llvm-for-llvmta/test/CodeGen/SystemZ/risbg-01.ll

589 lines
15 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; Test sequences that can use RISBG with a zeroed first operand.
; The tests here assume that RISBLG isn't available.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | FileCheck %s
; Test an extraction of bit 0 from a right-shifted value.
define i32 @f1(i32 %foo) {
; CHECK-LABEL: f1:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $r2l killed $r2l def $r2d
; CHECK-NEXT: risbg %r2, %r2, 63, 191, 54
; CHECK-NEXT: # kill: def $r2l killed $r2l killed $r2d
; CHECK-NEXT: br %r14
%shr = lshr i32 %foo, 10
%and = and i32 %shr, 1
ret i32 %and
}
; ...and again with i64.
define i64 @f2(i64 %foo) {
; CHECK-LABEL: f2:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 63, 191, 54
; CHECK-NEXT: br %r14
%shr = lshr i64 %foo, 10
%and = and i64 %shr, 1
ret i64 %and
}
; Test an extraction of other bits from a right-shifted value.
define i32 @f3(i32 %foo) {
; CHECK-LABEL: f3:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $r2l killed $r2l def $r2d
; CHECK-NEXT: risbg %r2, %r2, 60, 189, 42
; CHECK-NEXT: # kill: def $r2l killed $r2l killed $r2d
; CHECK-NEXT: br %r14
%shr = lshr i32 %foo, 22
%and = and i32 %shr, 12
ret i32 %and
}
; ...and again with i64.
define i64 @f4(i64 %foo) {
; CHECK-LABEL: f4:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 60, 189, 42
; CHECK-NEXT: br %r14
%shr = lshr i64 %foo, 22
%and = and i64 %shr, 12
ret i64 %and
}
; Test an extraction of most bits from a right-shifted value.
; The range should be reduced to exclude the zeroed high bits.
define i32 @f5(i32 %foo) {
; CHECK-LABEL: f5:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $r2l killed $r2l def $r2d
; CHECK-NEXT: risbg %r2, %r2, 34, 188, 62
; CHECK-NEXT: # kill: def $r2l killed $r2l killed $r2d
; CHECK-NEXT: br %r14
%shr = lshr i32 %foo, 2
%and = and i32 %shr, -8
ret i32 %and
}
; ...and again with i64.
define i64 @f6(i64 %foo) {
; CHECK-LABEL: f6:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 2, 188, 62
; CHECK-NEXT: br %r14
%shr = lshr i64 %foo, 2
%and = and i64 %shr, -8
ret i64 %and
}
; Try the next value up (mask ....1111001). This needs a separate shift
; and mask.
define i32 @f7(i32 %foo) {
; CHECK-LABEL: f7:
; CHECK: # %bb.0:
; CHECK-NEXT: srl %r2, 2
; CHECK-NEXT: nill %r2, 65529
; CHECK-NEXT: br %r14
%shr = lshr i32 %foo, 2
%and = and i32 %shr, -7
ret i32 %and
}
; ...and again with i64.
define i64 @f8(i64 %foo) {
; CHECK-LABEL: f8:
; CHECK: # %bb.0:
; CHECK-NEXT: srlg %r2, %r2, 2
; CHECK-NEXT: nill %r2, 65529
; CHECK-NEXT: br %r14
%shr = lshr i64 %foo, 2
%and = and i64 %shr, -7
ret i64 %and
}
; Test an extraction of bits from a left-shifted value. The range should
; be reduced to exclude the zeroed low bits.
define i32 @f9(i32 %foo) {
; CHECK-LABEL: f9:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $r2l killed $r2l def $r2d
; CHECK-NEXT: risbg %r2, %r2, 56, 189, 2
; CHECK-NEXT: # kill: def $r2l killed $r2l killed $r2d
; CHECK-NEXT: br %r14
%shr = shl i32 %foo, 2
%and = and i32 %shr, 255
ret i32 %and
}
; ...and again with i64.
