llvm-for-llvmta/tools/clang/lib/Driver/ToolChains/AMDGPU.cpp

657 lines
24 KiB
C++

//===--- AMDGPU.cpp - AMDGPU ToolChain Implementations ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "CommonArgs.h"
#include "InputInfo.h"
#include "clang/Basic/TargetID.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/VirtualFileSystem.h"
using namespace clang::driver;
using namespace clang::driver::tools;
using namespace clang::driver::toolchains;
using namespace clang;
using namespace llvm::opt;
void RocmInstallationDetector::scanLibDevicePath(llvm::StringRef Path) {
assert(!Path.empty());
const StringRef Suffix(".bc");
const StringRef Suffix2(".amdgcn.bc");
std::error_code EC;
for (llvm::vfs::directory_iterator LI = D.getVFS().dir_begin(Path, EC), LE;
!EC && LI != LE; LI = LI.increment(EC)) {
StringRef FilePath = LI->path();
StringRef FileName = llvm::sys::path::filename(FilePath);
if (!FileName.endswith(Suffix))
continue;
StringRef BaseName;
if (FileName.endswith(Suffix2))
BaseName = FileName.drop_back(Suffix2.size());
else if (FileName.endswith(Suffix))
BaseName = FileName.drop_back(Suffix.size());
if (BaseName == "ocml") {
OCML = FilePath;
} else if (BaseName == "ockl") {
OCKL = FilePath;
} else if (BaseName == "opencl") {
OpenCL = FilePath;
} else if (BaseName == "hip") {
HIP = FilePath;
} else if (BaseName == "oclc_finite_only_off") {
FiniteOnly.Off = FilePath;
} else if (BaseName == "oclc_finite_only_on") {
FiniteOnly.On = FilePath;
} else if (BaseName == "oclc_daz_opt_on") {
DenormalsAreZero.On = FilePath;
} else if (BaseName == "oclc_daz_opt_off") {
DenormalsAreZero.Off = FilePath;
} else if (BaseName == "oclc_correctly_rounded_sqrt_on") {
CorrectlyRoundedSqrt.On = FilePath;
} else if (BaseName == "oclc_correctly_rounded_sqrt_off") {
CorrectlyRoundedSqrt.Off = FilePath;
} else if (BaseName == "oclc_unsafe_math_on") {
UnsafeMath.On = FilePath;
} else if (BaseName == "oclc_unsafe_math_off") {
UnsafeMath.Off = FilePath;
} else if (BaseName == "oclc_wavefrontsize64_on") {
WavefrontSize64.On = FilePath;
} else if (BaseName == "oclc_wavefrontsize64_off") {
WavefrontSize64.Off = FilePath;
} else {
// Process all bitcode filenames that look like
// ocl_isa_version_XXX.amdgcn.bc
const StringRef DeviceLibPrefix = "oclc_isa_version_";
if (!BaseName.startswith(DeviceLibPrefix))
continue;
StringRef IsaVersionNumber =
BaseName.drop_front(DeviceLibPrefix.size());
llvm::Twine GfxName = Twine("gfx") + IsaVersionNumber;
SmallString<8> Tmp;
LibDeviceMap.insert(
std::make_pair(GfxName.toStringRef(Tmp), FilePath.str()));
}
}
}
// Parse and extract version numbers from `.hipVersion`. Return `true` if
// the parsing fails.
bool RocmInstallationDetector::parseHIPVersionFile(llvm::StringRef V) {
SmallVector<StringRef, 4> VersionParts;
V.split(VersionParts, '\n');
unsigned Major = ~0U;
unsigned Minor = ~0U;
for (auto Part : VersionParts) {
auto Splits = Part.rtrim().split('=');
if (Splits.first == "HIP_VERSION_MAJOR") {
if (Splits.second.getAsInteger(0, Major))
return true;
} else if (Splits.first == "HIP_VERSION_MINOR") {
if (Splits.second.getAsInteger(0, Minor))
return true;
} else if (Splits.first == "HIP_VERSION_PATCH")
VersionPatch = Splits.second.str();
}
if (Major == ~0U || Minor == ~0U)
return true;
VersionMajorMinor = llvm::VersionTuple(Major, Minor);
DetectedVersion =
(Twine(Major) + "." + Twine(Minor) + "." + VersionPatch).str();
return false;
}
// For candidate specified by --rocm-path we do not do strict check.
