Many checkers are essentially built into this one, so enabling them will
|
|
/// make MallocChecker perform additional modeling and reporting.
|
|
enum CheckKind {
|
|
/// When a subchecker is enabled but MallocChecker isn't, model memory
|
|
/// management but do not emit warnings emitted with MallocChecker only
|
|
/// enabled.
|
|
CK_MallocChecker,
|
|
CK_NewDeleteChecker,
|
|
CK_NewDeleteLeaksChecker,
|
|
CK_MismatchedDeallocatorChecker,
|
|
CK_InnerPointerChecker,
|
|
CK_NumCheckKinds
|
|
};
|
|
|
|
using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>;
|
|
|
|
DefaultBool ChecksEnabled[CK_NumCheckKinds];
|
|
CheckerNameRef CheckNames[CK_NumCheckKinds];
|
|
|
|
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
|
|
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
|
|
void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const;
|
|
void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
|
|
void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
|
|
void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
|
|
void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
|
|
void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const;
|
|
ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
|
|
bool Assumption) const;
|
|
void checkLocation(SVal l, bool isLoad, const Stmt *S,
|
|
CheckerContext &C) const;
|
|
|
|
ProgramStateRef checkPointerEscape(ProgramStateRef State,
|
|
const InvalidatedSymbols &Escaped,
|
|
const CallEvent *Call,
|
|
PointerEscapeKind Kind) const;
|
|
ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
|
|
const InvalidatedSymbols &Escaped,
|
|
const CallEvent *Call,
|
|
PointerEscapeKind Kind) const;
|
|
|
|
void printState(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL, const char *Sep) const override;
|
|
|
|
private:
|
|
mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
|
|
mutable std::unique_ptr<BugType> BT_DoubleDelete;
|
|
mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
|
|
mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
|
|
mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
|
|
mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
|
|
mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
|
|
mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
|
|
mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
|
|
|
|
#define CHECK_FN(NAME) \
|
|
void NAME(const CallEvent &Call, CheckerContext &C) const;
|
|
|
|
CHECK_FN(checkFree)
|
|
CHECK_FN(checkIfNameIndex)
|
|
CHECK_FN(checkBasicAlloc)
|
|
CHECK_FN(checkKernelMalloc)
|
|
CHECK_FN(checkCalloc)
|
|
CHECK_FN(checkAlloca)
|
|
CHECK_FN(checkStrdup)
|
|
CHECK_FN(checkIfFreeNameIndex)
|
|
CHECK_FN(checkCXXNewOrCXXDelete)
|
|
CHECK_FN(checkGMalloc0)
|
|
CHECK_FN(checkGMemdup)
|
|
CHECK_FN(checkGMallocN)
|
|
CHECK_FN(checkGMallocN0)
|
|
CHECK_FN(checkReallocN)
|
|
CHECK_FN(checkOwnershipAttr)
|
|
|
|
void checkRealloc(const CallEvent &Call, CheckerContext &C,
|
|
bool ShouldFreeOnFail) const;
|
|
|
|
using CheckFn = std::function<void(const MallocChecker *,
|
|
const CallEvent &Call, CheckerContext &C)>;
|
|
|
|
const CallDescriptionMap<CheckFn> FreeingMemFnMap{
|
|
{{"free", 1}, &MallocChecker::checkFree},
|
|
{{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex},
|
|
{{"kfree", 1}, &MallocChecker::checkFree},
|
|
{{"g_free", 1}, &MallocChecker::checkFree},
|
|
};
|
|
|
|
bool isFreeingCall(const CallEvent &Call) const;
|
|
|
|
CallDescriptionMap<CheckFn> AllocatingMemFnMap{
|
|
{{"alloca", 1}, &MallocChecker::checkAlloca},
|
|
{{"_alloca", 1}, &MallocChecker::checkAlloca},
|
|
{{"malloc", 1}, &MallocChecker::checkBasicAlloc},
|
|
{{"malloc", 3}, &MallocChecker::checkKernelMalloc},
|
|
{{"calloc", 2}, &MallocChecker::checkCalloc},
|
|
{{"valloc", 1}, &MallocChecker::checkBasicAlloc},
|
|
{{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup},
|
|
{{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup},
|
|
{{"_strdup", 1}, &MallocChecker::checkStrdup},
|
|
{{"kmalloc", 2}, &MallocChecker::checkKernelMalloc},
|
|
{{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex},
|
|
{{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup},
|
|
{{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup},
|
|
{{"g_malloc", 1}, &MallocChecker::checkBasicAlloc},
|
|
{{"g_malloc0", 1}, &MallocChecker::checkGMalloc0},
|
|
{{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc},
|
|
{{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0},
|
|
{{"g_memdup", 2}, &MallocChecker::checkGMemdup},
|
|
{{"g_malloc_n", 2}, &MallocChecker::checkGMallocN},
|
|
{{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0},
|
|
{{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN},
|
|
{{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0},
|
|
};
|
|
|
|
CallDescriptionMap<CheckFn> ReallocatingMemFnMap{
|
|
{{"realloc", 2},
|
|
std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
|
|
{{"reallocf", 2},
|
|
std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)},
|
|
{{"g_realloc", 2},
|
|
std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
|
|
{{"g_try_realloc", 2},
|
|
std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
|
|
{{"g_realloc_n", 3}, &MallocChecker::checkReallocN},
|
|
{{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN},
|
|
};
|
|
|
|
bool isMemCall(const CallEvent &Call) const;
|
|
|
|
// TODO: Remove mutable by moving the initializtaion to the registry function.
|
|
mutable Optional<uint64_t> KernelZeroFlagVal;
|
|
|
|
using KernelZeroSizePtrValueTy = Optional<int>;
|
|
/// Store the value of macro called `ZERO_SIZE_PTR`.
|
|
/// The value is initialized at first use, before first use the outer
|
|
/// Optional is empty, afterwards it contains another Optional that indicates
|
|
/// if the macro value could be determined, and if yes the value itself.
|
|
mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue;
|
|
|
|
/// Process C++ operator new()'s allocation, which is the part of C++
|
|
/// new-expression that goes before the constructor.
|
|
LLVM_NODISCARD
|
|
ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call,
|
|
CheckerContext &C,
|
|
AllocationFamily Family) const;
|
|
|
|
/// Perform a zero-allocation check.
|
|
///
|
|
/// \param [in] Call The expression that allocates memory.
|
|
/// \param [in] IndexOfSizeArg Index of the argument that specifies the size
|
|
/// of the memory that needs to be allocated. E.g. for malloc, this would be
|
|
/// 0.
|
|
/// \param [in] RetVal Specifies the newly allocated pointer value;
|
|
/// if unspecified, the value of expression \p E is used.
|
|
LLVM_NODISCARD
|
|
static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call,
|
|
const unsigned IndexOfSizeArg,
|
|
ProgramStateRef State,
|
|
Optional<SVal> RetVal = None);
|
|
|
|
/// Model functions with the ownership_returns attribute.
|
|
///
|
|
/// User-defined function may have the ownership_returns attribute, which
|
|
/// annotates that the function returns with an object that was allocated on
|
|
/// the heap, and passes the ownertship to the callee.
|
|
///
|
|
/// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t);
|
|
///
|
|
/// It has two parameters:
|
|
/// - first: name of the resource (e.g. 'malloc')
|
|
/// - (OPTIONAL) second: size of the allocated region
|
|
///
|
|
/// \param [in] Call The expression that allocates memory.
|
|
/// \param [in] Att The ownership_returns attribute.
|
|
/// \param [in] State The \c ProgramState right before allocation.
|
|
/// \returns The ProgramState right after allocation.
|
|
LLVM_NODISCARD
|
|
ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call,
|
|
const OwnershipAttr *Att,
|
|
ProgramStateRef State) const;
|
|
|
|
/// Models memory allocation.
|
|
///
|
|
/// \param [in] Call The expression that allocates memory.
|
|
/// \param [in] SizeEx Size of the memory that needs to be allocated.
|
|
/// \param [in] Init The value the allocated memory needs to be initialized.
|
|
/// with. For example, \c calloc initializes the allocated memory to 0,
|
|
/// malloc leaves it undefined.
|
|
/// \param [in] State The \c ProgramState right before allocation.
|
|
/// \returns The ProgramState right after allocation.
|
|
LLVM_NODISCARD
|
|
static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call,
|
|
const Expr *SizeEx, SVal Init,
|
|
ProgramStateRef State,
|
|
AllocationFamily Family);
|
|
|
|
/// Models memory allocation.
|
|
///
|
|
/// \param [in] Call The expression that allocates memory.
|
|
/// \param [in] Size Size of the memory that needs to be allocated.
|
|
/// \param [in] Init The value the allocated memory needs to be initialized.
|
|
/// with. For example, \c calloc initializes the allocated memory to 0,
|
|
/// malloc leaves it undefined.
|
|
/// \param [in] State The \c ProgramState right before allocation.
|
|
/// \returns The ProgramState right after allocation.
|
|
LLVM_NODISCARD
|
|
static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call,
|
|
SVal Size, SVal Init,
|
|
ProgramStateRef State,
|
|
AllocationFamily Family);
|
|
|
|
LLVM_NODISCARD
|
|
static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE,
|
|
ProgramStateRef State, SVal Target);
|
|
|
|
// Check if this malloc() for special flags. At present that means M_ZERO or
|
|
// __GFP_ZERO (in which case, treat it like calloc).
|
|
LLVM_NODISCARD
|
|
llvm::Optional<ProgramStateRef>
|
|
performKernelMalloc(const CallEvent &Call, CheckerContext &C,
|
|
const ProgramStateRef &State) const;
|
|
|
|
/// Model functions with the ownership_takes and ownership_holds attributes.
|
|
///
|
|
/// User-defined function may have the ownership_takes and/or ownership_holds
|
|
/// attributes, which annotates that the function frees the memory passed as a
|
|
/// parameter.
|
|
///
|
|
/// void __attribute((ownership_takes(malloc, 1))) my_free(void *);
|
|
/// void __attribute((ownership_holds(malloc, 1))) my_hold(void *);
|
|
///
|
|
/// They have two parameters:
|
|
/// - first: name of the resource (e.g. 'malloc')
|
|
/// - second: index of the parameter the attribute applies to
|
|
///
|
|
/// \param [in] Call The expression that frees memory.
|
|
/// \param [in] Att The ownership_takes or ownership_holds attribute.
|
|
/// \param [in] State The \c ProgramState right before allocation.
|
|
/// \returns The ProgramState right after deallocation.
|
|
LLVM_NODISCARD
|
|
ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call,
|
|
const OwnershipAttr *Att,
|
|
ProgramStateRef State) const;
|
|
|
|
/// Models memory deallocation.
|
|
///
|
|
/// \param [in] Call The expression that frees memory.
|
|
/// \param [in] State The \c ProgramState right before allocation.
|
|
/// \param [in] Num Index of the argument that needs to be freed. This is
|
|
/// normally 0, but for custom free functions it may be different.
|
|
/// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
|
|
/// attribute.
|
|
/// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
|
|
/// to have been allocated, or in other words, the symbol to be freed was
|
|
/// registered as allocated by this checker. In the following case, \c ptr
|
|
/// isn't known to be allocated.
|
|
/// void Haha(int *ptr) {
|
|
/// ptr = realloc(ptr, 67);
|
|
/// // ...
|
|
/// }
|
|
/// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
|
|
/// we're modeling returns with Null on failure.
|
|
/// \returns The ProgramState right after deallocation.
|
|
LLVM_NODISCARD
|
|
ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call,
|
|
ProgramStateRef State, unsigned Num, bool Hold,
|
|
bool &IsKnownToBeAllocated,
|
|
AllocationFamily Family,
|
|
bool ReturnsNullOnFailure = false) const;
|
|
|
|
/// Models memory deallocation.
|
|
///
|
|
/// \param [in] ArgExpr The variable who's pointee needs to be freed.
|
|
/// \param [in] Call The expression that frees the memory.
|
|
/// \param [in] State The \c ProgramState right before allocation.
|
|
/// normally 0, but for custom free functions it may be different.
|
|
/// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
|
|
/// attribute.
|
|
/// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
|
|
/// to have been allocated, or in other words, the symbol to be freed was
|
|
/// registered as allocated by this checker. In the following case, \c ptr
|
|
/// isn't known to be allocated.
|
|
/// void Haha(int *ptr) {
|
|
/// ptr = realloc(ptr, 67);
|
|
/// // ...
|
|
/// }
|
|
/// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
|
|
/// we're modeling returns with Null on failure.
|
|
/// \returns The ProgramState right after deallocation.
|
|
LLVM_NODISCARD
|
|
ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr,
|
|
const CallEvent &Call, ProgramStateRef State,
|
|
bool Hold, bool &IsKnownToBeAllocated,
|
|
AllocationFamily Family,
|
|
bool ReturnsNullOnFailure = false) const;
|
|
|
|
// TODO: Needs some refactoring, as all other deallocation modeling
|
|
// functions are suffering from out parameters and messy code due to how
|
|
// realloc is handled.
|
|
//
|
|
/// Models memory reallocation.
|
|
///
|
|
/// \param [in] Call The expression that reallocated memory
|
|
/// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied
|
|
/// memory should be freed.
|
|
/// \param [in] State The \c ProgramState right before reallocation.
|
|
/// \param [in] SuffixWithN Whether the reallocation function we're modeling
|
|
/// has an '_n' suffix, such as g_realloc_n.
|
|
/// \returns The ProgramState right after reallocation.
|
|
LLVM_NODISCARD
|
|
ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call,
|
|
bool ShouldFreeOnFail, ProgramStateRef State,
|
|
AllocationFamily Family,
|
|
bool SuffixWithN = false) const;
|
|
|
|
/// Evaluates the buffer size that needs to be allocated.
|
|
///
|
|
/// \param [in] Blocks The amount of blocks that needs to be allocated.
|
|
/// \param [in] BlockBytes The size of a block.
