; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -instsimplify -S -o - | FileCheck %s declare i32 @llvm.fshl.i32(i32, i32, i32) declare i32 @llvm.fshr.i32(i32, i32, i32) declare i7 @llvm.fshl.i7(i7, i7, i7) declare i7 @llvm.fshr.i7(i7, i7, i7) declare <4 x i8> @llvm.fshl.v4i8(<4 x i8>, <4 x i8>, <4 x i8>) declare <4 x i8> @llvm.fshr.v4i8(<4 x i8>, <4 x i8>, <4 x i8>) ; extract(concat(0x12345678, 0xABCDEF01) << 5) = 0x468ACF15 define i32 @fshl_i32() { ; CHECK-LABEL: @fshl_i32( ; CHECK-NEXT: ret i32 1183502101 ; %f = call i32 @llvm.fshl.i32(i32 305419896, i32 2882400001, i32 5) ret i32 %f } ; extract(concat(0x12345678, 0xABCDEF01) >> 5) = 0xC55E6F78 ; Try an oversized shift to test modulo functionality. define i32 @fshr_i32() { ; CHECK-LABEL: @fshr_i32( ; CHECK-NEXT: ret i32 -983666824 ; %f = call i32 @llvm.fshr.i32(i32 305419896, i32 2882400001, i32 37) ret i32 %f } ; Use a weird type. ; Try an oversized shift to test modulo functionality. ; extract(concat(0b1110000, 0b1111111) << 2) = 0b1000011 define i7 @fshl_i7() { ; CHECK-LABEL: @fshl_i7( ; CHECK-NEXT: ret i7 -61 ; %f = call i7 @llvm.fshl.i7(i7 112, i7 127, i7 9) ret i7 %f } ; extract(concat(0b1110000, 0b1111111) >> 2) = 0b0011111 ; Try an oversized shift to test modulo functionality. define i7 @fshr_i7() { ; CHECK-LABEL: @fshr_i7( ; CHECK-NEXT: ret i7 31 ; %f = call i7 @llvm.fshr.i7(i7 112, i7 127, i7 16) ret i7 %f } ; Vectors are folded by handling each scalar element individually, so this is the equivalent of 4 scalar tests: ; extract(concat(0x00, 0xFF) << 0) = 0x00 ; extract(concat(0xFF, 0x00) << 0) = 0xFF ; extract(concat(0x10, 0x55) << 1) = 0x20 ; extract(concat(0x11, 0xAA) << 2) = 0x46 define <4 x i8> @fshl_v4i8() { ; CHECK-LABEL: @fshl_v4i8( ; CHECK-NEXT: ret <4 x i8> ; %f = call <4 x i8> @llvm.fshl.v4i8(<4 x i8> , <4 x i8> , <4 x i8> ) ret <4 x i8> %f } ; Vectors are folded by handling each scalar element individually, so this is the equivalent of 4 scalar tests: ; extract(concat(0x00, 0xFF) >> 0) = 0xFF ; extract(concat(0xFF, 0x00) >> 0) = 0x00 ; extract(concat(0x10, 0x55) >> 1) = 0x2A ; extract(concat(0x11, 0xAA) >> 2) = 0x6A define <4 x i8> @fshr_v4i8() { ; CHECK-LABEL: @fshr_v4i8( ; CHECK-NEXT: ret <4 x i8> ; %f = call <4 x i8> @llvm.fshr.v4i8(<4 x i8> , <4 x i8> , <4 x i8> ) ret <4 x i8> %f } ; Undef handling define i32 @fshl_scalar_all_undef() { ; CHECK-LABEL: @fshl_scalar_all_undef( ; CHECK-NEXT: ret i32 undef ; %f = call i32 @llvm.fshl.i32(i32 undef, i32 undef, i32 undef) ret i32 %f } define i32 @fshr_scalar_all_undef() { ; CHECK-LABEL: @fshr_scalar_all_undef( ; CHECK-NEXT: ret i32 