define i64 @f10(i64 %foo) {
; CHECK-LABEL: f10:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 56, 189, 2
; CHECK-NEXT: br %r14
%shr = shl i64 %foo, 2
%and = and i64 %shr, 255
ret i64 %and
}
; Try a wrap-around mask (mask ....111100001111). This needs a separate shift
; and mask.
define i32 @f11(i32 %foo) {
; CHECK-LABEL: f11:
; CHECK: # %bb.0:
; CHECK-NEXT: sll %r2, 2
; CHECK-NEXT: nill %r2, 65295
; CHECK-NEXT: br %r14
%shr = shl i32 %foo, 2
%and = and i32 %shr, -241
ret i32 %and
}
; ...and again with i64.
define i64 @f12(i64 %foo) {
; CHECK-LABEL: f12:
; CHECK: # %bb.0:
; CHECK-NEXT: sllg %r2, %r2, 2
; CHECK-NEXT: nill %r2, 65295
; CHECK-NEXT: br %r14
%shr = shl i64 %foo, 2
%and = and i64 %shr, -241
ret i64 %and
}
; Test an extraction from a rotated value, no mask wraparound.
; This is equivalent to the lshr case, because the bits from the
; shl are not used.
define i32 @f13(i32 %foo) {
; CHECK-LABEL: f13:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $r2l killed $r2l def $r2d
; CHECK-NEXT: risbg %r2, %r2, 56, 188, 46
; CHECK-NEXT: # kill: def $r2l killed $r2l killed $r2d
; CHECK-NEXT: br %r14
%parta = shl i32 %foo, 14
%partb = lshr i32 %foo, 18
%rotl = or i32 %parta, %partb
%and = and i32 %rotl, 248
ret i32 %and
}
; ...and again with i64.
define i64 @f14(i64 %foo) {
; CHECK-LABEL: f14:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 56, 188, 14
; CHECK-NEXT: br %r14
%parta = shl i64 %foo, 14
%partb = lshr i64 %foo, 50
%rotl = or i64 %parta, %partb
%and = and i64 %rotl, 248
ret i64 %and
}
; Try a case in which only the bits from the shl are used.
define i32 @f15(i32 %foo) {
; CHECK-LABEL: f15:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $r2l killed $r2l def $r2d
; CHECK-NEXT: risbg %r2, %r2, 47, 177, 14
; CHECK-NEXT: # kill: def $r2l killed $r2l killed $r2d
; CHECK-NEXT: br %r14
%parta = shl i32 %foo, 14
%partb = lshr i32 %foo, 18
%rotl = or i32 %parta, %partb
%and = and i32 %rotl, 114688
ret i32 %and
}
; ...and again with i64.
define i64 @f16(i64 %foo) {
; CHECK-LABEL: f16:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 47, 177, 14
; CHECK-NEXT: br %r14
%parta = shl i64 %foo, 14
%partb = lshr i64 %foo, 50
%rotl = or i64 %parta, %partb
%and = and i64 %rotl, 114688
ret i64 %and
}
; Test a 32-bit rotate in which both parts of the OR are needed.
; This needs a separate shift and mask.
define i32 @f17(i32 %foo) {
; CHECK-LABEL: f17:
; CHECK: # %bb.0:
; CHECK-NEXT: rll %r2, %r2, 4
; CHECK-NEXT: nilf %r2, 126
; CHECK-NEXT: br %r14
%parta = shl i32 %foo, 4
%partb = lshr i32 %foo, 28
%rotl = or i32 %parta, %partb
%and = and i32 %rotl, 126
ret i32 %and
}
; ...and for i64, where RISBG should do the rotate too.
define i64 @f18(i64 %foo) {
; CHECK-LABEL: f18:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 57, 190, 4
; CHECK-NEXT: br %r14
%parta = shl i64 %foo, 4
%partb = lshr i64 %foo, 60
%rotl = or i64 %parta, %partb
%and = and i64 %rotl, 126
ret i64 %and
}
; Test an arithmetic shift right in which some of the sign bits are kept.