|
|
/// \returns The symbolic value of \p Blocks * \p BlockBytes.
|
|
LLVM_NODISCARD
|
|
static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
|
|
const Expr *BlockBytes);
|
|
|
|
/// Models zero initialized array allocation.
|
|
///
|
|
/// \param [in] Call The expression that reallocated memory
|
|
/// \param [in] State The \c ProgramState right before reallocation.
|
|
/// \returns The ProgramState right after allocation.
|
|
LLVM_NODISCARD
|
|
static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call,
|
|
ProgramStateRef State);
|
|
|
|
/// See if deallocation happens in a suspicious context. If so, escape the
|
|
/// pointers that otherwise would have been deallocated and return true.
|
|
bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call,
|
|
CheckerContext &C) const;
|
|
|
|
/// If in \p S \p Sym is used, check whether \p Sym was already freed.
|
|
bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
|
|
|
|
/// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero
|
|
/// sized memory region.
|
|
void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
|
|
const Stmt *S) const;
|
|
|
|
/// If in \p S \p Sym is being freed, check whether \p Sym was already freed.
|
|
bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
|
|
|
|
/// Check if the function is known to free memory, or if it is
|
|
/// "interesting" and should be modeled explicitly.
|
|
///
|
|
/// \param [out] EscapingSymbol A function might not free memory in general,
|
|
/// but could be known to free a particular symbol. In this case, false is
|
|
/// returned and the single escaping symbol is returned through the out
|
|
/// parameter.
|
|
///
|
|
/// We assume that pointers do not escape through calls to system functions
|
|
/// not handled by this checker.
|
|
bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
|
|
ProgramStateRef State,
|
|
SymbolRef &EscapingSymbol) const;
|
|
|
|
/// Implementation of the checkPointerEscape callbacks.
|
|
LLVM_NODISCARD
|
|
ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
|
|
const InvalidatedSymbols &Escaped,
|
|
const CallEvent *Call,
|
|
PointerEscapeKind Kind,
|
|
bool IsConstPointerEscape) const;
|
|
|
|
// Implementation of the checkPreStmt and checkEndFunction callbacks.
|
|
void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const;
|
|
|
|
///@{
|
|
/// Tells if a given family/call/symbol is tracked by the current checker.
|
|
/// Sets CheckKind to the kind of the checker responsible for this
|
|
/// family/call/symbol.
|
|
Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
|
|
bool IsALeakCheck = false) const;
|
|
|
|
Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
|
|
bool IsALeakCheck = false) const;
|
|
///@}
|
|
static bool SummarizeValue(raw_ostream &os, SVal V);
|
|
static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
|
|
|
|
void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range,
|
|
const Expr *DeallocExpr,
|
|
AllocationFamily Family) const;
|
|
|
|
void HandleFreeAlloca(CheckerContext &C, SVal ArgVal,
|
|
SourceRange Range) const;
|
|
|
|
void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range,
|
|
const Expr *DeallocExpr, const RefState *RS,
|
|
SymbolRef Sym, bool OwnershipTransferred) const;
|
|
|
|
void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
|
|
const Expr *DeallocExpr, AllocationFamily Family,
|
|
const Expr *AllocExpr = nullptr) const;
|
|
|
|
void HandleUseAfterFree(CheckerContext &C, SourceRange Range,
|
|
SymbolRef Sym) const;
|
|
|
|
void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
|
|
SymbolRef Sym, SymbolRef PrevSym) const;
|
|
|
|
void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
|
|
|
|
void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range,
|
|
SymbolRef Sym) const;
|
|
|
|
void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
|
|
const Expr *FreeExpr,
|
|
AllocationFamily Family) const;
|
|
|
|
/// Find the location of the allocation for Sym on the path leading to the
|
|
/// exploded node N.
|
|
static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
|
|
CheckerContext &C);
|
|
|
|
void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
|
|
|
|
/// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`.
|
|
bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C,
|
|
SVal ArgVal) const;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Definition of MallocBugVisitor.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// The bug visitor which allows us to print extra diagnostics along the
|
|
/// BugReport path. For example, showing the allocation site of the leaked
|
|
/// region.
|
|
class MallocBugVisitor final : public BugReporterVisitor {
|
|
protected:
|
|
enum NotificationMode { Normal, ReallocationFailed };
|
|
|
|
// The allocated region symbol tracked by the main analysis.
|
|
SymbolRef Sym;
|
|
|
|
// The mode we are in, i.e. what kind of diagnostics will be emitted.
|
|
NotificationMode Mode;
|
|
|
|
// A symbol from when the primary region should have been reallocated.
|
|
SymbolRef FailedReallocSymbol;
|
|
|
|
// A C++ destructor stack frame in which memory was released. Used for
|
|
// miscellaneous false positive suppression.
|
|
const StackFrameContext *ReleaseDestructorLC;
|
|
|
|
bool IsLeak;
|
|
|
|
public:
|
|
MallocBugVisitor(SymbolRef S, bool isLeak = false)
|
|
: Sym(S), Mode(Normal), FailedReallocSymbol(nullptr),
|
|
ReleaseDestructorLC(nullptr), IsLeak(isLeak) {}
|
|
|
|
static void *getTag() {
|
|
static int Tag = 0;
|
|
return &Tag;
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const override {
|
|
ID.AddPointer(getTag());
|
|
ID.AddPointer(Sym);
|
|
}
|
|
|
|
/// Did not track -> allocated. Other state (released) -> allocated.
|
|
static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev,
|
|
const Stmt *Stmt) {
|
|
return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
|
|
(RSCurr &&
|
|
(RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
|
|
(!RSPrev ||
|
|
!(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
|
|
}
|
|
|
|
/// Did not track -> released. Other state (allocated) -> released.
|
|
/// The statement associated with the release might be missing.
|
|
static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev,
|
|
const Stmt *Stmt) {
|
|
bool IsReleased =
|
|
(RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased());
|
|
assert(!IsReleased ||
|
|
(Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) ||
|
|
(!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer));
|
|
return IsReleased;
|
|
}
|
|
|
|
/// Did not track -> relinquished. Other state (allocated) -> relinquished.
|
|
static inline bool isRelinquished(const RefState *RSCurr,
|
|
const RefState *RSPrev, const Stmt *Stmt) {
|
|
return (Stmt &&
|
|
(isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
|
|
isa<ObjCPropertyRefExpr>(Stmt)) &&
|
|
(RSCurr && RSCurr->isRelinquished()) &&
|
|
(!RSPrev || !RSPrev->isRelinquished()));
|
|
}
|
|
|
|
/// If the expression is not a call, and the state change is
|
|
/// released -> allocated, it must be the realloc return value
|
|
/// check. If we have to handle more cases here, it might be cleaner just
|
|
/// to track this extra bit in the state itself.
|
|
static inline bool hasReallocFailed(const RefState *RSCurr,
|
|
const RefState *RSPrev,
|
|
const Stmt *Stmt) {
|
|
return ((!Stmt || !isa<CallExpr>(Stmt)) &&
|
|
(RSCurr &&
|
|
(RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
|
|
(RSPrev &&
|
|
!(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
|
|
}
|
|
|
|
PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
|
|
BugReporterContext &BRC,
|
|
PathSensitiveBugReport &BR) override;
|
|
|
|
PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC,
|
|
const ExplodedNode *EndPathNode,
|
|
PathSensitiveBugReport &BR) override {
|
|
if (!IsLeak)
|
|
return nullptr;
|
|
|
|
PathDiagnosticLocation L = BR.getLocation();
|
|
// Do not add the statement itself as a range in case of leak.
|
|
return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(),
|
|
false);
|
|
}
|
|
|
|
private:
|
|
class StackHintGeneratorForReallocationFailed
|
|
: public StackHintGeneratorForSymbol {
|
|
public:
|
|
StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
|
|
: StackHintGeneratorForSymbol(S, M) {}
|
|
|
|
std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override {
|
|
// Printed parameters start at 1, not 0.
|
|
++ArgIndex;
|
|
|
|
SmallString<200> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
|
|
os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
|
|
<< " parameter failed";
|
|
|
|
return std::string(os.str());
|
|
}
|
|
|
|
std::string getMessageForReturn(const CallExpr *CallExpr) override {
|
|
return "Reallocation of returned value failed";
|
|
}
|
|
};
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// A map from the freed symbol to the symbol representing the return value of
|
|
// the free function.
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
|
|
|
|
namespace {
|
|
class StopTrackingCallback final : public SymbolVisitor {
|
|
ProgramStateRef state;
|
|
|
|
public:
|
|
StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {}
|
|
ProgramStateRef getState() const { return state; }
|
|
|
|
bool VisitSymbol(SymbolRef sym) override {
|
|
state = state->remove<RegionState>(sym);
|
|
return true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool isStandardNewDelete(const FunctionDecl *FD) {
|
|
if (!FD)
|
|
return false;
|
|
|
|
OverloadedOperatorKind Kind = FD->getOverloadedOperator();
|
|
if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete &&
|
|
Kind != OO_Array_Delete)
|
|
return false;
|
|
|
|
// This is standard if and only if it's not defined in a user file.
|
|
SourceLocation L = FD->getLocation();
|
|
// If the header for operator delete is not included, it's still defined
|
|
// in an invalid source location. Check to make sure we don't crash.
|
|
return !L.isValid() ||
|
|
FD->getASTContext().getSourceManager().isInSystemHeader(L);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods of MallocChecker and MallocBugVisitor.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool MallocChecker::isFreeingCall(const CallEvent &Call) const {
|
|
if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call))
|
|
return true;
|
|
|
|
const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl());
|
|
if (Func && Func->hasAttrs()) {
|
|
for (const auto *I : Func->specific_attrs<OwnershipAttr>()) {
|
|
OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
|
|
if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MallocChecker::isMemCall(const CallEvent &Call) const {
|
|
if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) ||
|
|
ReallocatingMemFnMap.lookup(Call))
|
|
return true;
|
|
|
|
if (!ShouldIncludeOwnershipAnnotatedFunctions)
|
|
return false;
|
|
|
|
const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl());
|
|
return Func && Func->hasAttr<OwnershipAttr>();
|
|
}
|
|
|
|
llvm::Optional<ProgramStateRef>
|
|
MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C,
|
|
const ProgramStateRef &State) const {
|
|
// 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
|
|
//
|
|
// void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
|
|
//
|
|
// One of the possible flags is M_ZERO, which means 'give me back an
|
|
// allocation which is already zeroed', like calloc.
|
|
|
|
// 2-argument kmalloc(), as used in the Linux kernel:
|
|
//
|
|
// void *kmalloc(size_t size, gfp_t flags);
|
|
//
|
|
// Has the similar flag value __GFP_ZERO.
|
|
|
|
// This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
|
|
// code could be shared.
|
|
|
|
ASTContext &Ctx = C.getASTContext();
|
|
llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
|
|
|
|
if (!KernelZeroFlagVal.hasValue()) {
|
|
if (OS == llvm::Triple::FreeBSD)
|
|
KernelZeroFlagVal = 0x0100;
|
|
else if (OS == llvm::Triple::NetBSD)
|
|
KernelZeroFlagVal = 0x0002;
|
|
else if (OS == llvm::Triple::OpenBSD)
|
|
KernelZeroFlagVal = 0x0008;
|
|
else if (OS == llvm::Triple::Linux)
|
|
// __GFP_ZERO
|
|
KernelZeroFlagVal = 0x8000;
|
|
else
|
|
// FIXME: We need a more general way of getting the M_ZERO value.
|
|
// See also: O_CREAT in UnixAPIChecker.cpp.
|
|
|
|
// Fall back to normal malloc behavior on platforms where we don't
|
|
// know M_ZERO.
|
|
return None;
|
|
}
|
|
|
|
// We treat the last argument as the flags argument, and callers fall-back to
|
|
// normal malloc on a None return. This works for the FreeBSD kernel malloc
|
|
// as well as Linux kmalloc.
|
|
if (Call.getNumArgs() < 2)
|
|
return None;
|
|
|
|
const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1);
|
|
const SVal V = C.getSVal(FlagsEx);
|
|
if (!V.getAs<NonLoc>()) {
|
|
// The case where 'V' can be a location can only be due to a bad header,
|
|
// so in this case bail out.
|
|
return None;
|
|
}
|
|
|
|
NonLoc Flags = V.castAs<NonLoc>();
|
|
NonLoc ZeroFlag = C.getSValBuilder()
|
|
.makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
|
|
.castAs<NonLoc>();
|
|
SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
|
|
Flags, ZeroFlag,
|
|
FlagsEx->getType());
|
|
if (MaskedFlagsUC.isUnknownOrUndef())
|
|
return None;
|
|
DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
|
|
|
|
// Check if maskedFlags is non-zero.
|
|
ProgramStateRef TrueState, FalseState;
|
|
std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
|
|
|
|
// If M_ZERO is set, treat this like calloc (initialized).
