362 lines
13 KiB
C++
362 lines
13 KiB
C++
//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines ArrayBoundCheckerV2, which is a path-sensitive check
|
|
// which looks for an out-of-bound array element access.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Taint.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
using namespace taint;
|
|
|
|
namespace {
|
|
class ArrayBoundCheckerV2 :
|
|
public Checker<check::Location> {
|
|
mutable std::unique_ptr<BuiltinBug> BT;
|
|
|
|
enum OOB_Kind { OOB_Precedes, OOB_Excedes, OOB_Tainted };
|
|
|
|
void reportOOB(CheckerContext &C, ProgramStateRef errorState, OOB_Kind kind,
|
|
std::unique_ptr<BugReporterVisitor> Visitor = nullptr) const;
|
|
|
|
public:
|
|
void checkLocation(SVal l, bool isLoad, const Stmt*S,
|
|
CheckerContext &C) const;
|
|
};
|
|
|
|
// FIXME: Eventually replace RegionRawOffset with this class.
|
|
class RegionRawOffsetV2 {
|
|
private:
|
|
const SubRegion *baseRegion;
|
|
SVal byteOffset;
|
|
|
|
RegionRawOffsetV2()
|
|
: baseRegion(nullptr), byteOffset(UnknownVal()) {}
|
|
|
|
public:
|
|
RegionRawOffsetV2(const SubRegion* base, SVal offset)
|
|
: baseRegion(base), byteOffset(offset) {}
|
|
|
|
NonLoc getByteOffset() const { return byteOffset.castAs<NonLoc>(); }
|
|
const SubRegion *getRegion() const { return baseRegion; }
|
|
|
|
static RegionRawOffsetV2 computeOffset(ProgramStateRef state,
|
|
SValBuilder &svalBuilder,
|
|
SVal location);
|
|
|
|
void dump() const;
|
|
void dumpToStream(raw_ostream &os) const;
|
|
};
|
|
}
|
|
|
|
static SVal computeExtentBegin(SValBuilder &svalBuilder,
|
|
const MemRegion *region) {
|
|
const MemSpaceRegion *SR = region->getMemorySpace();
|
|
if (SR->getKind() == MemRegion::UnknownSpaceRegionKind)
|
|
return UnknownVal();
|
|
else
|
|
return svalBuilder.makeZeroArrayIndex();
|
|
}
|
|
|
|
// TODO: once the constraint manager is smart enough to handle non simplified
|
|
// symbolic expressions remove this function. Note that this can not be used in
|
|
// the constraint manager as is, since this does not handle overflows. It is
|
|
// safe to assume, however, that memory offsets will not overflow.
|
|
static std::pair<NonLoc, nonloc::ConcreteInt>
|
|
getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
|
|
SValBuilder &svalBuilder) {
|
|
Optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
|
|
if (SymVal && SymVal->isExpression()) {
|
|
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
|
|
llvm::APSInt constant =
|
|
APSIntType(extent.getValue()).convert(SIE->getRHS());
|
|
switch (SIE->getOpcode()) {
|
|
case BO_Mul:
|
|
// The constant should never be 0 here, since it the result of scaling
|
|
// based on the size of a type which is never 0.
|
|
if ((extent.getValue() % constant) != 0)
|
|
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
|
|
else
|
|
return getSimplifiedOffsets(
|
|
nonloc::SymbolVal(SIE->getLHS()),
|
|
svalBuilder.makeIntVal(extent.getValue() / constant),
|
|
svalBuilder);
|
|
case BO_Add:
|
|
return getSimplifiedOffsets(
|
|
nonloc::SymbolVal(SIE->getLHS()),
|
|
svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
|
|
}
|
|
|
|
void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad,
|
|
const Stmt* LoadS,
|
|
CheckerContext &checkerContext) const {
|
|
|
|
// NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
|
|
// some new logic here that reasons directly about memory region extents.
|
|
// Once that logic is more mature, we can bring it back to assumeInBound()
|
|
// for all clients to use.
|
|
//
|
|
// The algorithm we are using here for bounds checking is to see if the
|
|
// memory access is within the extent of the base region. Since we
|
|
// have some flexibility in defining the base region, we can achieve
|
|
// various levels of conservatism in our buffer overflow checking.
|
|
ProgramStateRef state = checkerContext.getState();
|
|
|
|
SValBuilder &svalBuilder = checkerContext.getSValBuilder();
|
|
const RegionRawOffsetV2 &rawOffset =
|
|
RegionRawOffsetV2::computeOffset(state, svalBuilder, location);
|
|
|
|
if (!rawOffset.getRegion())
|
|
return;
|
|
|
|
NonLoc rawOffsetVal = rawOffset.getByteOffset();
|
|
|
|
// CHECK LOWER BOUND: Is byteOffset < extent begin?