; This needs a separate shift and mask.
define i32 @f19(i32 %foo) {
; CHECK-LABEL: f19:
; CHECK: # %bb.0:
; CHECK-NEXT: sra %r2, 28
; CHECK-NEXT: nilf %r2, 30
; CHECK-NEXT: br %r14
%shr = ashr i32 %foo, 28
%and = and i32 %shr, 30
ret i32 %and
}
; ...and again with i64. In this case RISBG is the best way of doing the AND.
define i64 @f20(i64 %foo) {
; CHECK-LABEL: f20:
; CHECK: # %bb.0:
; CHECK-NEXT: srag %r0, %r2, 60
; CHECK-NEXT: risbg %r2, %r0, 59, 190, 0
; CHECK-NEXT: br %r14
%shr = ashr i64 %foo, 60
%and = and i64 %shr, 30
ret i64 %and
}
; Now try an arithmetic right shift in which the sign bits aren't needed.
; Introduce a second use of %shr so that the ashr doesn't decompose to
; an lshr.
; NOTE: the extra move to %r2 should not be needed (temporary FAIL)
define i32 @f21(i32 %foo, i32 *%dest) {
; CHECK-LABEL: f21:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $r2l killed $r2l def $r2d
; CHECK-NEXT: risbg %r0, %r2, 60, 190, 36
; CHECK-NEXT: lr %r1, %r2
; CHECK-NEXT: sra %r1, 28
; CHECK-NEXT: st %r1, 0(%r3)
; CHECK-NEXT: lr %r2, %r0
; CHECK-NEXT: br %r14
%shr = ashr i32 %foo, 28
store i32 %shr, i32 *%dest
%and = and i32 %shr, 14
ret i32 %and
}
; ...and again with i64.
define i64 @f22(i64 %foo, i64 *%dest) {
; CHECK-LABEL: f22:
; CHECK: # %bb.0:
; CHECK-NEXT: srag %r0, %r2, 60
; CHECK-NEXT: risbg %r2, %r2, 60, 190, 4
; CHECK-NEXT: stg %r0, 0(%r3)
; CHECK-NEXT: br %r14
%shr = ashr i64 %foo, 60
store i64 %shr, i64 *%dest
%and = and i64 %shr, 14
ret i64 %and
}
; Check that we use RISBG for shifted values even if the AND is a
; natural zero extension.
define i64 @f23(i64 %foo) {
; CHECK-LABEL: f23:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 56, 191, 62
; CHECK-NEXT: br %r14
%shr = lshr i64 %foo, 2
%and = and i64 %shr, 255
ret i64 %and
}
; Test a case where the AND comes before a rotate. This needs a separate
; mask and rotate.
define i32 @f24(i32 %foo) {
; CHECK-LABEL: f24:
; CHECK: # %bb.0:
; CHECK-NEXT: nilf %r2, 254
; CHECK-NEXT: rll %r2, %r2, 29
; CHECK-NEXT: br %r14
%and = and i32 %foo, 254
%parta = lshr i32 %and, 3
%partb = shl i32 %and, 29
%rotl = or i32 %parta, %partb
ret i32 %rotl
}
; ...and again with i64, where a single RISBG is enough.
define i64 @f25(i64 %foo) {
; CHECK-LABEL: f25:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 57, 187, 3
; CHECK-NEXT: br %r14
%and = and i64 %foo, 14
%parta = shl i64 %and, 3
%partb = lshr i64 %and, 61
%rotl = or i64 %parta, %partb
ret i64 %rotl
}
; Test a wrap-around case in which the AND comes before a rotate.
; This again needs a separate mask and rotate.
define i32 @f26(i32 %foo) {
; CHECK-LABEL: f26:
; CHECK: # %bb.0:
; CHECK-NEXT: nill %r2, 65487
; CHECK-NEXT: rll %r2, %r2, 5
; CHECK-NEXT: br %r14
%and = and i32 %foo, -49
%parta = shl i32 %and, 5
%partb = lshr i32 %and, 27
%rotl = or i32 %parta, %partb
ret i32 %rotl
}
; ...and again with i64, where a single RISBG is OK.
define i64 @f27(i64 %foo) {
; CHECK-LABEL: f27:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 55, 180, 5
; CHECK-NEXT: br %r14
%and = and i64 %foo, -49
%parta = shl i64 %and, 5
%partb = lshr i64 %and, 59
%rotl = or i64 %parta, %partb
ret i64 %rotl
}
; Test a case where the AND comes before a shift left.