|
|
if (TrueState && !FalseState) {
|
|
SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
|
|
return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState,
|
|
AF_Malloc);
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
|
|
const Expr *BlockBytes) {
|
|
SValBuilder &SB = C.getSValBuilder();
|
|
SVal BlocksVal = C.getSVal(Blocks);
|
|
SVal BlockBytesVal = C.getSVal(BlockBytes);
|
|
ProgramStateRef State = C.getState();
|
|
SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal,
|
|
SB.getContext().getSizeType());
|
|
return TotalSize;
|
|
}
|
|
|
|
void MallocChecker::checkBasicAlloc(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
|
|
AF_Malloc);
|
|
State = ProcessZeroAllocCheck(Call, 0, State);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkKernelMalloc(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
llvm::Optional<ProgramStateRef> MaybeState =
|
|
performKernelMalloc(Call, C, State);
|
|
if (MaybeState.hasValue())
|
|
State = MaybeState.getValue();
|
|
else
|
|
State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
|
|
AF_Malloc);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
static bool isStandardRealloc(const CallEvent &Call) {
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl());
|
|
assert(FD);
|
|
ASTContext &AC = FD->getASTContext();
|
|
|
|
if (isa<CXXMethodDecl>(FD))
|
|
return false;
|
|
|
|
return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy &&
|
|
FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy &&
|
|
FD->getParamDecl(1)->getType().getDesugaredType(AC) ==
|
|
AC.getSizeType();
|
|
}
|
|
|
|
static bool isGRealloc(const CallEvent &Call) {
|
|
const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl());
|
|
assert(FD);
|
|
ASTContext &AC = FD->getASTContext();
|
|
|
|
if (isa<CXXMethodDecl>(FD))
|
|
return false;
|
|
|
|
return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy &&
|
|
FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy &&
|
|
FD->getParamDecl(1)->getType().getDesugaredType(AC) ==
|
|
AC.UnsignedLongTy;
|
|
}
|
|
|
|
void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C,
|
|
bool ShouldFreeOnFail) const {
|
|
// HACK: CallDescription currently recognizes non-standard realloc functions
|
|
// as standard because it doesn't check the type, or wether its a non-method
|
|
// function. This should be solved by making CallDescription smarter.
|
|
// Mind that this came from a bug report, and all other functions suffer from
|
|
// this.
|
|
// https://bugs.llvm.org/show_bug.cgi?id=46253
|
|
if (!isStandardRealloc(Call) && !isGRealloc(Call))
|
|
return;
|
|
ProgramStateRef State = C.getState();
|
|
State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc);
|
|
State = ProcessZeroAllocCheck(Call, 1, State);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkCalloc(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
State = CallocMem(C, Call, State);
|
|
State = ProcessZeroAllocCheck(Call, 0, State);
|
|
State = ProcessZeroAllocCheck(Call, 1, State);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
bool IsKnownToBeAllocatedMemory = false;
|
|
if (suppressDeallocationsInSuspiciousContexts(Call, C))
|
|
return;
|
|
State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
|
|
AF_Malloc);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkAlloca(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
|
|
AF_Alloca);
|
|
State = ProcessZeroAllocCheck(Call, 0, State);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkStrdup(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
|
|
if (!CE)
|
|
return;
|
|
State = MallocUpdateRefState(C, CE, State, AF_Malloc);
|
|
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkIfNameIndex(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
// Should we model this differently? We can allocate a fixed number of
|
|
// elements with zeros in the last one.
|
|
State =
|
|
MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex);
|
|
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
bool IsKnownToBeAllocatedMemory = false;
|
|
State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
|
|
AF_IfNameIndex);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
bool IsKnownToBeAllocatedMemory = false;
|
|
const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
|
|
if (!CE)
|
|
return;
|
|
|
|
assert(isStandardNewDelete(Call));
|
|
|
|
// Process direct calls to operator new/new[]/delete/delete[] functions
|
|
// as distinct from new/new[]/delete/delete[] expressions that are
|
|
// processed by the checkPostStmt callbacks for CXXNewExpr and
|
|
// CXXDeleteExpr.
|
|
const FunctionDecl *FD = C.getCalleeDecl(CE);
|
|
switch (FD->getOverloadedOperator()) {
|
|
case OO_New:
|
|
State =
|
|
MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew);
|
|
State = ProcessZeroAllocCheck(Call, 0, State);
|
|
break;
|
|
case OO_Array_New:
|
|
State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State,
|
|
AF_CXXNewArray);
|
|
State = ProcessZeroAllocCheck(Call, 0, State);
|
|
break;
|
|
case OO_Delete:
|
|
State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
|
|
AF_CXXNew);
|
|
break;
|
|
case OO_Array_Delete:
|
|
State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
|
|
AF_CXXNewArray);
|
|
break;
|
|
default:
|
|
llvm_unreachable("not a new/delete operator");
|
|
}
|
|
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkGMalloc0(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
SValBuilder &svalBuilder = C.getSValBuilder();
|
|
SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
|
|
State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc);
|
|
State = ProcessZeroAllocCheck(Call, 0, State);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkGMemdup(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
State = MallocMemAux(C, Call, Call.getArgExpr(1), UndefinedVal(), State,
|
|
AF_Malloc);
|
|
State = ProcessZeroAllocCheck(Call, 1, State);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkGMallocN(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
SVal Init = UndefinedVal();
|
|
SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
|
|
State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc);
|
|
State = ProcessZeroAllocCheck(Call, 0, State);
|
|
State = ProcessZeroAllocCheck(Call, 1, State);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkGMallocN0(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
SValBuilder &SB = C.getSValBuilder();
|
|
SVal Init = SB.makeZeroVal(SB.getContext().CharTy);
|
|
SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
|
|
State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc);
|
|
State = ProcessZeroAllocCheck(Call, 0, State);
|
|
State = ProcessZeroAllocCheck(Call, 1, State);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkReallocN(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc,
|
|
/*SuffixWithN=*/true);
|
|
State = ProcessZeroAllocCheck(Call, 1, State);
|
|
State = ProcessZeroAllocCheck(Call, 2, State);
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkOwnershipAttr(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
ProgramStateRef State = C.getState();
|
|
const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
|
|
if (!CE)
|
|
return;
|
|
const FunctionDecl *FD = C.getCalleeDecl(CE);
|
|
if (!FD)
|
|
return;
|
|
if (ShouldIncludeOwnershipAnnotatedFunctions ||
|
|
ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
|
|
// Check all the attributes, if there are any.
|
|
// There can be multiple of these attributes.
|
|
if (FD->hasAttrs())
|
|
for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
|
|
switch (I->getOwnKind()) {
|
|
case OwnershipAttr::Returns:
|
|
State = MallocMemReturnsAttr(C, Call, I, State);
|
|
break;
|
|
case OwnershipAttr::Takes:
|
|
case OwnershipAttr::Holds:
|
|
State = FreeMemAttr(C, Call, I, State);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
C.addTransition(State);
|
|
}
|
|
|
|
void MallocChecker::checkPostCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
if (C.wasInlined)
|
|
return;
|
|
if (!Call.getOriginExpr())
|
|
return;
|
|
|
|
ProgramStateRef State = C.getState();
|
|
|
|
if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) {
|
|
(*Callback)(this, Call, C);
|
|
return;
|
|
}
|
|
|
|
if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) {
|
|
(*Callback)(this, Call, C);
|
|
return;
|
|
}
|
|
|
|
if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) {
|
|
(*Callback)(this, Call, C);
|
|
return;
|
|
}
|
|
|
|
if (isStandardNewDelete(Call)) {
|
|
checkCXXNewOrCXXDelete(Call, C);
|
|
return;
|
|
}
|
|
|
|
checkOwnershipAttr(Call, C);
|
|
}
|
|
|
|
// Performs a 0-sized allocations check.
|
|
ProgramStateRef MallocChecker::ProcessZeroAllocCheck(
|
|
const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State,
|
|
Optional<SVal> RetVal) {
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
if (!RetVal)
|
|
RetVal = Call.getReturnValue();
|
|
|
|
const Expr *Arg = nullptr;
|
|
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) {
|
|
Arg = CE->getArg(IndexOfSizeArg);
|
|
} else if (const CXXNewExpr *NE =
|
|
dyn_cast<CXXNewExpr>(Call.getOriginExpr())) {
|
|
if (NE->isArray()) {
|
|
Arg = *NE->getArraySize();
|
|
} else {
|
|
return State;
|
|
}
|
|
} else
|
|
llvm_unreachable("not a CallExpr or CXXNewExpr");
|
|
|
|
assert(Arg);
|
|
|
|
auto DefArgVal =
|
|
State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>();
|
|
|
|
if (!DefArgVal)
|
|
return State;
|
|
|
|
// Check if the allocation size is 0.
|
|
ProgramStateRef TrueState, FalseState;
|
|
SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder();
|
|
DefinedSVal Zero =
|
|
SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
|
|
|
|
std::tie(TrueState, FalseState) =
|
|
State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
|
|
|
|
if (TrueState && !FalseState) {
|
|
SymbolRef Sym = RetVal->getAsLocSymbol();
|
|
if (!Sym)
|
|
return State;
|
|
|
|
const RefState *RS = State->get<RegionState>(Sym);
|
|
if (RS) {
|
|
if (RS->isAllocated())
|
|
return TrueState->set<RegionState>(Sym,
|
|
RefState::getAllocatedOfSizeZero(RS));
|
|
else
|
|
return State;
|
|
} else {
|
|
// Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as
|
|
// 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not
|
|
// tracked. Add zero-reallocated Sym to the state to catch references
|
|
// to zero-allocated memory.
|
|
return TrueState->add<ReallocSizeZeroSymbols>(Sym);
|
|
}
|
|
}
|
|
|
|
// Assume the value is non-zero going forward.
|
|
assert(FalseState);
|
|
return FalseState;
|
|
}
|
|
|
|
static QualType getDeepPointeeType(QualType T) {
|
|
QualType Result = T, PointeeType = T->getPointeeType();
|
|
while (!PointeeType.isNull()) {
|
|
Result = PointeeType;
|
|
PointeeType = PointeeType->getPointeeType();
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// \returns true if the constructor invoked by \p NE has an argument of a
|
|
/// pointer/reference to a record type.
|
|
static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) {
|
|
|
|
const CXXConstructExpr *ConstructE = NE->getConstructExpr();
|
|
if (!ConstructE)
|
|
return false;
|
|
|
|
if (!NE->getAllocatedType()->getAsCXXRecordDecl())
|
|
return false;
|
|
|
|
const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
|
|
|
|
// Iterate over the constructor parameters.
|
|
for (const auto *CtorParam : CtorD->parameters()) {
|
|
|
|
QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
|
|
if (CtorParamPointeeT.isNull())
|
|
continue;
|
|
|
|
CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
|
|
|
|
if (CtorParamPointeeT->getAsCXXRecordDecl())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ProgramStateRef
|
|
MallocChecker::processNewAllocation(const CXXAllocatorCall &Call,
|
|
CheckerContext &C,
|
|
AllocationFamily Family) const {
|
|
if (!isStandardNewDelete(Call))
|
|
return nullptr;
|
|
|
|
const CXXNewExpr *NE = Call.getOriginExpr();
|
|
const ParentMap &PM = C.getLocationContext()->getParentMap();
|
|
ProgramStateRef State = C.getState();
|
|
|
|
// Non-trivial constructors have a chance to escape 'this', but marking all
|
|
// invocations of trivial constructors as escaped would cause too great of
|
|
// reduction of true positives, so let's just do that for constructors that
|
|
// have an argument of a pointer-to-record type.
|
|
if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE))
|
|
return State;
|
|
|
|
// The return value from operator new is bound to a specified initialization
|
|
// value (if any) and we don't want to loose this value. So we call
|
|
// MallocUpdateRefState() instead of MallocMemAux() which breaks the
|
|
// existing binding.
|
|
SVal Target = Call.getObjectUnderConstruction();
|
|
State = MallocUpdateRefState(C, NE, State, Family, Target);
|
|
State = addExtentSize(C, NE, State, Target);
|
|
State = ProcessZeroAllocCheck(Call, 0, State, Target);
|
|
return State;
|
|
}
|
|
|
|
void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call,
|
|
CheckerContext &C) const {
|
|
if (!C.wasInlined) {
|
|
ProgramStateRef State = processNewAllocation(
|
|
Call, C,
|
|
(Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew));
|
|
C.addTransition(State);
|
|
}
|
|
}
|
|
|
|
// Sets the extent value of the MemRegion allocated by
|
|
// new expression NE to its size in Bytes.
|
|
//
|
|
ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C,
|
|
const CXXNewExpr *NE,
|
|
ProgramStateRef State,
|
|
SVal Target) {
|
|
if (!State)
|
|
return nullptr;
|
|
SValBuilder &svalBuilder = C.getSValBuilder();
|
|
SVal ElementCount;
|
|
const SubRegion *Region;
|
|
if (NE->isArray()) {
|
|
const Expr *SizeExpr = *NE->getArraySize();
|
|
ElementCount = C.getSVal(SizeExpr);
|
|
// Store the extent size for the (symbolic)region
|
|
// containing the elements.
|
|
Region = Target.getAsRegion()
|
|
->castAs<SubRegion>()
|
|
->StripCasts()
|
|
->castAs<SubRegion>();
|
|
} else {
|
|
ElementCount = svalBuilder.makeIntVal(1, true);
|
|
Region = Target.getAsRegion()->castAs<SubRegion>();
|
|
}
|
|
|
|
// Set the region's extent equal to the Size in Bytes.
|
|
QualType ElementType = NE->getAllocatedType();
|
|
ASTContext &AstContext = C.getASTContext();
|
|
CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType);
|
|
|
|
if (ElementCount.getAs<NonLoc>()) {
|
|
DefinedOrUnknownSVal DynSize = getDynamicSize(State, Region, svalBuilder);
|
|
|
|
// size in Bytes = ElementCount*TypeSize
|
|
SVal SizeInBytes = svalBuilder.evalBinOpNN(
|
|
State, BO_Mul, ElementCount.castAs<NonLoc>(),
|
|
svalBuilder.makeArrayIndex(TypeSize.getQuantity()),
|
|
svalBuilder.getArrayIndexType());
|
|
DefinedOrUnknownSVal DynSizeMatchesSize = svalBuilder.evalEQ(
|
|
State, DynSize, SizeInBytes.castAs<DefinedOrUnknownSVal>());
|
|
State = State->assume(DynSizeMatchesSize, true);
|
|
}
|
|
return State;
|
|
}
|
|
|
|
static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
|
|
// If the first selector piece is one of the names below, assume that the
|
|
// object takes ownership of the memory, promising to eventually deallocate it
|
|
// with free().