SmallVector<RocmInstallationDetector::Candidate, 4>
RocmInstallationDetector::getInstallationPathCandidates() {
SmallVector<Candidate, 4> Candidates;
if (!RocmPathArg.empty()) {
Candidates.emplace_back(RocmPathArg.str());
return Candidates;
}
// Try to find relative to the compiler binary.
const char *InstallDir = D.getInstalledDir();
// Check both a normal Unix prefix position of the clang binary, as well as
// the Windows-esque layout the ROCm packages use with the host architecture
// subdirectory of bin.
// Strip off directory (usually bin)
StringRef ParentDir = llvm::sys::path::parent_path(InstallDir);
StringRef ParentName = llvm::sys::path::filename(ParentDir);
// Some builds use bin/{host arch}, so go up again.
if (ParentName == "bin") {
ParentDir = llvm::sys::path::parent_path(ParentDir);
ParentName = llvm::sys::path::filename(ParentDir);
}
// Some versions of the rocm llvm package install to /opt/rocm/llvm/bin
if (ParentName == "llvm")
ParentDir = llvm::sys::path::parent_path(ParentDir);
Candidates.emplace_back(ParentDir.str(), /*StrictChecking=*/true);
// Device library may be installed in clang resource directory.
Candidates.emplace_back(D.ResourceDir, /*StrictChecking=*/true);
Candidates.emplace_back(D.SysRoot + "/opt/rocm", /*StrictChecking=*/true);
return Candidates;
}
RocmInstallationDetector::RocmInstallationDetector(
const Driver &D, const llvm::Triple &HostTriple,
const llvm::opt::ArgList &Args, bool DetectHIPRuntime, bool DetectDeviceLib)
: D(D) {
RocmPathArg = Args.getLastArgValue(clang::driver::options::OPT_rocm_path_EQ);
RocmDeviceLibPathArg =
Args.getAllArgValues(clang::driver::options::OPT_rocm_device_lib_path_EQ);
if (auto *A = Args.getLastArg(clang::driver::options::OPT_hip_version_EQ)) {
HIPVersionArg = A->getValue();
unsigned Major = 0;
unsigned Minor = 0;
SmallVector<StringRef, 3> Parts;
HIPVersionArg.split(Parts, '.');
if (Parts.size())
Parts[0].getAsInteger(0, Major);
if (Parts.size() > 1)
Parts[1].getAsInteger(0, Minor);
if (Parts.size() > 2)
VersionPatch = Parts[2].str();
if (VersionPatch.empty())
VersionPatch = "0";
if (Major == 0 || Minor == 0)
D.Diag(diag::err_drv_invalid_value)
<< A->getAsString(Args) << HIPVersionArg;
VersionMajorMinor = llvm::VersionTuple(Major, Minor);
DetectedVersion =
(Twine(Major) + "." + Twine(Minor) + "." + VersionPatch).str();
} else {
VersionPatch = DefaultVersionPatch;
VersionMajorMinor =
llvm::VersionTuple(DefaultVersionMajor, DefaultVersionMinor);
DetectedVersion = (Twine(DefaultVersionMajor) + "." +
Twine(DefaultVersionMinor) + "." + VersionPatch)
.str();
}
if (DetectHIPRuntime)
detectHIPRuntime();
if (DetectDeviceLib)
detectDeviceLibrary();
}
void RocmInstallationDetector::detectDeviceLibrary() {
assert(LibDevicePath.empty());
if (!RocmDeviceLibPathArg.empty())
LibDevicePath = RocmDeviceLibPathArg[RocmDeviceLibPathArg.size() - 1];
else if (const char *LibPathEnv = ::getenv("HIP_DEVICE_LIB_PATH"))
LibDevicePath = LibPathEnv;
auto &FS = D.getVFS();
if (!LibDevicePath.empty()) {
// Maintain compatability with HIP flag/envvar pointing directly at the
// bitcode library directory. This points directly at the library path instead
// of the rocm root installation.