define i32 @f28(i32 %foo) {
; CHECK-LABEL: f28:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $r2l killed $r2l def $r2d
; CHECK-NEXT: risbg %r2, %r2, 32, 173, 17
; CHECK-NEXT: # kill: def $r2l killed $r2l killed $r2d
; CHECK-NEXT: br %r14
%and = and i32 %foo, 32766
%shl = shl i32 %and, 17
ret i32 %shl
}
; ...and again with i64.
define i64 @f29(i64 %foo) {
; CHECK-LABEL: f29:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 0, 141, 49
; CHECK-NEXT: br %r14
%and = and i64 %foo, 32766
%shl = shl i64 %and, 49
ret i64 %shl
}
; Test the next shift up from f28, in which the mask should get shortened.
define i32 @f30(i32 %foo) {
; CHECK-LABEL: f30:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $r2l killed $r2l def $r2d
; CHECK-NEXT: risbg %r2, %r2, 32, 172, 18
; CHECK-NEXT: # kill: def $r2l killed $r2l killed $r2d
; CHECK-NEXT: br %r14
%and = and i32 %foo, 32766
%shl = shl i32 %and, 18
ret i32 %shl
}
; ...and again with i64.
define i64 @f31(i64 %foo) {
; CHECK-LABEL: f31:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 0, 140, 50
; CHECK-NEXT: br %r14
%and = and i64 %foo, 32766
%shl = shl i64 %and, 50
ret i64 %shl
}
; Test a wrap-around case in which the shift left comes after the AND.
; We can't use RISBG for the shift in that case.
define i32 @f32(i32 %foo) {
; CHECK-LABEL: f32:
; CHECK: # %bb.0:
; CHECK-NEXT: nilf %r2, 4194297
; CHECK-NEXT: sll %r2, 10
; CHECK-NEXT: br %r14
%and = and i32 %foo, -7
%shl = shl i32 %and, 10
ret i32 %shl
}
; ...and again with i64.
define i64 @f33(i64 %foo) {
; CHECK-LABEL: f33:
; CHECK: # %bb.0:
; CHECK-NEXT: llihf %r0, 4194303
; CHECK-NEXT: oilf %r0, 4294967289
; CHECK-NEXT: ngr %r0, %r2
; CHECK-NEXT: sllg %r2, %r0, 10
; CHECK-NEXT: br %r14
%and = and i64 %foo, -7
%shl = shl i64 %and, 10
ret i64 %shl
}
; Test a case where the AND comes before a shift right.
define i32 @f34(i32 %foo) {
; CHECK-LABEL: f34:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $r2l killed $r2l def $r2d
; CHECK-NEXT: risbg %r2, %r2, 57, 191, 55
; CHECK-NEXT: # kill: def $r2l killed $r2l killed $r2d
; CHECK-NEXT: br %r14
%and = and i32 %foo, 65535
%shl = lshr i32 %and, 9
ret i32 %shl
}
; ...and again with i64.
define i64 @f35(i64 %foo) {
; CHECK-LABEL: f35:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r2, %r2, 57, 191, 55
; CHECK-NEXT: br %r14
%and = and i64 %foo, 65535
%shl = lshr i64 %and, 9
ret i64 %shl
}
; Test a wrap-around case where the AND comes before a shift right.
; We can't use RISBG for the shift in that case.
define i32 @f36(i32 %foo) {
; CHECK-LABEL: f36:
; CHECK: # %bb.0:
; CHECK-NEXT: nill %r2, 65510
; CHECK-NEXT: srl %r2, 1
; CHECK-NEXT: br %r14
%and = and i32 %foo, -25
%shl = lshr i32 %and, 1
ret i32 %shl
}
; ...and again with i64.
define i64 @f37(i64 %foo) {
; CHECK-LABEL: f37:
; CHECK: # %bb.0:
; CHECK-NEXT: nill %r2, 65510
; CHECK-NEXT: srlg %r2, %r2, 1
; CHECK-NEXT: br %r14
%and = and i64 %foo, -25
%shl = lshr i64 %and, 1
ret i64 %shl
}
; Test a combination involving a large ASHR and a shift left. We can't
; use RISBG there.