|
|
// If so, we are doing a load/store
|
|
// before the first valid offset in the memory region.
|
|
|
|
SVal extentBegin = computeExtentBegin(svalBuilder, rawOffset.getRegion());
|
|
|
|
if (Optional<NonLoc> NV = extentBegin.getAs<NonLoc>()) {
|
|
if (NV->getAs<nonloc::ConcreteInt>()) {
|
|
std::pair<NonLoc, nonloc::ConcreteInt> simplifiedOffsets =
|
|
getSimplifiedOffsets(rawOffset.getByteOffset(),
|
|
NV->castAs<nonloc::ConcreteInt>(),
|
|
svalBuilder);
|
|
rawOffsetVal = simplifiedOffsets.first;
|
|
*NV = simplifiedOffsets.second;
|
|
}
|
|
|
|
SVal lowerBound = svalBuilder.evalBinOpNN(state, BO_LT, rawOffsetVal, *NV,
|
|
svalBuilder.getConditionType());
|
|
|
|
Optional<NonLoc> lowerBoundToCheck = lowerBound.getAs<NonLoc>();
|
|
if (!lowerBoundToCheck)
|
|
return;
|
|
|
|
ProgramStateRef state_precedesLowerBound, state_withinLowerBound;
|
|
std::tie(state_precedesLowerBound, state_withinLowerBound) =
|
|
state->assume(*lowerBoundToCheck);
|
|
|
|
// Are we constrained enough to definitely precede the lower bound?
|
|
if (state_precedesLowerBound && !state_withinLowerBound) {
|
|
reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, assume the constraint of the lower bound.
|
|
assert(state_withinLowerBound);
|
|
state = state_withinLowerBound;
|
|
}
|
|
|
|
do {
|
|
// CHECK UPPER BOUND: Is byteOffset >= size(baseRegion)? If so,
|
|
// we are doing a load/store after the last valid offset.
|
|
const MemRegion *MR = rawOffset.getRegion();
|
|
DefinedOrUnknownSVal Size = getDynamicSize(state, MR, svalBuilder);
|
|
if (!Size.getAs<NonLoc>())
|
|
break;
|
|
|
|
if (Size.getAs<nonloc::ConcreteInt>()) {
|
|
std::pair<NonLoc, nonloc::ConcreteInt> simplifiedOffsets =
|
|
getSimplifiedOffsets(rawOffset.getByteOffset(),
|
|
Size.castAs<nonloc::ConcreteInt>(), svalBuilder);
|
|
rawOffsetVal = simplifiedOffsets.first;
|
|
Size = simplifiedOffsets.second;
|
|
}
|
|
|
|
SVal upperbound = svalBuilder.evalBinOpNN(state, BO_GE, rawOffsetVal,
|
|
Size.castAs<NonLoc>(),
|
|
svalBuilder.getConditionType());
|
|
|
|
Optional<NonLoc> upperboundToCheck = upperbound.getAs<NonLoc>();
|
|
if (!upperboundToCheck)
|
|
break;
|
|
|
|
ProgramStateRef state_exceedsUpperBound, state_withinUpperBound;
|
|
std::tie(state_exceedsUpperBound, state_withinUpperBound) =
|
|
state->assume(*upperboundToCheck);
|
|
|
|
// If we are under constrained and the index variables are tainted, report.
|
|
if (state_exceedsUpperBound && state_withinUpperBound) {
|
|
SVal ByteOffset = rawOffset.getByteOffset();
|
|
if (isTainted(state, ByteOffset)) {
|
|
reportOOB(checkerContext, state_exceedsUpperBound, OOB_Tainted,
|
|
std::make_unique<TaintBugVisitor>(ByteOffset));
|
|
return;
|
|
}
|
|
} else if (state_exceedsUpperBound) {
|
|
// If we are constrained enough to definitely exceed the upper bound,
|
|
// report.
|
|
assert(!state_withinUpperBound);
|
|
reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes);
|
|
return;
|
|
}
|
|
|
|
assert(state_withinUpperBound);
|
|
state = state_withinUpperBound;
|
|
}
|
|
while (false);
|
|
|
|
checkerContext.addTransition(state);
|
|
}
|
|
|
|
void ArrayBoundCheckerV2::reportOOB(
|
|
CheckerContext &checkerContext, ProgramStateRef errorState, OOB_Kind kind,
|
|
std::unique_ptr<BugReporterVisitor> Visitor) const {
|
|
|
|
ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState);
|
|
if (!errorNode)
|
|
return;
|
|
|
|
if (!BT)
|
|
BT.reset(new BuiltinBug(this, "Out-of-bound access"));
|
|
|
|
// FIXME: This diagnostics are preliminary. We should get far better
|
|
// diagnostics for explaining buffer overruns.