|
|
// Ex: [NSData dataWithBytesNoCopy:bytes length:10];
|
|
// (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
|
|
StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
|
|
return FirstSlot == "dataWithBytesNoCopy" ||
|
|
FirstSlot == "initWithBytesNoCopy" ||
|
|
FirstSlot == "initWithCharactersNoCopy";
|
|
}
|
|
|
|
static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
|
|
Selector S = Call.getSelector();
|
|
|
|
// FIXME: We should not rely on fully-constrained symbols being folded.
|
|
for (unsigned i = 1; i < S.getNumArgs(); ++i)
|
|
if (S.getNameForSlot(i).equals("freeWhenDone"))
|
|
return !Call.getArgSVal(i).isZeroConstant();
|
|
|
|
return None;
|
|
}
|
|
|
|
void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
|
|
CheckerContext &C) const {
|
|
if (C.wasInlined)
|
|
return;
|
|
|
|
if (!isKnownDeallocObjCMethodName(Call))
|
|
return;
|
|
|
|
if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
|
|
if (!*FreeWhenDone)
|
|
return;
|
|
|
|
if (Call.hasNonZeroCallbackArg())
|
|
return;
|
|
|
|
bool IsKnownToBeAllocatedMemory;
|
|
ProgramStateRef State =
|
|
FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(),
|
|
/*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc,
|
|
/*RetNullOnFailure=*/true);
|
|
|
|
C.addTransition(State);
|
|
}
|
|
|
|
ProgramStateRef
|
|
MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call,
|
|
const OwnershipAttr *Att,
|
|
ProgramStateRef State) const {
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
if (Att->getModule()->getName() != "malloc")
|
|
return nullptr;
|
|
|
|
OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
|
|
if (I != E) {
|
|
return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()),
|
|
UndefinedVal(), State, AF_Malloc);
|
|
}
|
|
return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc);
|
|
}
|
|
|
|
ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
|
|
const CallEvent &Call,
|
|
const Expr *SizeEx, SVal Init,
|
|
ProgramStateRef State,
|
|
AllocationFamily Family) {
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
assert(SizeEx);
|
|
return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family);
|
|
}
|
|
|
|
ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
|
|
const CallEvent &Call, SVal Size,
|
|
SVal Init, ProgramStateRef State,
|
|
AllocationFamily Family) {
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
const Expr *CE = Call.getOriginExpr();
|
|
|
|
// We expect the malloc functions to return a pointer.
|
|
if (!Loc::isLocType(CE->getType()))
|
|
return nullptr;
|
|
|
|
// Bind the return value to the symbolic value from the heap region.
|
|
// TODO: We could rewrite post visit to eval call; 'malloc' does not have
|
|
// side effects other than what we model here.
|
|
unsigned Count = C.blockCount();
|
|
SValBuilder &svalBuilder = C.getSValBuilder();
|
|
const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
|
|
DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
|
|
.castAs<DefinedSVal>();
|
|
State = State->BindExpr(CE, C.getLocationContext(), RetVal);
|
|
|
|
// Fill the region with the initialization value.
|
|
State = State->bindDefaultInitial(RetVal, Init, LCtx);
|
|
|
|
// Set the region's extent equal to the Size parameter.
|
|
const SymbolicRegion *R =
|
|
dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
|
|
if (!R)
|
|
return nullptr;
|
|
if (Optional<DefinedOrUnknownSVal> DefinedSize =
|
|
Size.getAs<DefinedOrUnknownSVal>()) {
|
|
DefinedOrUnknownSVal DynSize = getDynamicSize(State, R, svalBuilder);
|
|
|
|
DefinedOrUnknownSVal DynSizeMatchesSize =
|
|
svalBuilder.evalEQ(State, DynSize, *DefinedSize);
|
|
|
|
State = State->assume(DynSizeMatchesSize, true);
|
|
assert(State);
|
|
}
|
|
|
|
return MallocUpdateRefState(C, CE, State, Family);
|
|
}
|
|
|
|
static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
|
|
ProgramStateRef State,
|
|
AllocationFamily Family,
|
|
Optional<SVal> RetVal) {
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
// Get the return value.
|
|
if (!RetVal)
|
|
RetVal = C.getSVal(E);
|
|
|
|
// We expect the malloc functions to return a pointer.
|
|
if (!RetVal->getAs<Loc>())
|
|
return nullptr;
|
|
|
|
SymbolRef Sym = RetVal->getAsLocSymbol();
|
|
// This is a return value of a function that was not inlined, such as malloc()
|
|
// or new(). We've checked that in the caller. Therefore, it must be a symbol.
|
|
assert(Sym);
|
|
|
|
// Set the symbol's state to Allocated.
|
|
return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
|
|
}
|
|
|
|
ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
|
|
const CallEvent &Call,
|
|
const OwnershipAttr *Att,
|
|
ProgramStateRef State) const {
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
if (Att->getModule()->getName() != "malloc")
|
|
return nullptr;
|
|
|
|
bool IsKnownToBeAllocated = false;
|
|
|
|
for (const auto &Arg : Att->args()) {
|
|
ProgramStateRef StateI =
|
|
FreeMemAux(C, Call, State, Arg.getASTIndex(),
|
|
Att->getOwnKind() == OwnershipAttr::Holds,
|
|
IsKnownToBeAllocated, AF_Malloc);
|
|
if (StateI)
|
|
State = StateI;
|
|
}
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
|
|
const CallEvent &Call,
|
|
ProgramStateRef State, unsigned Num,
|
|
bool Hold, bool &IsKnownToBeAllocated,
|
|
AllocationFamily Family,
|
|
bool ReturnsNullOnFailure) const {
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
if (Call.getNumArgs() < (Num + 1))
|
|
return nullptr;
|
|
|
|
return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold,
|
|
IsKnownToBeAllocated, Family, ReturnsNullOnFailure);
|
|
}
|
|
|
|
/// Checks if the previous call to free on the given symbol failed - if free
|
|
/// failed, returns true. Also, returns the corresponding return value symbol.
|
|
static bool didPreviousFreeFail(ProgramStateRef State,
|
|
SymbolRef Sym, SymbolRef &RetStatusSymbol) {
|
|
const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
|
|
if (Ret) {
|
|
assert(*Ret && "We should not store the null return symbol");
|
|
ConstraintManager &CMgr = State->getConstraintManager();
|
|
ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
|
|
RetStatusSymbol = *Ret;
|
|
return FreeFailed.isConstrainedTrue();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) {
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
|
|
// FIXME: This doesn't handle indirect calls.
|
|
const FunctionDecl *FD = CE->getDirectCallee();
|
|
if (!FD)
|
|
return false;
|
|
|
|
os << *FD;
|
|
if (!FD->isOverloadedOperator())
|
|
os << "()";
|
|
return true;
|
|
}
|
|
|
|
if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
|
|
if (Msg->isInstanceMessage())
|
|
os << "-";
|
|
else
|
|
os << "+";
|
|
Msg->getSelector().print(os);
|
|
return true;
|
|
}
|
|
|
|
if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
|
|
os << "'"
|
|
<< getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
|
|
<< "'";
|
|
return true;
|
|
}
|
|
|
|
if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
|
|
os << "'"
|
|
<< getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
|
|
<< "'";
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) {
|
|
|
|
switch(Family) {
|
|
case AF_Malloc: os << "malloc()"; return;
|
|
case AF_CXXNew: os << "'new'"; return;
|
|
case AF_CXXNewArray: os << "'new[]'"; return;
|
|
case AF_IfNameIndex: os << "'if_nameindex()'"; return;
|
|
case AF_InnerBuffer: os << "container-specific allocator"; return;
|
|
case AF_Alloca:
|
|
case AF_None: llvm_unreachable("not a deallocation expression");
|
|
}
|
|
}
|
|
|
|
static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) {
|
|
switch(Family) {
|
|
case AF_Malloc: os << "free()"; return;
|
|
case AF_CXXNew: os << "'delete'"; return;
|
|
case AF_CXXNewArray: os << "'delete[]'"; return;
|
|
case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
|
|
case AF_InnerBuffer: os << "container-specific deallocator"; return;
|
|
case AF_Alloca:
|
|
case AF_None: llvm_unreachable("suspicious argument");
|
|
}
|
|
}
|
|
|
|
ProgramStateRef MallocChecker::FreeMemAux(
|
|
CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call,
|
|
ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated,
|
|
AllocationFamily Family, bool ReturnsNullOnFailure) const {
|
|
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
SVal ArgVal = C.getSVal(ArgExpr);
|
|
if (!ArgVal.getAs<DefinedOrUnknownSVal>())
|
|
return nullptr;
|
|
DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
|
|
|
|
// Check for null dereferences.
|
|
if (!location.getAs<Loc>())
|
|
return nullptr;
|
|
|
|
// The explicit NULL case, no operation is performed.
|
|
ProgramStateRef notNullState, nullState;
|
|
std::tie(notNullState, nullState) = State->assume(location);
|
|
if (nullState && !notNullState)
|
|
return nullptr;
|
|
|
|
// Unknown values could easily be okay
|
|
// Undefined values are handled elsewhere
|
|
if (ArgVal.isUnknownOrUndef())
|
|
return nullptr;
|
|
|
|
const MemRegion *R = ArgVal.getAsRegion();
|
|
const Expr *ParentExpr = Call.getOriginExpr();
|
|
|
|
// NOTE: We detected a bug, but the checker under whose name we would emit the
|
|
// error could be disabled. Generally speaking, the MallocChecker family is an
|
|
// integral part of the Static Analyzer, and disabling any part of it should
|
|
// only be done under exceptional circumstances, such as frequent false
|
|
// positives. If this is the case, we can reasonably believe that there are
|
|
// serious faults in our understanding of the source code, and even if we
|
|
// don't emit an warning, we should terminate further analysis with a sink
|
|
// node.
|
|
|
|
// Nonlocs can't be freed, of course.
|
|
// Non-region locations (labels and fixed addresses) also shouldn't be freed.
|
|
if (!R) {
|
|
// Exception:
|
|
// If the macro ZERO_SIZE_PTR is defined, this could be a kernel source
|
|
// code. In that case, the ZERO_SIZE_PTR defines a special value used for a
|
|
// zero-sized memory block which is allowed to be freed, despite not being a
|
|
// null pointer.
|
|
if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal))
|
|
HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
|
|
Family);
|
|
return nullptr;
|
|
}
|
|
|
|
R = R->StripCasts();
|
|
|
|
// Blocks might show up as heap data, but should not be free()d
|
|
if (isa<BlockDataRegion>(R)) {
|
|
HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
|
|
Family);
|
|
return nullptr;
|
|
}
|
|
|
|
const MemSpaceRegion *MS = R->getMemorySpace();
|
|
|
|
// Parameters, locals, statics, globals, and memory returned by
|
|
// __builtin_alloca() shouldn't be freed.
|
|
if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
|
|
// FIXME: at the time this code was written, malloc() regions were
|
|
// represented by conjured symbols, which are all in UnknownSpaceRegion.
|
|
// This means that there isn't actually anything from HeapSpaceRegion
|
|
// that should be freed, even though we allow it here.
|
|
// Of course, free() can work on memory allocated outside the current
|
|
// function, so UnknownSpaceRegion is always a possibility.
|
|
// False negatives are better than false positives.
|
|
|
|
if (isa<AllocaRegion>(R))
|
|
HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
|
|
else
|
|
HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
|
|
Family);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
|
|
// Various cases could lead to non-symbol values here.
|
|
// For now, ignore them.
|
|
if (!SrBase)
|
|
return nullptr;
|
|
|
|
SymbolRef SymBase = SrBase->getSymbol();
|
|
const RefState *RsBase = State->get<RegionState>(SymBase);
|
|
SymbolRef PreviousRetStatusSymbol = nullptr;
|
|
|
|
IsKnownToBeAllocated =
|
|
RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero());
|
|
|
|
if (RsBase) {
|
|
|
|
// Memory returned by alloca() shouldn't be freed.
|
|
if (RsBase->getAllocationFamily() == AF_Alloca) {
|
|
HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
|
|
return nullptr;
|
|
}
|
|
|
|
// Check for double free first.
|
|
if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
|
|
!didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
|
|
HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
|
|
SymBase, PreviousRetStatusSymbol);
|
|
return nullptr;
|
|
|
|
// If the pointer is allocated or escaped, but we are now trying to free it,
|
|
// check that the call to free is proper.
|
|
} else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
|
|
RsBase->isEscaped()) {
|
|
|
|
// Check if an expected deallocation function matches the real one.
|
|
bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family;
|
|
if (!DeallocMatchesAlloc) {
|
|
HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr,
|
|
RsBase, SymBase, Hold);
|
|
return nullptr;
|
|
}
|
|
|
|
// Check if the memory location being freed is the actual location
|
|
// allocated, or an offset.
|
|
RegionOffset Offset = R->getAsOffset();
|
|
if (Offset.isValid() &&
|
|
!Offset.hasSymbolicOffset() &&
|
|
Offset.getOffset() != 0) {
|
|
const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
|
|
HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
|
|
Family, AllocExpr);
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SymBase->getType()->isFunctionPointerType()) {
|
|
HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
|
|
Family);
|
|
return nullptr;
|
|
}
|
|
|
|
// Clean out the info on previous call to free return info.
|
|
State = State->remove<FreeReturnValue>(SymBase);
|
|
|
|
// Keep track of the return value. If it is NULL, we will know that free
|
|
// failed.
|
|
if (ReturnsNullOnFailure) {
|
|
SVal RetVal = C.getSVal(ParentExpr);
|
|
SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
|
|
if (RetStatusSymbol) {
|
|
C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
|
|
State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
|
|
}
|
|
}
|
|
|
|
// If we don't know anything about this symbol, a free on it may be totally
|
|
// valid. If this is the case, lets assume that the allocation family of the
|
|
// freeing function is the same as the symbols allocation family, and go with
|
|
// that.
|
|
assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family));
|
|
|
|
// Normal free.