if (!FS.exists(LibDevicePath))
return;
scanLibDevicePath(LibDevicePath);
HasDeviceLibrary = allGenericLibsValid() && !LibDeviceMap.empty();
return;
}
// The install path situation in old versions of ROCm is a real mess, and
// use a different install layout. Multiple copies of the device libraries
// exist for each frontend project, and differ depending on which build
// system produced the packages. Standalone OpenCL builds also have a
// different directory structure from the ROCm OpenCL package.
auto Candidates = getInstallationPathCandidates();
for (const auto &Candidate : Candidates) {
auto CandidatePath = Candidate.Path;
// Check device library exists at the given path.
auto CheckDeviceLib = [&](StringRef Path) {
bool CheckLibDevice = (!NoBuiltinLibs || Candidate.StrictChecking);
if (CheckLibDevice && !FS.exists(Path))
return false;
scanLibDevicePath(Path);
if (!NoBuiltinLibs) {
// Check that the required non-target libraries are all available.
if (!allGenericLibsValid())
return false;
// Check that we have found at least one libdevice that we can link in
// if -nobuiltinlib hasn't been specified.
if (LibDeviceMap.empty())
return false;
}
return true;
};
// The possible structures are:
// - ${ROCM_ROOT}/amdgcn/bitcode/*
// - ${ROCM_ROOT}/lib/*
// - ${ROCM_ROOT}/lib/bitcode/*
// so try to detect these layouts.
static constexpr std::array<const char *, 2> SubDirsList[] = {
{"amdgcn", "bitcode"},
{"lib", ""},
{"lib", "bitcode"},
};
// Make a path by appending sub-directories to InstallPath.
auto MakePath = [&](const llvm::ArrayRef<const char *> &SubDirs) {
auto Path = CandidatePath;
for (auto SubDir : SubDirs)
llvm::sys::path::append(Path, SubDir);
return Path;
};
for (auto SubDirs : SubDirsList) {
LibDevicePath = MakePath(SubDirs);
HasDeviceLibrary = CheckDeviceLib(LibDevicePath);
if (HasDeviceLibrary)
return;
}
}
}
void RocmInstallationDetector::detectHIPRuntime() {
auto Candidates = getInstallationPathCandidates();
auto &FS = D.getVFS();
for (const auto &Candidate : Candidates) {
InstallPath = Candidate.Path;
if (InstallPath.empty() || !FS.exists(InstallPath))
continue;
BinPath = InstallPath;
llvm::sys::path::append(BinPath, "bin");
IncludePath = InstallPath;
llvm::sys::path::append(IncludePath, "include");
LibPath = InstallPath;
llvm::sys::path::append(LibPath, "lib");
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> VersionFile =
FS.getBufferForFile(BinPath + "/.hipVersion");
if (!VersionFile && Candidate.StrictChecking)
continue;
if (HIPVersionArg.empty() && VersionFile)
if (parseHIPVersionFile((*VersionFile)->getBuffer()))
continue;
HasHIPRuntime = true;
return;
}
HasHIPRuntime = false;
}
void RocmInstallationDetector::print(raw_ostream &OS) const {
if (hasHIPRuntime())
OS << "Found HIP installation: " << InstallPath << ", version "
<< DetectedVersion << '\n';
}
void RocmInstallationDetector::AddHIPIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {
bool UsesRuntimeWrapper = VersionMajorMinor > llvm::VersionTuple(3, 5);
if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
// HIP header includes standard library wrapper headers under clang
// cuda_wrappers directory. Since these wrapper headers include_next
// standard C++ headers, whereas libc++ headers include_next other clang
// headers. The include paths have to follow this order:
// - wrapper include path
// - standard C++ include path
// - other clang include path
// Since standard C++ and other clang include paths are added in other
// places after this function, here we only need to make sure wrapper
// include path is added.
//
// ROCm 3.5 does not fully support the wrapper headers. Therefore it needs
// a workaround.