|
|
|
|
SmallString<256> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
os << "Out of bound memory access ";
|
|
switch (kind) {
|
|
case OOB_Precedes:
|
|
os << "(accessed memory precedes memory block)";
|
|
break;
|
|
case OOB_Excedes:
|
|
os << "(access exceeds upper limit of memory block)";
|
|
break;
|
|
case OOB_Tainted:
|
|
os << "(index is tainted)";
|
|
break;
|
|
}
|
|
|
|
auto BR = std::make_unique<PathSensitiveBugReport>(*BT, os.str(), errorNode);
|
|
BR->addVisitor(std::move(Visitor));
|
|
checkerContext.emitReport(std::move(BR));
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
LLVM_DUMP_METHOD void RegionRawOffsetV2::dump() const {
|
|
dumpToStream(llvm::errs());
|
|
}
|
|
|
|
void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const {
|
|
os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}';
|
|
}
|
|
#endif
|
|
|
|
// Lazily computes a value to be used by 'computeOffset'. If 'val'
|
|
// is unknown or undefined, we lazily substitute '0'. Otherwise,
|
|
// return 'val'.
|
|
static inline SVal getValue(SVal val, SValBuilder &svalBuilder) {
|
|
return val.getAs<UndefinedVal>() ? svalBuilder.makeArrayIndex(0) : val;
|
|
}
|
|
|
|
// Scale a base value by a scaling factor, and return the scaled
|
|
// value as an SVal. Used by 'computeOffset'.
|
|
static inline SVal scaleValue(ProgramStateRef state,
|
|
NonLoc baseVal, CharUnits scaling,
|
|
SValBuilder &sb) {
|
|
return sb.evalBinOpNN(state, BO_Mul, baseVal,
|
|
sb.makeArrayIndex(scaling.getQuantity()),
|
|
sb.getArrayIndexType());
|
|
}
|
|
|
|
// Add an SVal to another, treating unknown and undefined values as
|
|
// summing to UnknownVal. Used by 'computeOffset'.
|
|
static SVal addValue(ProgramStateRef state, SVal x, SVal y,
|
|
SValBuilder &svalBuilder) {
|
|
// We treat UnknownVals and UndefinedVals the same here because we
|
|
// only care about computing offsets.
|
|
if (x.isUnknownOrUndef() || y.isUnknownOrUndef())
|
|
return UnknownVal();
|
|
|
|
return svalBuilder.evalBinOpNN(state, BO_Add, x.castAs<NonLoc>(),
|
|
y.castAs<NonLoc>(),
|
|
svalBuilder.getArrayIndexType());
|
|
}
|
|
|
|
/// Compute a raw byte offset from a base region. Used for array bounds
|
|
/// checking.
|
|
RegionRawOffsetV2 RegionRawOffsetV2::computeOffset(ProgramStateRef state,
|
|
SValBuilder &svalBuilder,
|
|
SVal location)
|
|
{
|
|
const MemRegion *region = location.getAsRegion();
|
|
SVal offset = UndefinedVal();
|
|
|
|
while (region) {
|
|
switch (region->getKind()) {
|
|
default: {
|
|
if (const SubRegion *subReg = dyn_cast<SubRegion>(region)) {
|
|
offset = getValue(offset, svalBuilder);
|
|
if (!offset.isUnknownOrUndef())
|
|
return RegionRawOffsetV2(subReg, offset);
|
|
}
|
|
return RegionRawOffsetV2();
|
|
}
|
|
case MemRegion::ElementRegionKind: {
|
|
const ElementRegion *elemReg = cast<ElementRegion>(region);
|
|
SVal index = elemReg->getIndex();
|
|
if (!index.getAs<NonLoc>())
|
|
return RegionRawOffsetV2();
|
|
QualType elemType = elemReg->getElementType();
|
|
// If the element is an incomplete type, go no further.
|
|
ASTContext &astContext = svalBuilder.getContext();
|
|
if (elemType->isIncompleteType())
|
|
return RegionRawOffsetV2();
|
|
|
|
// Update the offset.
|
|
offset = addValue(state,
|
|
getValue(offset, svalBuilder),
|
|
scaleValue(state,
|
|
index.castAs<NonLoc>(),
|
|
astContext.getTypeSizeInChars(elemType),
|
|
svalBuilder),
|
|
svalBuilder);
|
|
|
|
if (offset.isUnknownOrUndef())
|
|
return RegionRawOffsetV2();
|
|
|
|
region = elemReg->getSuperRegion();
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
return RegionRawOffsetV2();
|
|
}
|
|
|
|
void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
|
|
mgr.registerChecker<ArrayBoundCheckerV2>();
|
|
}
|
|
|
|
bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) {
|
|
return true;
|
|
}
|