|
|
if (Hold)
|
|
return State->set<RegionState>(SymBase,
|
|
RefState::getRelinquished(Family,
|
|
ParentExpr));
|
|
|
|
return State->set<RegionState>(SymBase,
|
|
RefState::getReleased(Family, ParentExpr));
|
|
}
|
|
|
|
Optional<MallocChecker::CheckKind>
|
|
MallocChecker::getCheckIfTracked(AllocationFamily Family,
|
|
bool IsALeakCheck) const {
|
|
switch (Family) {
|
|
case AF_Malloc:
|
|
case AF_Alloca:
|
|
case AF_IfNameIndex: {
|
|
if (ChecksEnabled[CK_MallocChecker])
|
|
return CK_MallocChecker;
|
|
return None;
|
|
}
|
|
case AF_CXXNew:
|
|
case AF_CXXNewArray: {
|
|
if (IsALeakCheck) {
|
|
if (ChecksEnabled[CK_NewDeleteLeaksChecker])
|
|
return CK_NewDeleteLeaksChecker;
|
|
}
|
|
else {
|
|
if (ChecksEnabled[CK_NewDeleteChecker])
|
|
return CK_NewDeleteChecker;
|
|
}
|
|
return None;
|
|
}
|
|
case AF_InnerBuffer: {
|
|
if (ChecksEnabled[CK_InnerPointerChecker])
|
|
return CK_InnerPointerChecker;
|
|
return None;
|
|
}
|
|
case AF_None: {
|
|
llvm_unreachable("no family");
|
|
}
|
|
}
|
|
llvm_unreachable("unhandled family");
|
|
}
|
|
|
|
Optional<MallocChecker::CheckKind>
|
|
MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
|
|
bool IsALeakCheck) const {
|
|
if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym))
|
|
return CK_MallocChecker;
|
|
|
|
const RefState *RS = C.getState()->get<RegionState>(Sym);
|
|
assert(RS);
|
|
return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
|
|
}
|
|
|
|
bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
|
|
if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
|
|
os << "an integer (" << IntVal->getValue() << ")";
|
|
else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
|
|
os << "a constant address (" << ConstAddr->getValue() << ")";
|
|
else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
|
|
os << "the address of the label '" << Label->getLabel()->getName() << "'";
|
|
else
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MallocChecker::SummarizeRegion(raw_ostream &os,
|
|
const MemRegion *MR) {
|
|
switch (MR->getKind()) {
|
|
case MemRegion::FunctionCodeRegionKind: {
|
|
const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
|
|
if (FD)
|
|
os << "the address of the function '" << *FD << '\'';
|
|
else
|
|
os << "the address of a function";
|
|
return true;
|
|
}
|
|
case MemRegion::BlockCodeRegionKind:
|
|
os << "block text";
|
|
return true;
|
|
case MemRegion::BlockDataRegionKind:
|
|
// FIXME: where the block came from?
|
|
os << "a block";
|
|
return true;
|
|
default: {
|
|
const MemSpaceRegion *MS = MR->getMemorySpace();
|
|
|
|
if (isa<StackLocalsSpaceRegion>(MS)) {
|
|
const VarRegion *VR = dyn_cast<VarRegion>(MR);
|
|
const VarDecl *VD;
|
|
if (VR)
|
|
VD = VR->getDecl();
|
|
else
|
|
VD = nullptr;
|
|
|
|
if (VD)
|
|
os << "the address of the local variable '" << VD->getName() << "'";
|
|
else
|
|
os << "the address of a local stack variable";
|
|
return true;
|
|
}
|
|
|
|
if (isa<StackArgumentsSpaceRegion>(MS)) {
|
|
const VarRegion *VR = dyn_cast<VarRegion>(MR);
|
|
const VarDecl *VD;
|
|
if (VR)
|
|
VD = VR->getDecl();
|
|
else
|
|
VD = nullptr;
|
|
|
|
if (VD)
|
|
os << "the address of the parameter '" << VD->getName() << "'";
|
|
else
|
|
os << "the address of a parameter";
|
|
return true;
|
|
}
|
|
|
|
if (isa<GlobalsSpaceRegion>(MS)) {
|
|
const VarRegion *VR = dyn_cast<VarRegion>(MR);
|
|
const VarDecl *VD;
|
|
if (VR)
|
|
VD = VR->getDecl();
|
|
else
|
|
VD = nullptr;
|
|
|
|
if (VD) {
|
|
if (VD->isStaticLocal())
|
|
os << "the address of the static variable '" << VD->getName() << "'";
|
|
else
|
|
os << "the address of the global variable '" << VD->getName() << "'";
|
|
} else
|
|
os << "the address of a global variable";
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal,
|
|
SourceRange Range,
|
|
const Expr *DeallocExpr,
|
|
AllocationFamily Family) const {
|
|
|
|
if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
|
|
C.addSink();
|
|
return;
|
|
}
|
|
|
|
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
|
|
if (!CheckKind.hasValue())
|
|
return;
|
|
|
|
if (ExplodedNode *N = C.generateErrorNode()) {
|
|
if (!BT_BadFree[*CheckKind])
|
|
BT_BadFree[*CheckKind].reset(new BugType(
|
|
CheckNames[*CheckKind], "Bad free", categories::MemoryError));
|
|
|
|
SmallString<100> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
|
|
const MemRegion *MR = ArgVal.getAsRegion();
|
|
while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
|
|
MR = ER->getSuperRegion();
|
|
|
|
os << "Argument to ";
|
|
if (!printMemFnName(os, C, DeallocExpr))
|
|
os << "deallocator";
|
|
|
|
os << " is ";
|
|
bool Summarized = MR ? SummarizeRegion(os, MR)
|
|
: SummarizeValue(os, ArgVal);
|
|
if (Summarized)
|
|
os << ", which is not memory allocated by ";
|
|
else
|
|
os << "not memory allocated by ";
|
|
|
|
printExpectedAllocName(os, Family);
|
|
|
|
auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
|
|
os.str(), N);
|
|
R->markInteresting(MR);
|
|
R->addRange(Range);
|
|
C.emitReport(std::move(R));
|
|
}
|
|
}
|
|
|
|
void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal,
|
|
SourceRange Range) const {
|
|
|
|
Optional<MallocChecker::CheckKind> CheckKind;
|
|
|
|
if (ChecksEnabled[CK_MallocChecker])
|
|
CheckKind = CK_MallocChecker;
|
|
else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
|
|
CheckKind = CK_MismatchedDeallocatorChecker;
|
|
else {
|
|
C.addSink();
|
|
return;
|
|
}
|
|
|
|
if (ExplodedNode *N = C.generateErrorNode()) {
|
|
if (!BT_FreeAlloca[*CheckKind])
|
|
BT_FreeAlloca[*CheckKind].reset(new BugType(
|
|
CheckNames[*CheckKind], "Free alloca()", categories::MemoryError));
|
|
|
|
auto R = std::make_unique<PathSensitiveBugReport>(
|
|
*BT_FreeAlloca[*CheckKind],
|
|
"Memory allocated by alloca() should not be deallocated", N);
|
|
R->markInteresting(ArgVal.getAsRegion());
|
|
R->addRange(Range);
|
|
C.emitReport(std::move(R));
|
|
}
|
|
}
|
|
|
|
void MallocChecker::HandleMismatchedDealloc(CheckerContext &C,
|
|
SourceRange Range,
|
|
const Expr *DeallocExpr,
|
|
const RefState *RS, SymbolRef Sym,
|
|
bool OwnershipTransferred) const {
|
|
|
|
if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
|
|
C.addSink();
|
|
return;
|
|
}
|
|
|
|
if (ExplodedNode *N = C.generateErrorNode()) {
|
|
if (!BT_MismatchedDealloc)
|
|
BT_MismatchedDealloc.reset(
|
|
new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
|
|
"Bad deallocator", categories::MemoryError));
|
|
|
|
SmallString<100> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
|
|
const Expr *AllocExpr = cast<Expr>(RS->getStmt());
|
|
SmallString<20> AllocBuf;
|
|
llvm::raw_svector_ostream AllocOs(AllocBuf);
|
|
SmallString<20> DeallocBuf;
|
|
llvm::raw_svector_ostream DeallocOs(DeallocBuf);
|
|
|
|
if (OwnershipTransferred) {
|
|
if (printMemFnName(DeallocOs, C, DeallocExpr))
|
|
os << DeallocOs.str() << " cannot";
|
|
else
|
|
os << "Cannot";
|
|
|
|
os << " take ownership of memory";
|
|
|
|
if (printMemFnName(AllocOs, C, AllocExpr))
|
|
os << " allocated by " << AllocOs.str();
|
|
} else {
|
|
os << "Memory";
|
|
if (printMemFnName(AllocOs, C, AllocExpr))
|
|
os << " allocated by " << AllocOs.str();
|
|
|
|
os << " should be deallocated by ";
|
|
printExpectedDeallocName(os, RS->getAllocationFamily());
|
|
|
|
if (printMemFnName(DeallocOs, C, DeallocExpr))
|
|
os << ", not " << DeallocOs.str();
|
|
}
|
|
|
|
auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc,
|
|
os.str(), N);
|
|
R->markInteresting(Sym);
|
|
R->addRange(Range);
|
|
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
|
|
C.emitReport(std::move(R));
|
|
}
|
|
}
|
|
|
|
void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal,
|
|
SourceRange Range, const Expr *DeallocExpr,
|
|
AllocationFamily Family,
|
|
const Expr *AllocExpr) const {
|
|
|
|
if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
|
|
C.addSink();
|
|
return;
|
|
}
|
|
|
|
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
|
|
if (!CheckKind.hasValue())
|
|
return;
|
|
|
|
ExplodedNode *N = C.generateErrorNode();
|
|
if (!N)
|
|
return;
|
|
|
|
if (!BT_OffsetFree[*CheckKind])
|
|
BT_OffsetFree[*CheckKind].reset(new BugType(
|
|
CheckNames[*CheckKind], "Offset free", categories::MemoryError));
|
|
|
|
SmallString<100> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
SmallString<20> AllocNameBuf;
|
|
llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
|
|
|
|
const MemRegion *MR = ArgVal.getAsRegion();
|
|
assert(MR && "Only MemRegion based symbols can have offset free errors");
|
|
|
|
RegionOffset Offset = MR->getAsOffset();
|
|
assert((Offset.isValid() &&
|
|
!Offset.hasSymbolicOffset() &&
|
|
Offset.getOffset() != 0) &&
|
|
"Only symbols with a valid offset can have offset free errors");
|
|
|
|
int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
|
|
|
|
os << "Argument to ";
|
|
if (!printMemFnName(os, C, DeallocExpr))
|
|
os << "deallocator";
|
|
os << " is offset by "
|
|
<< offsetBytes
|
|
<< " "
|
|
<< ((abs(offsetBytes) > 1) ? "bytes" : "byte")
|
|
<< " from the start of ";
|
|
if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr))
|
|
os << "memory allocated by " << AllocNameOs.str();
|
|
else
|
|
os << "allocated memory";
|
|
|
|
auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind],
|
|
os.str(), N);
|
|
R->markInteresting(MR->getBaseRegion());
|
|
R->addRange(Range);
|
|
C.emitReport(std::move(R));
|
|
}
|
|
|
|
void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range,
|
|
SymbolRef Sym) const {
|
|
|
|
if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] &&
|
|
!ChecksEnabled[CK_InnerPointerChecker]) {
|
|
C.addSink();
|
|
return;
|
|
}
|
|
|
|
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
|
|
if (!CheckKind.hasValue())
|
|
return;
|
|
|
|
if (ExplodedNode *N = C.generateErrorNode()) {
|
|
if (!BT_UseFree[*CheckKind])
|
|
BT_UseFree[*CheckKind].reset(new BugType(
|
|
CheckNames[*CheckKind], "Use-after-free", categories::MemoryError));
|
|
|
|
AllocationFamily AF =
|
|
C.getState()->get<RegionState>(Sym)->getAllocationFamily();
|
|
|
|
auto R = std::make_unique<PathSensitiveBugReport>(
|
|
*BT_UseFree[*CheckKind],
|
|
AF == AF_InnerBuffer
|
|
? "Inner pointer of container used after re/deallocation"
|
|
: "Use of memory after it is freed",
|
|
N);
|
|
|
|
R->markInteresting(Sym);
|
|
R->addRange(Range);
|
|
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
|
|
|
|
if (AF == AF_InnerBuffer)
|
|
R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym));
|
|
|
|
C.emitReport(std::move(R));
|
|
}
|
|
}
|
|
|
|
void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range,
|
|
bool Released, SymbolRef Sym,
|
|
SymbolRef PrevSym) const {
|
|
|
|
if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
|
|
C.addSink();
|
|
return;
|
|
}
|
|
|
|
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
|
|
if (!CheckKind.hasValue())
|
|
return;
|
|
|
|
if (ExplodedNode *N = C.generateErrorNode()) {
|
|
if (!BT_DoubleFree[*CheckKind])
|
|
BT_DoubleFree[*CheckKind].reset(new BugType(
|
|
CheckNames[*CheckKind], "Double free", categories::MemoryError));
|
|
|
|
auto R = std::make_unique<PathSensitiveBugReport>(
|
|
*BT_DoubleFree[*CheckKind],
|
|
(Released ? "Attempt to free released memory"
|
|
: "Attempt to free non-owned memory"),
|
|
N);
|
|
R->addRange(Range);
|
|
R->markInteresting(Sym);
|
|
if (PrevSym)
|
|
R->markInteresting(PrevSym);
|
|
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
|
|
C.emitReport(std::move(R));
|
|
}
|
|
}
|
|
|
|
void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
|
|
|
|
if (!ChecksEnabled[CK_NewDeleteChecker]) {
|
|
C.addSink();
|
|
return;
|
|
}
|
|
|
|
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
|
|
if (!CheckKind.hasValue())
|
|
return;
|
|
|
|
if (ExplodedNode *N = C.generateErrorNode()) {
|
|
if (!BT_DoubleDelete)
|
|
BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
|
|
"Double delete",
|
|
categories::MemoryError));
|
|
|
|
auto R = std::make_unique<PathSensitiveBugReport>(
|
|
*BT_DoubleDelete, "Attempt to delete released memory", N);
|
|
|
|
R->markInteresting(Sym);
|
|
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
|
|
C.emitReport(std::move(R));
|
|
}
|
|
}
|
|
|
|
void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range,
|
|
SymbolRef Sym) const {
|
|
|
|
if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
|
|
C.addSink();
|
|
return;
|
|
}
|
|
|
|
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
|
|
|
|
if (!CheckKind.hasValue())
|
|
return;
|
|
|
|
if (ExplodedNode *N = C.generateErrorNode()) {
|
|
if (!BT_UseZerroAllocated[*CheckKind])
|
|
BT_UseZerroAllocated[*CheckKind].reset(
|
|
new BugType(CheckNames[*CheckKind], "Use of zero allocated",
|
|
categories::MemoryError));
|
|
|
|
auto R = std::make_unique<PathSensitiveBugReport>(
|
|
*BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N);
|
|
|
|
R->addRange(Range);
|
|
if (Sym) {
|
|
R->markInteresting(Sym);
|
|
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
|
|
}
|
|
C.emitReport(std::move(R));
|
|
}
|
|
}
|
|
|
|
void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal,
|
|
SourceRange Range,
|
|
const Expr *FreeExpr,
|
|
AllocationFamily Family) const {
|
|
if (!ChecksEnabled[CK_MallocChecker]) {
|
|
C.addSink();
|
|
return;
|
|
}
|
|
|
|
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
|
|
if (!CheckKind.hasValue())
|
|
return;
|
|
|
|
if (ExplodedNode *N = C.generateErrorNode()) {
|
|
if (!BT_BadFree[*CheckKind])
|
|
BT_BadFree[*CheckKind].reset(new BugType(
|
|
CheckNames[*CheckKind], "Bad free", categories::MemoryError));
|
|
|
|
SmallString<100> Buf;
|
|
llvm::raw_svector_ostream Os(Buf);
|
|
|
|
const MemRegion *MR = ArgVal.getAsRegion();
|
|
while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
|
|
MR = ER->getSuperRegion();
|
|
|
|
Os << "Argument to ";
|
|
if (!printMemFnName(Os, C, FreeExpr))
|
|
Os << "deallocator";
|
|
|
|
Os << " is a function pointer";
|
|
|
|
auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
|
|
Os.str(), N);
|
|
R->markInteresting(MR);
|
|
R->addRange(Range);
|
|
C.emitReport(std::move(R));
|
|
}
|
|
}
|
|
|
|
ProgramStateRef
|
|
MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call,
|
|
bool ShouldFreeOnFail, ProgramStateRef State,
|
|
AllocationFamily Family, bool SuffixWithN) const {
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr());
|
|
|
|
if (SuffixWithN && CE->getNumArgs() < 3)
|
|
return nullptr;
|
|
else if (CE->getNumArgs() < 2)
|
|
return nullptr;
|
|
|
|
const Expr *arg0Expr = CE->getArg(0);
|
|
SVal Arg0Val = C.getSVal(arg0Expr);
|
|
if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
|
|
return nullptr;
|
|
DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
|
|
|
|
SValBuilder &svalBuilder = C.getSValBuilder();
|
|
|
|
DefinedOrUnknownSVal PtrEQ =
|
|
svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());
|
|
|
|
// Get the size argument.