define i64 @f38(i64 %foo) {
; CHECK-LABEL: f38:
; CHECK: # %bb.0:
; CHECK-NEXT: srag %r0, %r2, 32
; CHECK-NEXT: sllg %r2, %r0, 5
; CHECK-NEXT: br %r14
%ashr = ashr i64 %foo, 32
%shl = shl i64 %ashr, 5
ret i64 %shl
}
; Try a similar thing in which no shifted sign bits are kept.
define i64 @f39(i64 %foo, i64 *%dest) {
; CHECK-LABEL: f39:
; CHECK: # %bb.0:
; CHECK-NEXT: srag %r0, %r2, 35
; CHECK-NEXT: risbg %r2, %r2, 33, 189, 31
; CHECK-NEXT: stg %r0, 0(%r3)
; CHECK-NEXT: br %r14
%ashr = ashr i64 %foo, 35
store i64 %ashr, i64 *%dest
%shl = shl i64 %ashr, 2
%and = and i64 %shl, 2147483647
ret i64 %and
}
; ...and again with the next highest shift value, where one sign bit is kept.
define i64 @f40(i64 %foo, i64 *%dest) {
; CHECK-LABEL: f40:
; CHECK: # %bb.0:
; CHECK-NEXT: srag %r0, %r2, 36
; CHECK-NEXT: risbg %r2, %r0, 33, 189, 2
; CHECK-NEXT: stg %r0, 0(%r3)
; CHECK-NEXT: br %r14
%ashr = ashr i64 %foo, 36
store i64 %ashr, i64 *%dest
%shl = shl i64 %ashr, 2
%and = and i64 %shl, 2147483647
ret i64 %and
}
; Check a case where the result is zero-extended.
define i64 @f41(i32 %a) {
; CHECK-LABEL: f41:
; CHECK: # %bb.0:
; CHECK-NEXT: # kill: def $r2l killed $r2l def $r2d
; CHECK-NEXT: risbg %r2, %r2, 36, 191, 62
; CHECK-NEXT: br %r14
%shl = shl i32 %a, 2
%shr = lshr i32 %shl, 4
%ext = zext i32 %shr to i64
ret i64 %ext
}
; In this case the sign extension is converted to a pair of 32-bit shifts,
; which is then extended to 64 bits. We previously used the wrong bit size
; when testing whether the shifted-in bits of the shift right were significant.
define i64 @f42(i1 %x) {
; CHECK-LABEL: f42:
; CHECK: # %bb.0:
; CHECK-NEXT: nilf %r2, 1
; CHECK-NEXT: lcr %r0, %r2
; CHECK-NEXT: llgcr %r2, %r0
; CHECK-NEXT: br %r14
%ext = sext i1 %x to i8
%ext2 = zext i8 %ext to i64
ret i64 %ext2
}
; Check that we get the case where a 64-bit shift is used by a 32-bit and.
define signext i32 @f43(i64 %x) {
; CHECK-LABEL: f43:
; CHECK: # %bb.0:
; CHECK-NEXT: risbg %r0, %r2, 32, 189, 52
; CHECK-NEXT: lgfr %r2, %r0
; CHECK-NEXT: br %r14
%shr3 = lshr i64 %x, 12
%shr3.tr = trunc i64 %shr3 to i32
%conv = and i32 %shr3.tr, -4
ret i32 %conv
}
; Check that we don't get the case where the 32-bit and mask is not contiguous
define signext i32 @f44(i64 %x) {
; CHECK-LABEL: f44:
; CHECK: # %bb.0:
; CHECK-NEXT: srlg %r0, %r2, 12
; CHECK-NEXT: lghi %r2, 10
; CHECK-NEXT: ngr %r2, %r0
; CHECK-NEXT: br %r14
%shr4 = lshr i64 %x, 12
%conv = trunc i64 %shr4 to i32
%and = and i32 %conv, 10
ret i32 %and
}