SmallString<128> P(D.ResourceDir);
if (UsesRuntimeWrapper)
llvm::sys::path::append(P, "include", "cuda_wrappers");
CC1Args.push_back("-internal-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(P));
}
if (DriverArgs.hasArg(options::OPT_nogpuinc))
return;
if (!hasHIPRuntime()) {
D.Diag(diag::err_drv_no_hip_runtime);
return;
}
CC1Args.push_back("-internal-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(getIncludePath()));
if (UsesRuntimeWrapper)
CC1Args.append({"-include", "__clang_hip_runtime_wrapper.h"});
}
void amdgpu::Linker::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output,
const InputInfoList &Inputs,
const ArgList &Args,
const char *LinkingOutput) const {
std::string Linker = getToolChain().GetProgramPath(getShortName());
ArgStringList CmdArgs;
addLinkerCompressDebugSectionsOption(getToolChain(), Args, CmdArgs);
AddLinkerInputs(getToolChain(), Inputs, Args, CmdArgs, JA);
CmdArgs.push_back("-shared");
CmdArgs.push_back("-o");
CmdArgs.push_back(Output.getFilename());
C.addCommand(std::make_unique<Command>(
JA, *this, ResponseFileSupport::AtFileCurCP(), Args.MakeArgString(Linker),
CmdArgs, Inputs, Output));
}
void amdgpu::getAMDGPUTargetFeatures(const Driver &D,
const llvm::Triple &Triple,
const llvm::opt::ArgList &Args,
std::vector<StringRef> &Features) {
// Add target ID features to -target-feature options. No diagnostics should
// be emitted here since invalid target ID is diagnosed at other places.
StringRef TargetID = Args.getLastArgValue(options::OPT_mcpu_EQ);
if (!TargetID.empty()) {
llvm::StringMap<bool> FeatureMap;
auto OptionalGpuArch = parseTargetID(Triple, TargetID, &FeatureMap);
if (OptionalGpuArch) {
StringRef GpuArch = OptionalGpuArch.getValue();
// Iterate through all possible target ID features for the given GPU.
// If it is mapped to true, add +feature.
// If it is mapped to false, add -feature.
// If it is not in the map (default), do not add it
for (auto &&Feature : getAllPossibleTargetIDFeatures(Triple, GpuArch)) {
auto Pos = FeatureMap.find(Feature);
if (Pos == FeatureMap.end())
continue;
Features.push_back(Args.MakeArgStringRef(
(Twine(Pos->second ? "+" : "-") + Feature).str()));
}
}
}
if (Args.hasFlag(options::OPT_mwavefrontsize64,
options::OPT_mno_wavefrontsize64, false))
Features.push_back("+wavefrontsize64");
handleTargetFeaturesGroup(
Args, Features, options::OPT_m_amdgpu_Features_Group);
}
/// AMDGPU Toolchain
AMDGPUToolChain::AMDGPUToolChain(const Driver &D, const llvm::Triple &Triple,
const ArgList &Args)
: Generic_ELF(D, Triple, Args),
OptionsDefault(
{{options::OPT_O, "3"}, {options::OPT_cl_std_EQ, "CL1.2"}}) {
// Check code object version options. Emit warnings for legacy options
// and errors for the last invalid code object version options.
// It is done here to avoid repeated warning or error messages for
// each tool invocation.
(void)getOrCheckAMDGPUCodeObjectVersion(D, Args, /*Diagnose=*/true);
}
Tool *AMDGPUToolChain::buildLinker() const {
return new tools::amdgpu::Linker(*this);
}
DerivedArgList *
AMDGPUToolChain::TranslateArgs(const DerivedArgList &Args, StringRef BoundArch,
Action::OffloadKind DeviceOffloadKind) const {
DerivedArgList *DAL =
Generic_ELF::TranslateArgs(Args, BoundArch, DeviceOffloadKind);
const OptTable &Opts = getDriver().getOpts();
if (!DAL)
DAL = new DerivedArgList(Args.getBaseArgs());
for (Arg *A : Args) {
if (!shouldSkipArgument(A))
DAL->append(A);
}
checkTargetID(*DAL);
if (!Args.getLastArgValue(options::OPT_x).equals("cl"))
return DAL;
// Phase 1 (.cl -> .bc)
if (Args.hasArg(options::OPT_c) && Args.hasArg(options::OPT_emit_llvm)) {
DAL->AddFlagArg(nullptr, Opts.getOption(getTriple().isArch64Bit()
? options::OPT_m64
: options::OPT_m32));
// Have to check OPT_O4, OPT_O0 & OPT_Ofast separately
// as they defined that way in Options.td
if (!Args.hasArg(options::OPT_O, options::OPT_O0, options::OPT_O4,
options::OPT_Ofast))
DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_O),
getOptionDefault(options::OPT_O));
}
return DAL;
}
bool AMDGPUToolChain::getDefaultDenormsAreZeroForTarget(
llvm::AMDGPU::GPUKind Kind) {
// Assume nothing without a specific target.