|
|
const Expr *Arg1 = CE->getArg(1);
|
|
|
|
// Get the value of the size argument.
|
|
SVal TotalSize = C.getSVal(Arg1);
|
|
if (SuffixWithN)
|
|
TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2));
|
|
if (!TotalSize.getAs<DefinedOrUnknownSVal>())
|
|
return nullptr;
|
|
|
|
// Compare the size argument to 0.
|
|
DefinedOrUnknownSVal SizeZero =
|
|
svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(),
|
|
svalBuilder.makeIntValWithPtrWidth(0, false));
|
|
|
|
ProgramStateRef StatePtrIsNull, StatePtrNotNull;
|
|
std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
|
|
ProgramStateRef StateSizeIsZero, StateSizeNotZero;
|
|
std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
|
|
// We only assume exceptional states if they are definitely true; if the
|
|
// state is under-constrained, assume regular realloc behavior.
|
|
bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
|
|
bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
|
|
|
|
// If the ptr is NULL and the size is not 0, the call is equivalent to
|
|
// malloc(size).
|
|
if (PrtIsNull && !SizeIsZero) {
|
|
ProgramStateRef stateMalloc = MallocMemAux(
|
|
C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family);
|
|
return stateMalloc;
|
|
}
|
|
|
|
if (PrtIsNull && SizeIsZero)
|
|
return State;
|
|
|
|
assert(!PrtIsNull);
|
|
|
|
bool IsKnownToBeAllocated = false;
|
|
|
|
// If the size is 0, free the memory.
|
|
if (SizeIsZero)
|
|
// The semantics of the return value are:
|
|
// If size was equal to 0, either NULL or a pointer suitable to be passed
|
|
// to free() is returned. We just free the input pointer and do not add
|
|
// any constrains on the output pointer.
|
|
if (ProgramStateRef stateFree = FreeMemAux(
|
|
C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family))
|
|
return stateFree;
|
|
|
|
// Default behavior.
|
|
if (ProgramStateRef stateFree =
|
|
FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) {
|
|
|
|
ProgramStateRef stateRealloc =
|
|
MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family);
|
|
if (!stateRealloc)
|
|
return nullptr;
|
|
|
|
OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure;
|
|
if (ShouldFreeOnFail)
|
|
Kind = OAR_FreeOnFailure;
|
|
else if (!IsKnownToBeAllocated)
|
|
Kind = OAR_DoNotTrackAfterFailure;
|
|
|
|
// Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
|
|
SymbolRef FromPtr = arg0Val.getLocSymbolInBase();
|
|
SVal RetVal = C.getSVal(CE);
|
|
SymbolRef ToPtr = RetVal.getAsSymbol();
|
|
assert(FromPtr && ToPtr &&
|
|
"By this point, FreeMemAux and MallocMemAux should have checked "
|
|
"whether the argument or the return value is symbolic!");
|
|
|
|
// Record the info about the reallocated symbol so that we could properly
|
|
// process failed reallocation.
|
|
stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
|
|
ReallocPair(FromPtr, Kind));
|
|
// The reallocated symbol should stay alive for as long as the new symbol.
|
|
C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
|
|
return stateRealloc;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
ProgramStateRef MallocChecker::CallocMem(CheckerContext &C,
|
|
const CallEvent &Call,
|
|
ProgramStateRef State) {
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
if (Call.getNumArgs() < 2)
|
|
return nullptr;
|
|
|
|
SValBuilder &svalBuilder = C.getSValBuilder();
|
|
SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
|
|
SVal TotalSize =
|
|
evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
|
|
|
|
return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc);
|
|
}
|
|
|
|
MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N,
|
|
SymbolRef Sym,
|
|
CheckerContext &C) {
|
|
const LocationContext *LeakContext = N->getLocationContext();
|
|
// Walk the ExplodedGraph backwards and find the first node that referred to
|
|
// the tracked symbol.
|
|
const ExplodedNode *AllocNode = N;
|
|
const MemRegion *ReferenceRegion = nullptr;
|
|
|
|
while (N) {
|
|
ProgramStateRef State = N->getState();
|
|
if (!State->get<RegionState>(Sym))
|
|
break;
|
|
|
|
// Find the most recent expression bound to the symbol in the current
|
|
// context.
|
|
if (!ReferenceRegion) {
|
|
if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
|
|
SVal Val = State->getSVal(MR);
|
|
if (Val.getAsLocSymbol() == Sym) {
|
|
const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>();
|
|
// Do not show local variables belonging to a function other than
|
|
// where the error is reported.
|
|
if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame()))
|
|
ReferenceRegion = MR;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Allocation node, is the last node in the current or parent context in
|
|
// which the symbol was tracked.
|
|
const LocationContext *NContext = N->getLocationContext();
|
|
if (NContext == LeakContext ||
|
|
NContext->isParentOf(LeakContext))
|
|
AllocNode = N;
|
|
N = N->pred_empty() ? nullptr : *(N->pred_begin());
|
|
}
|
|
|
|
return LeakInfo(AllocNode, ReferenceRegion);
|
|
}
|
|
|
|
void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N,
|
|
CheckerContext &C) const {
|
|
|
|
if (!ChecksEnabled[CK_MallocChecker] &&
|
|
!ChecksEnabled[CK_NewDeleteLeaksChecker])
|
|
return;
|
|
|
|
const RefState *RS = C.getState()->get<RegionState>(Sym);
|
|
assert(RS && "cannot leak an untracked symbol");
|
|
AllocationFamily Family = RS->getAllocationFamily();
|
|
|
|
if (Family == AF_Alloca)
|
|
return;
|
|
|
|
Optional<MallocChecker::CheckKind>
|
|
CheckKind = getCheckIfTracked(Family, true);
|
|
|
|
if (!CheckKind.hasValue())
|
|
return;
|
|
|
|
assert(N);
|
|
if (!BT_Leak[*CheckKind]) {
|
|
// Leaks should not be reported if they are post-dominated by a sink:
|
|
// (1) Sinks are higher importance bugs.
|
|
// (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
|
|
// with __noreturn functions such as assert() or exit(). We choose not
|
|
// to report leaks on such paths.
|
|
BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak",
|
|
categories::MemoryError,
|
|
/*SuppressOnSink=*/true));
|
|
}
|
|
|
|
// Most bug reports are cached at the location where they occurred.
|
|
// With leaks, we want to unique them by the location where they were
|
|
// allocated, and only report a single path.
|
|
PathDiagnosticLocation LocUsedForUniqueing;
|
|
const ExplodedNode *AllocNode = nullptr;
|
|
const MemRegion *Region = nullptr;
|
|
std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
|
|
|
|
const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics();
|
|
if (AllocationStmt)
|
|
LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
|
|
C.getSourceManager(),
|
|
AllocNode->getLocationContext());
|
|
|
|
SmallString<200> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
if (Region && Region->canPrintPretty()) {
|
|
os << "Potential leak of memory pointed to by ";
|
|
Region->printPretty(os);
|
|
} else {
|
|
os << "Potential memory leak";
|
|
}
|
|
|
|
auto R = std::make_unique<PathSensitiveBugReport>(
|
|
*BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
|
|
AllocNode->getLocationContext()->getDecl());
|
|
R->markInteresting(Sym);
|
|
R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true));
|
|
C.emitReport(std::move(R));
|
|
}
|
|
|
|
void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
|
|
CheckerContext &C) const
|
|
{
|
|
ProgramStateRef state = C.getState();
|
|
RegionStateTy OldRS = state->get<RegionState>();
|
|
RegionStateTy::Factory &F = state->get_context<RegionState>();
|
|
|
|
RegionStateTy RS = OldRS;
|
|
SmallVector<SymbolRef, 2> Errors;
|
|
for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
|
|
if (SymReaper.isDead(I->first)) {
|
|
if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
|
|
Errors.push_back(I->first);
|
|
// Remove the dead symbol from the map.
|
|
RS = F.remove(RS, I->first);
|
|
}
|
|
}
|
|
|
|
if (RS == OldRS) {
|
|
// We shouldn't have touched other maps yet.
|
|
assert(state->get<ReallocPairs>() ==
|
|
C.getState()->get<ReallocPairs>());
|
|
assert(state->get<FreeReturnValue>() ==
|
|
C.getState()->get<FreeReturnValue>());
|
|
return;
|
|
}
|
|
|
|
// Cleanup the Realloc Pairs Map.
|
|
ReallocPairsTy RP = state->get<ReallocPairs>();
|
|
for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
|
|
if (SymReaper.isDead(I->first) ||
|
|
SymReaper.isDead(I->second.ReallocatedSym)) {
|
|
state = state->remove<ReallocPairs>(I->first);
|
|
}
|
|
}
|
|
|
|
// Cleanup the FreeReturnValue Map.
|
|
FreeReturnValueTy FR = state->get<FreeReturnValue>();
|
|
for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
|
|
if (SymReaper.isDead(I->first) ||
|
|
SymReaper.isDead(I->second)) {
|
|
state = state->remove<FreeReturnValue>(I->first);
|
|
}
|
|
}
|
|
|
|
// Generate leak node.
|
|
ExplodedNode *N = C.getPredecessor();
|
|
if (!Errors.empty()) {
|
|
static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
|
|
N = C.generateNonFatalErrorNode(C.getState(), &Tag);
|
|
if (N) {
|
|
for (SmallVectorImpl<SymbolRef>::iterator
|
|
I = Errors.begin(), E = Errors.end(); I != E; ++I) {
|
|
HandleLeak(*I, N, C);
|
|
}
|
|
}
|
|
}
|
|
|
|
C.addTransition(state->set<RegionState>(RS), N);
|
|
}
|
|
|
|
void MallocChecker::checkPreCall(const CallEvent &Call,
|
|
CheckerContext &C) const {
|
|
|
|
if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) {
|
|
const CXXDeleteExpr *DE = DC->getOriginExpr();
|
|
|
|
if (!ChecksEnabled[CK_NewDeleteChecker])
|
|
if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
|
|
checkUseAfterFree(Sym, C, DE->getArgument());
|
|
|
|
if (!isStandardNewDelete(DC->getDecl()))
|
|
return;
|
|
|
|
ProgramStateRef State = C.getState();
|
|
bool IsKnownToBeAllocated;
|
|
State = FreeMemAux(C, DE->getArgument(), Call, State,
|
|
/*Hold*/ false, IsKnownToBeAllocated,
|
|
(DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew));
|
|
|
|
C.addTransition(State);
|
|
return;
|
|
}
|
|
|
|
if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) {
|
|
SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
|
|
if (!Sym || checkDoubleDelete(Sym, C))
|
|
return;
|
|
}
|
|
|
|
// We will check for double free in the post visit.