if (Kind == llvm::AMDGPU::GK_NONE)
return false;
const unsigned ArchAttr = llvm::AMDGPU::getArchAttrAMDGCN(Kind);
// Default to enabling f32 denormals by default on subtargets where fma is
// fast with denormals
const bool BothDenormAndFMAFast =
(ArchAttr & llvm::AMDGPU::FEATURE_FAST_FMA_F32) &&
(ArchAttr & llvm::AMDGPU::FEATURE_FAST_DENORMAL_F32);
return !BothDenormAndFMAFast;
}
llvm::DenormalMode AMDGPUToolChain::getDefaultDenormalModeForType(
const llvm::opt::ArgList &DriverArgs, const JobAction &JA,
const llvm::fltSemantics *FPType) const {
// Denormals should always be enabled for f16 and f64.
if (!FPType || FPType != &llvm::APFloat::IEEEsingle())
return llvm::DenormalMode::getIEEE();
if (JA.getOffloadingDeviceKind() == Action::OFK_HIP ||
JA.getOffloadingDeviceKind() == Action::OFK_Cuda) {
auto Arch = getProcessorFromTargetID(getTriple(), JA.getOffloadingArch());
auto Kind = llvm::AMDGPU::parseArchAMDGCN(Arch);
if (FPType && FPType == &llvm::APFloat::IEEEsingle() &&
DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero,
options::OPT_fno_cuda_flush_denormals_to_zero,
getDefaultDenormsAreZeroForTarget(Kind)))
return llvm::DenormalMode::getPreserveSign();
return llvm::DenormalMode::getIEEE();
}
const StringRef GpuArch = getGPUArch(DriverArgs);
auto Kind = llvm::AMDGPU::parseArchAMDGCN(GpuArch);
// TODO: There are way too many flags that change this. Do we need to check
// them all?
bool DAZ = DriverArgs.hasArg(options::OPT_cl_denorms_are_zero) ||
getDefaultDenormsAreZeroForTarget(Kind);
// Outputs are flushed to zero (FTZ), preserving sign. Denormal inputs are
// also implicit treated as zero (DAZ).
return DAZ ? llvm::DenormalMode::getPreserveSign() :
llvm::DenormalMode::getIEEE();
}
bool AMDGPUToolChain::isWave64(const llvm::opt::ArgList &DriverArgs,
llvm::AMDGPU::GPUKind Kind) {
const unsigned ArchAttr = llvm::AMDGPU::getArchAttrAMDGCN(Kind);
bool HasWave32 = (ArchAttr & llvm::AMDGPU::FEATURE_WAVE32);
return !HasWave32 || DriverArgs.hasFlag(
options::OPT_mwavefrontsize64, options::OPT_mno_wavefrontsize64, false);
}
/// ROCM Toolchain
ROCMToolChain::ROCMToolChain(const Driver &D, const llvm::Triple &Triple,
const ArgList &Args)
: AMDGPUToolChain(D, Triple, Args) {
RocmInstallation.detectDeviceLibrary();
}
void AMDGPUToolChain::addClangTargetOptions(
const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args,
Action::OffloadKind DeviceOffloadingKind) const {
// Default to "hidden" visibility, as object level linking will not be
// supported for the foreseeable future.