|
|
if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
|
|
const FunctionDecl *FD = FC->getDecl();
|
|
if (!FD)
|
|
return;
|
|
|
|
if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call))
|
|
return;
|
|
}
|
|
|
|
// Check if the callee of a method is deleted.
|
|
if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
|
|
SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
|
|
if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
|
|
return;
|
|
}
|
|
|
|
// Check arguments for being used after free.
|
|
for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
|
|
SVal ArgSVal = Call.getArgSVal(I);
|
|
if (ArgSVal.getAs<Loc>()) {
|
|
SymbolRef Sym = ArgSVal.getAsSymbol();
|
|
if (!Sym)
|
|
continue;
|
|
if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MallocChecker::checkPreStmt(const ReturnStmt *S,
|
|
CheckerContext &C) const {
|
|
checkEscapeOnReturn(S, C);
|
|
}
|
|
|
|
// In the CFG, automatic destructors come after the return statement.
|
|
// This callback checks for returning memory that is freed by automatic
|
|
// destructors, as those cannot be reached in checkPreStmt().
|
|
void MallocChecker::checkEndFunction(const ReturnStmt *S,
|
|
CheckerContext &C) const {
|
|
checkEscapeOnReturn(S, C);
|
|
}
|
|
|
|
void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S,
|
|
CheckerContext &C) const {
|
|
if (!S)
|
|
return;
|
|
|
|
const Expr *E = S->getRetValue();
|
|
if (!E)
|
|
return;
|
|
|
|
// Check if we are returning a symbol.
|
|
ProgramStateRef State = C.getState();
|
|
SVal RetVal = C.getSVal(E);
|
|
SymbolRef Sym = RetVal.getAsSymbol();
|
|
if (!Sym)
|
|
// If we are returning a field of the allocated struct or an array element,
|
|
// the callee could still free the memory.
|
|
// TODO: This logic should be a part of generic symbol escape callback.
|
|
if (const MemRegion *MR = RetVal.getAsRegion())
|
|
if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
|
|
if (const SymbolicRegion *BMR =
|
|
dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
|
|
Sym = BMR->getSymbol();
|
|
|
|
// Check if we are returning freed memory.
|
|
if (Sym)
|
|
checkUseAfterFree(Sym, C, E);
|
|
}
|
|
|
|
// TODO: Blocks should be either inlined or should call invalidate regions
|
|
// upon invocation. After that's in place, special casing here will not be
|
|
// needed.
|
|
void MallocChecker::checkPostStmt(const BlockExpr *BE,
|
|
CheckerContext &C) const {
|
|
|
|
// Scan the BlockDecRefExprs for any object the retain count checker
|
|
// may be tracking.
|
|
if (!BE->getBlockDecl()->hasCaptures())
|
|
return;
|
|
|
|
ProgramStateRef state = C.getState();
|
|
const BlockDataRegion *R =
|
|
cast<BlockDataRegion>(C.getSVal(BE).getAsRegion());
|
|
|
|
BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
|
|
E = R->referenced_vars_end();
|
|
|
|
if (I == E)
|
|
return;
|
|
|
|
SmallVector<const MemRegion*, 10> Regions;
|
|
const LocationContext *LC = C.getLocationContext();
|
|
MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
|
|
|
|
for ( ; I != E; ++I) {
|
|
const VarRegion *VR = I.getCapturedRegion();
|
|
if (VR->getSuperRegion() == R) {
|
|
VR = MemMgr.getVarRegion(VR->getDecl(), LC);
|
|
}
|
|
Regions.push_back(VR);
|
|
}
|
|
|
|
state =
|
|
state->scanReachableSymbols<StopTrackingCallback>(Regions).getState();
|
|
C.addTransition(state);
|
|
}
|
|
|
|
static bool isReleased(SymbolRef Sym, CheckerContext &C) {
|
|
assert(Sym);
|
|
const RefState *RS = C.getState()->get<RegionState>(Sym);
|
|
return (RS && RS->isReleased());
|
|
}
|
|
|
|
bool MallocChecker::suppressDeallocationsInSuspiciousContexts(
|
|
const CallEvent &Call, CheckerContext &C) const {
|
|
if (Call.getNumArgs() == 0)
|
|
return false;
|
|
|
|
StringRef FunctionStr = "";
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl()))
|
|
if (const Stmt *Body = FD->getBody())
|
|
if (Body->getBeginLoc().isValid())
|
|
FunctionStr =
|
|
Lexer::getSourceText(CharSourceRange::getTokenRange(
|
|
{FD->getBeginLoc(), Body->getBeginLoc()}),
|
|
C.getSourceManager(), C.getLangOpts());
|
|
|
|
// We do not model the Integer Set Library's retain-count based allocation.
|
|
if (!FunctionStr.contains("__isl_"))
|
|
return false;
|
|
|
|
ProgramStateRef State = C.getState();
|
|
|
|
for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments())
|
|
if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol())
|
|
if (const RefState *RS = State->get<RegionState>(Sym))
|
|
State = State->set<RegionState>(Sym, RefState::getEscaped(RS));
|
|
|
|
C.addTransition(State);
|
|
return true;
|
|
}
|
|
|
|
bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
|
|
const Stmt *S) const {
|
|
|
|
if (isReleased(Sym, C)) {
|
|
HandleUseAfterFree(C, S->getSourceRange(), Sym);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
|
|
const Stmt *S) const {
|
|
assert(Sym);
|
|
|
|
if (const RefState *RS = C.getState()->get<RegionState>(Sym)) {
|
|
if (RS->isAllocatedOfSizeZero())
|
|
HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym);
|
|
}
|
|
else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) {
|
|
HandleUseZeroAlloc(C, S->getSourceRange(), Sym);
|
|
}
|
|
}
|
|
|
|
bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
|
|
|
|
if (isReleased(Sym, C)) {
|
|
HandleDoubleDelete(C, Sym);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check if the location is a freed symbolic region.
|
|
void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
|
|
CheckerContext &C) const {
|
|
SymbolRef Sym = l.getLocSymbolInBase();
|
|
if (Sym) {
|
|
checkUseAfterFree(Sym, C, S);
|
|
checkUseZeroAllocated(Sym, C, S);
|
|
}
|
|
}
|
|
|
|
// If a symbolic region is assumed to NULL (or another constant), stop tracking
|
|
// it - assuming that allocation failed on this path.
|
|
ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
|
|
SVal Cond,
|
|
bool Assumption) const {
|
|
RegionStateTy RS = state->get<RegionState>();
|
|
for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
|
|
// If the symbol is assumed to be NULL, remove it from consideration.
|
|
ConstraintManager &CMgr = state->getConstraintManager();
|
|
ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
|
|
if (AllocFailed.isConstrainedTrue())
|
|
state = state->remove<RegionState>(I.getKey());
|
|
}
|
|
|
|
// Realloc returns 0 when reallocation fails, which means that we should
|
|
// restore the state of the pointer being reallocated.
|
|
ReallocPairsTy RP = state->get<ReallocPairs>();
|
|
for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
|
|
// If the symbol is assumed to be NULL, remove it from consideration.
|
|
ConstraintManager &CMgr = state->getConstraintManager();
|
|
ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
|
|
if (!AllocFailed.isConstrainedTrue())
|
|
continue;
|
|
|
|
SymbolRef ReallocSym = I.getData().ReallocatedSym;
|
|
if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
|
|
if (RS->isReleased()) {
|
|
switch (I.getData().Kind) {
|
|
case OAR_ToBeFreedAfterFailure:
|
|
state = state->set<RegionState>(ReallocSym,
|
|
RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
|
|
break;
|
|
case OAR_DoNotTrackAfterFailure:
|
|
state = state->remove<RegionState>(ReallocSym);
|
|
break;
|
|
default:
|
|
assert(I.getData().Kind == OAR_FreeOnFailure);
|
|
}
|
|
}
|
|
}
|
|
state = state->remove<ReallocPairs>(I.getKey());
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
|
|
const CallEvent *Call,
|
|
ProgramStateRef State,
|
|
SymbolRef &EscapingSymbol) const {
|
|
assert(Call);
|
|
EscapingSymbol = nullptr;
|
|
|
|
// For now, assume that any C++ or block call can free memory.
|
|
// TODO: If we want to be more optimistic here, we'll need to make sure that
|
|
// regions escape to C++ containers. They seem to do that even now, but for
|
|
// mysterious reasons.
|
|
if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
|
|
return true;
|
|
|
|
// Check Objective-C messages by selector name.
|
|
if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
|
|
// If it's not a framework call, or if it takes a callback, assume it
|
|
// can free memory.
|
|
if (!Call->isInSystemHeader() || Call->argumentsMayEscape())
|
|
return true;
|
|
|
|
// If it's a method we know about, handle it explicitly post-call.
|
|
// This should happen before the "freeWhenDone" check below.
|
|
if (isKnownDeallocObjCMethodName(*Msg))
|
|
return false;
|
|
|
|
// If there's a "freeWhenDone" parameter, but the method isn't one we know
|
|
// about, we can't be sure that the object will use free() to deallocate the
|
|
// memory, so we can't model it explicitly. The best we can do is use it to
|
|
// decide whether the pointer escapes.
|
|
if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
|
|
return *FreeWhenDone;
|
|
|
|
// If the first selector piece ends with "NoCopy", and there is no
|
|
// "freeWhenDone" parameter set to zero, we know ownership is being
|
|
// transferred. Again, though, we can't be sure that the object will use
|
|
// free() to deallocate the memory, so we can't model it explicitly.
|
|
StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
|
|
if (FirstSlot.endswith("NoCopy"))
|
|
return true;
|
|
|
|
// If the first selector starts with addPointer, insertPointer,
|
|
// or replacePointer, assume we are dealing with NSPointerArray or similar.
|
|
// This is similar to C++ containers (vector); we still might want to check
|
|
// that the pointers get freed by following the container itself.
|
|
if (FirstSlot.startswith("addPointer") ||
|
|
FirstSlot.startswith("insertPointer") ||
|
|
FirstSlot.startswith("replacePointer") ||
|
|
FirstSlot.equals("valueWithPointer")) {
|
|
return true;
|
|
}
|
|
|
|
// We should escape receiver on call to 'init'. This is especially relevant
|
|
// to the receiver, as the corresponding symbol is usually not referenced
|
|
// after the call.
|
|
if (Msg->getMethodFamily() == OMF_init) {
|
|
EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, assume that the method does not free memory.
|
|
// Most framework methods do not free memory.
|
|
return false;
|
|
}
|
|
|
|
// At this point the only thing left to handle is straight function calls.
|
|
const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
|
|
if (!FD)
|
|
return true;
|
|
|
|
// If it's one of the allocation functions we can reason about, we model
|
|
// its behavior explicitly.
|
|
if (isMemCall(*Call))
|
|
return false;
|
|
|
|
// If it's not a system call, assume it frees memory.
|
|
if (!Call->isInSystemHeader())
|
|
return true;
|
|
|
|
// White list the system functions whose arguments escape.
|
|
const IdentifierInfo *II = FD->getIdentifier();
|
|
if (!II)
|
|
return true;
|
|
StringRef FName = II->getName();
|
|
|
|
// White list the 'XXXNoCopy' CoreFoundation functions.
|
|
// We specifically check these before
|
|
if (FName.endswith("NoCopy")) {
|
|
// Look for the deallocator argument. We know that the memory ownership
|
|
// is not transferred only if the deallocator argument is
|
|
// 'kCFAllocatorNull'.
|
|
for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
|
|
const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
|
|
if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
|
|
StringRef DeallocatorName = DE->getFoundDecl()->getName();
|
|
if (DeallocatorName == "kCFAllocatorNull")
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Associating streams with malloced buffers. The pointer can escape if
|
|
// 'closefn' is specified (and if that function does free memory),
|
|
// but it will not if closefn is not specified.
|
|
// Currently, we do not inspect the 'closefn' function (PR12101).
|
|
if (FName == "funopen")
|
|
if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
|
|
return false;
|
|
|
|
// Do not warn on pointers passed to 'setbuf' when used with std streams,
|
|
// these leaks might be intentional when setting the buffer for stdio.
|
|
// http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
|
|
if (FName == "setbuf" || FName =="setbuffer" ||
|
|
FName == "setlinebuf" || FName == "setvbuf") {
|
|
if (Call->getNumArgs() >= 1) {
|
|
const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
|
|
if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
|
|
if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
|
|
if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// A bunch of other functions which either take ownership of a pointer or
|
|
// wrap the result up in a struct or object, meaning it can be freed later.
|
|
// (See RetainCountChecker.) Not all the parameters here are invalidated,
|
|
// but the Malloc checker cannot differentiate between them. The right way
|
|
// of doing this would be to implement a pointer escapes callback.
|
|
if (FName == "CGBitmapContextCreate" ||
|
|
FName == "CGBitmapContextCreateWithData" ||
|
|
FName == "CVPixelBufferCreateWithBytes" ||
|
|
FName == "CVPixelBufferCreateWithPlanarBytes" ||
|
|
FName == "OSAtomicEnqueue") {
|
|
return true;
|
|
}
|
|
|
|
if (FName == "postEvent" &&
|
|
FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
|
|
return true;
|
|
}
|
|
|
|
if (FName == "connectImpl" &&
|
|
FD->getQualifiedNameAsString() == "QObject::connectImpl") {
|
|
return true;
|
|
}
|
|
|
|
// Handle cases where we know a buffer's /address/ can escape.
|
|
// Note that the above checks handle some special cases where we know that
|
|
// even though the address escapes, it's still our responsibility to free the
|
|
// buffer.
|
|
if (Call->argumentsMayEscape())
|
|
return true;
|
|
|
|
// Otherwise, assume that the function does not free memory.
|
|
// Most system calls do not free the memory.