if (!DriverArgs.hasArg(options::OPT_fvisibility_EQ,
options::OPT_fvisibility_ms_compat)) {
CC1Args.push_back("-fvisibility");
CC1Args.push_back("hidden");
CC1Args.push_back("-fapply-global-visibility-to-externs");
}
}
StringRef
AMDGPUToolChain::getGPUArch(const llvm::opt::ArgList &DriverArgs) const {
return getProcessorFromTargetID(
getTriple(), DriverArgs.getLastArgValue(options::OPT_mcpu_EQ));
}
void AMDGPUToolChain::checkTargetID(
const llvm::opt::ArgList &DriverArgs) const {
StringRef TargetID = DriverArgs.getLastArgValue(options::OPT_mcpu_EQ);
if (TargetID.empty())
return;
llvm::StringMap<bool> FeatureMap;
auto OptionalGpuArch = parseTargetID(getTriple(), TargetID, &FeatureMap);
if (!OptionalGpuArch) {
getDriver().Diag(clang::diag::err_drv_bad_target_id) << TargetID;
}
}
void ROCMToolChain::addClangTargetOptions(
const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args,
Action::OffloadKind DeviceOffloadingKind) const {
AMDGPUToolChain::addClangTargetOptions(DriverArgs, CC1Args,
DeviceOffloadingKind);
// For the OpenCL case where there is no offload target, accept -nostdlib to
// disable bitcode linking.
if (DeviceOffloadingKind == Action::OFK_None &&
DriverArgs.hasArg(options::OPT_nostdlib))
return;
if (DriverArgs.hasArg(options::OPT_nogpulib))
return;
if (!RocmInstallation.hasDeviceLibrary()) {
getDriver().Diag(diag::err_drv_no_rocm_device_lib) << 0;
return;
}
// Get the device name and canonicalize it
const StringRef GpuArch = getGPUArch(DriverArgs);
auto Kind = llvm::AMDGPU::parseArchAMDGCN(GpuArch);
const StringRef CanonArch = llvm::AMDGPU::getArchNameAMDGCN(Kind);
std::string LibDeviceFile = RocmInstallation.getLibDeviceFile(CanonArch);
if (LibDeviceFile.empty()) {
getDriver().Diag(diag::err_drv_no_rocm_device_lib) << 1 << GpuArch;
return;
}
bool Wave64 = isWave64(DriverArgs, Kind);
// TODO: There are way too many flags that change this. Do we need to check
// them all?
bool DAZ = DriverArgs.hasArg(options::OPT_cl_denorms_are_zero) ||
getDefaultDenormsAreZeroForTarget(Kind);
bool FiniteOnly = DriverArgs.hasArg(options::OPT_cl_finite_math_only);
bool UnsafeMathOpt =
DriverArgs.hasArg(options::OPT_cl_unsafe_math_optimizations);
bool FastRelaxedMath = DriverArgs.hasArg(options::OPT_cl_fast_relaxed_math);
bool CorrectSqrt =
DriverArgs.hasArg(options::OPT_cl_fp32_correctly_rounded_divide_sqrt);
// Add the OpenCL specific bitcode library.
CC1Args.push_back("-mlink-builtin-bitcode");
CC1Args.push_back(DriverArgs.MakeArgString(RocmInstallation.getOpenCLPath()));
// Add the generic set of libraries.
RocmInstallation.addCommonBitcodeLibCC1Args(
DriverArgs, CC1Args, LibDeviceFile, Wave64, DAZ, FiniteOnly,
UnsafeMathOpt, FastRelaxedMath, CorrectSqrt);
}
void RocmInstallationDetector::addCommonBitcodeLibCC1Args(
const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args,
StringRef LibDeviceFile, bool Wave64, bool DAZ, bool FiniteOnly,
bool UnsafeMathOpt, bool FastRelaxedMath, bool CorrectSqrt) const {
static const char LinkBitcodeFlag[] = "-mlink-builtin-bitcode";
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(getOCMLPath()));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(getOCKLPath()));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(getDenormalsAreZeroPath(DAZ)));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(
getUnsafeMathPath(UnsafeMathOpt || FastRelaxedMath)));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(
getFiniteOnlyPath(FiniteOnly || FastRelaxedMath)));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(
DriverArgs.MakeArgString(getCorrectlyRoundedSqrtPath(CorrectSqrt)));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(getWavefrontSize64Path(Wave64)));
CC1Args.push_back(LinkBitcodeFlag);
CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile));
}
bool AMDGPUToolChain::shouldSkipArgument(const llvm::opt::Arg *A) const {
Option O = A->getOption();
if (O.matches(options::OPT_fPIE) || O.matches(options::OPT_fpie))
return true;
return false;
}