|
|
return false;
|
|
}
|
|
|
|
ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
|
|
const InvalidatedSymbols &Escaped,
|
|
const CallEvent *Call,
|
|
PointerEscapeKind Kind) const {
|
|
return checkPointerEscapeAux(State, Escaped, Call, Kind,
|
|
/*IsConstPointerEscape*/ false);
|
|
}
|
|
|
|
ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
|
|
const InvalidatedSymbols &Escaped,
|
|
const CallEvent *Call,
|
|
PointerEscapeKind Kind) const {
|
|
// If a const pointer escapes, it may not be freed(), but it could be deleted.
|
|
return checkPointerEscapeAux(State, Escaped, Call, Kind,
|
|
/*IsConstPointerEscape*/ true);
|
|
}
|
|
|
|
static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
|
|
return (RS->getAllocationFamily() == AF_CXXNewArray ||
|
|
RS->getAllocationFamily() == AF_CXXNew);
|
|
}
|
|
|
|
ProgramStateRef MallocChecker::checkPointerEscapeAux(
|
|
ProgramStateRef State, const InvalidatedSymbols &Escaped,
|
|
const CallEvent *Call, PointerEscapeKind Kind,
|
|
bool IsConstPointerEscape) const {
|
|
// If we know that the call does not free memory, or we want to process the
|
|
// call later, keep tracking the top level arguments.
|
|
SymbolRef EscapingSymbol = nullptr;
|
|
if (Kind == PSK_DirectEscapeOnCall &&
|
|
!mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
|
|
EscapingSymbol) &&
|
|
!EscapingSymbol) {
|
|
return State;
|
|
}
|
|
|
|
for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
|
|
E = Escaped.end();
|
|
I != E; ++I) {
|
|
SymbolRef sym = *I;
|
|
|
|
if (EscapingSymbol && EscapingSymbol != sym)
|
|
continue;
|
|
|
|
if (const RefState *RS = State->get<RegionState>(sym))
|
|
if (RS->isAllocated() || RS->isAllocatedOfSizeZero())
|
|
if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS))
|
|
State = State->set<RegionState>(sym, RefState::getEscaped(RS));
|
|
}
|
|
return State;
|
|
}
|
|
|
|
bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C,
|
|
SVal ArgVal) const {
|
|
if (!KernelZeroSizePtrValue)
|
|
KernelZeroSizePtrValue =
|
|
tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor());
|
|
|
|
const llvm::APSInt *ArgValKnown =
|
|
C.getSValBuilder().getKnownValue(State, ArgVal);
|
|
return ArgValKnown && *KernelZeroSizePtrValue &&
|
|
ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue;
|
|
}
|
|
|
|
static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
|
|
ProgramStateRef prevState) {
|
|
ReallocPairsTy currMap = currState->get<ReallocPairs>();
|
|
ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
|
|
|
|
for (const ReallocPairsTy::value_type &Pair : prevMap) {
|
|
SymbolRef sym = Pair.first;
|
|
if (!currMap.lookup(sym))
|
|
return sym;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) {
|
|
if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) {
|
|
StringRef N = II->getName();
|
|
if (N.contains_lower("ptr") || N.contains_lower("pointer")) {
|
|
if (N.contains_lower("ref") || N.contains_lower("cnt") ||
|
|
N.contains_lower("intrusive") || N.contains_lower("shared")) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N,
|
|
BugReporterContext &BRC,
|
|
PathSensitiveBugReport &BR) {
|
|
ProgramStateRef state = N->getState();
|
|
ProgramStateRef statePrev = N->getFirstPred()->getState();
|
|
|
|
const RefState *RSCurr = state->get<RegionState>(Sym);
|
|
const RefState *RSPrev = statePrev->get<RegionState>(Sym);
|
|
|
|
const Stmt *S = N->getStmtForDiagnostics();
|
|
// When dealing with containers, we sometimes want to give a note
|
|
// even if the statement is missing.
|
|
if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer))
|
|
return nullptr;
|
|
|
|
const LocationContext *CurrentLC = N->getLocationContext();
|
|
|
|
// If we find an atomic fetch_add or fetch_sub within the destructor in which
|
|
// the pointer was released (before the release), this is likely a destructor
|
|
// of a shared pointer.
|
|
// Because we don't model atomics, and also because we don't know that the
|
|
// original reference count is positive, we should not report use-after-frees
|
|
// on objects deleted in such destructors. This can probably be improved
|
|
// through better shared pointer modeling.
|
|
if (ReleaseDestructorLC) {
|
|
if (const auto *AE = dyn_cast<AtomicExpr>(S)) {
|
|
AtomicExpr::AtomicOp Op = AE->getOp();
|
|
if (Op == AtomicExpr::AO__c11_atomic_fetch_add ||
|
|
Op == AtomicExpr::AO__c11_atomic_fetch_sub) {
|
|
if (ReleaseDestructorLC == CurrentLC ||
|
|
ReleaseDestructorLC->isParentOf(CurrentLC)) {
|
|
BR.markInvalid(getTag(), S);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: We will eventually need to handle non-statement-based events
|
|
// (__attribute__((cleanup))).
|
|
|
|
// Find out if this is an interesting point and what is the kind.
|
|
StringRef Msg;
|
|
std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr;
|
|
SmallString<256> Buf;
|
|
llvm::raw_svector_ostream OS(Buf);
|
|
|
|
if (Mode == Normal) {
|
|
if (isAllocated(RSCurr, RSPrev, S)) {
|
|
Msg = "Memory is allocated";
|
|
StackHint = std::make_unique<StackHintGeneratorForSymbol>(
|
|
Sym, "Returned allocated memory");
|
|
} else if (isReleased(RSCurr, RSPrev, S)) {
|
|
const auto Family = RSCurr->getAllocationFamily();
|
|
switch (Family) {
|
|
case AF_Alloca:
|
|
case AF_Malloc:
|
|
case AF_CXXNew:
|
|
case AF_CXXNewArray:
|
|
case AF_IfNameIndex:
|
|
Msg = "Memory is released";
|
|
StackHint = std::make_unique<StackHintGeneratorForSymbol>(
|
|
Sym, "Returning; memory was released");
|
|
break;
|
|
case AF_InnerBuffer: {
|
|
const MemRegion *ObjRegion =
|
|
allocation_state::getContainerObjRegion(statePrev, Sym);
|
|
const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion);
|
|
QualType ObjTy = TypedRegion->getValueType();
|
|
OS << "Inner buffer of '" << ObjTy.getAsString() << "' ";
|
|
|
|
if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) {
|
|
OS << "deallocated by call to destructor";
|
|
StackHint = std::make_unique<StackHintGeneratorForSymbol>(
|
|
Sym, "Returning; inner buffer was deallocated");
|
|
} else {
|
|
OS << "reallocated by call to '";
|
|
const Stmt *S = RSCurr->getStmt();
|
|
if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) {
|
|
OS << MemCallE->getMethodDecl()->getDeclName();
|
|
} else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) {
|
|
OS << OpCallE->getDirectCallee()->getDeclName();
|
|
} else if (const auto *CallE = dyn_cast<CallExpr>(S)) {
|
|
auto &CEMgr = BRC.getStateManager().getCallEventManager();
|
|
CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC);
|
|
if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()))
|
|
OS << D->getDeclName();
|
|
else
|
|
OS << "unknown";
|
|
}
|
|
OS << "'";
|
|
StackHint = std::make_unique<StackHintGeneratorForSymbol>(
|
|
Sym, "Returning; inner buffer was reallocated");
|
|
}
|
|
Msg = OS.str();
|
|
break;
|
|
}
|
|
case AF_None:
|
|
llvm_unreachable("Unhandled allocation family!");
|
|
}
|
|
|
|
// See if we're releasing memory while inlining a destructor
|
|
// (or one of its callees). This turns on various common
|
|
// false positive suppressions.
|
|
bool FoundAnyDestructor = false;
|
|
for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) {
|
|
if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) {
|
|
if (isReferenceCountingPointerDestructor(DD)) {
|
|
// This immediately looks like a reference-counting destructor.
|
|
// We're bad at guessing the original reference count of the object,
|
|
// so suppress the report for now.
|
|
BR.markInvalid(getTag(), DD);
|
|
} else if (!FoundAnyDestructor) {
|
|
assert(!ReleaseDestructorLC &&
|
|
"There can be only one release point!");
|
|
// Suspect that it's a reference counting pointer destructor.
|
|
// On one of the next nodes might find out that it has atomic
|
|
// reference counting operations within it (see the code above),
|
|
// and if so, we'd conclude that it likely is a reference counting
|
|
// pointer destructor.
|
|
ReleaseDestructorLC = LC->getStackFrame();
|
|
// It is unlikely that releasing memory is delegated to a destructor
|
|
// inside a destructor of a shared pointer, because it's fairly hard
|
|
// to pass the information that the pointer indeed needs to be
|
|
// released into it. So we're only interested in the innermost
|
|
// destructor.
|
|
FoundAnyDestructor = true;
|
|
}
|
|
}
|
|
}
|
|
} else if (isRelinquished(RSCurr, RSPrev, S)) {
|
|
Msg = "Memory ownership is transferred";
|
|
StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, "");
|
|
} else if (hasReallocFailed(RSCurr, RSPrev, S)) {
|
|
Mode = ReallocationFailed;
|
|
Msg = "Reallocation failed";
|
|
StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>(
|
|
Sym, "Reallocation failed");
|
|
|
|
if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
|
|
// Is it possible to fail two reallocs WITHOUT testing in between?
|
|
assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
|
|
"We only support one failed realloc at a time.");
|
|
BR.markInteresting(sym);
|
|
FailedReallocSymbol = sym;
|
|
}
|
|
}
|
|
|
|
// We are in a special mode if a reallocation failed later in the path.
|
|
} else if (Mode == ReallocationFailed) {
|
|
assert(FailedReallocSymbol && "No symbol to look for.");
|
|
|
|
// Is this is the first appearance of the reallocated symbol?
|
|
if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
|
|
// We're at the reallocation point.
|
|
Msg = "Attempt to reallocate memory";
|
|
StackHint = std::make_unique<StackHintGeneratorForSymbol>(
|
|
Sym, "Returned reallocated memory");
|
|
FailedReallocSymbol = nullptr;
|
|
Mode = Normal;
|
|
}
|
|
}
|
|
|
|
if (Msg.empty()) {
|
|
assert(!StackHint);
|
|
return nullptr;
|
|
}
|
|
|
|
assert(StackHint);
|
|
|
|
// Generate the extra diagnostic.
|
|
PathDiagnosticLocation Pos;
|
|
if (!S) {
|
|
assert(RSCurr->getAllocationFamily() == AF_InnerBuffer);
|
|
auto PostImplCall = N->getLocation().getAs<PostImplicitCall>();
|
|
if (!PostImplCall)
|
|
return nullptr;
|
|
Pos = PathDiagnosticLocation(PostImplCall->getLocation(),
|
|
BRC.getSourceManager());
|
|
} else {
|
|
Pos = PathDiagnosticLocation(S, BRC.getSourceManager(),
|
|
N->getLocationContext());
|
|
}
|
|
|
|
auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true);
|
|
BR.addCallStackHint(P, std::move(StackHint));
|
|
return P;
|
|
}
|
|
|
|
void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL, const char *Sep) const {
|
|
|
|
RegionStateTy RS = State->get<RegionState>();
|
|
|
|
if (!RS.isEmpty()) {
|
|
Out << Sep << "MallocChecker :" << NL;
|
|
for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
|
|
const RefState *RefS = State->get<RegionState>(I.getKey());
|
|
AllocationFamily Family = RefS->getAllocationFamily();
|
|
Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
|
|
if (!CheckKind.hasValue())
|
|
CheckKind = getCheckIfTracked(Family, true);
|
|
|
|
I.getKey()->dumpToStream(Out);
|
|
Out << " : ";
|
|
I.getData().dump(Out);
|
|
if (CheckKind.hasValue())
|
|
Out << " (" << CheckNames[*CheckKind].getName() << ")";
|
|
Out << NL;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace clang {
|
|
namespace ento {
|
|
namespace allocation_state {
|
|
|
|
ProgramStateRef
|
|
markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) {
|
|
AllocationFamily Family = AF_InnerBuffer;
|
|
return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin));
|
|
}
|
|
|
|
} // end namespace allocation_state
|
|
} // end namespace ento
|
|
} // end namespace clang
|
|
|
|
// Intended to be used in InnerPointerChecker to register the part of
|
|
// MallocChecker connected to it.
|
|
void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) {
|
|
MallocChecker *checker = mgr.getChecker<MallocChecker>();
|
|
checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true;
|
|
checker->CheckNames[MallocChecker::CK_InnerPointerChecker] =
|
|
mgr.getCurrentCheckerName();
|
|
}
|
|
|
|
void ento::registerDynamicMemoryModeling(CheckerManager &mgr) {
|
|
auto *checker = mgr.registerChecker<MallocChecker>();
|
|
checker->ShouldIncludeOwnershipAnnotatedFunctions =
|
|
mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic");
|
|
}
|
|
|
|
bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) {
|
|
return true;
|
|
}
|
|
|
|
#define REGISTER_CHECKER(name) \
|
|
void ento::register##name(CheckerManager &mgr) { \
|
|
MallocChecker *checker = mgr.getChecker<MallocChecker>(); \
|
|
checker->ChecksEnabled[MallocChecker::CK_##name] = true; \
|
|
checker->CheckNames[MallocChecker::CK_##name] = \
|
|
mgr.getCurrentCheckerName(); \
|
|
} \
|
|
\
|
|
bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
|
|
|
|
REGISTER_CHECKER(MallocChecker)
|
|
REGISTER_CHECKER(NewDeleteChecker)
|
|
REGISTER_CHECKER(NewDeleteLeaksChecker)
|
|
REGISTER_CHECKER(MismatchedDeallocatorChecker)
|