undef ; %f = call i32 @llvm.fshr.i32(i32 undef, i32 undef, i32 undef) ret i32 %f } define i32 @fshl_scalar_undef_shamt() { ; CHECK-LABEL: @fshl_scalar_undef_shamt( ; CHECK-NEXT: ret i32 1 ; %f = call i32 @llvm.fshl.i32(i32 1, i32 2, i32 undef) ret i32 %f } define i32 @fshr_scalar_undef_shamt() { ; CHECK-LABEL: @fshr_scalar_undef_shamt( ; CHECK-NEXT: ret i32 2 ; %f = call i32 @llvm.fshr.i32(i32 1, i32 2, i32 undef) ret i32 %f } define i32 @fshl_scalar_undef_ops() { ; CHECK-LABEL: @fshl_scalar_undef_ops( ; CHECK-NEXT: ret i32 undef ; %f = call i32 @llvm.fshl.i32(i32 undef, i32 undef, i32 7) ret i32 %f } define i32 @fshr_scalar_undef_ops() { ; CHECK-LABEL: @fshr_scalar_undef_ops( ; CHECK-NEXT: ret i32 undef ; %f = call i32 @llvm.fshr.i32(i32 undef, i32 undef, i32 7) ret i32 %f } define i32 @fshl_scalar_undef_op1_zero_shift() { ; CHECK-LABEL: @fshl_scalar_undef_op1_zero_shift( ; CHECK-NEXT: ret i32 undef ; %f = call i32 @llvm.fshl.i32(i32 undef, i32 1, i32 0) ret i32 %f } define i32 @fshl_scalar_undef_op2_zero_shift() { ; CHECK-LABEL: @fshl_scalar_undef_op2_zero_shift( ; CHECK-NEXT: ret i32 1 ; %f = call i32 @llvm.fshl.i32(i32 1, i32 undef, i32 32) ret i32 %f } define i32 @fshr_scalar_undef_op1_zero_shift() { ; CHECK-LABEL: @fshr_scalar_undef_op1_zero_shift( ; CHECK-NEXT: ret i32 1 ; %f = call i32 @llvm.fshr.i32(i32 undef, i32 1, i32 64) ret i32 %f } define i32 @fshr_scalar_undef_op2_zero_shift() { ; CHECK-LABEL: @fshr_scalar_undef_op2_zero_shift( ; CHECK-NEXT: ret i32 undef ; %f = call i32 @llvm.fshr.i32(i32 1, i32 undef, i32 0) ret i32 %f } define i32 @fshl_scalar_undef_op1_nonzero_shift() { ; CHECK-LABEL: @fshl_scalar_undef_op1_nonzero_shift( ; CHECK-NEXT: ret i32 255 ; %f = call i32 @llvm.fshl.i32(i32 undef, i32 -1, i32 8) ret i32 %f } define i32 @fshl_scalar_undef_op2_nonzero_shift() { ; CHECK-LABEL: @fshl_scalar_undef_op2_nonzero_shift( ; CHECK-NEXT: ret i32 -256 ; %f = call i32 @llvm.fshl.i32(i32 -1, i32 undef, i32 8) ret i32 %f } define i32 @fshr_scalar_undef_op1_nonzero_shift() { ; CHECK-LABEL: @fshr_scalar_undef_op1_nonzero_shift( ; CHECK-NEXT: ret i32 16777215 ; %f = call i32 @llvm.fshr.i32(i32 undef, i32 -1, i32 8) ret i32 %f } define i32 @fshr_scalar_undef_op2_nonzero_shift() { ; CHECK-LABEL: @fshr_scalar_undef_op2_nonzero_shift( ; CHECK-NEXT: ret i32 -16777216 ; %f = call i32 @llvm.fshr.i32(i32 -1, i32 undef, i32 8) ret i32 %f } ; Undef/Undef/Undef; 1/2/Undef; Undef/Undef/3; Undef/1/0 define <4 x i8> @fshl_vector_mix1() { ; CHECK-LABEL: @fshl_vector_mix1( ; CHECK-NEXT: ret <4 x i8> ; %f = call <4 x i8> @llvm.fshl.v4i8(<4 x i8> , <4 x i8> , <4 x i8> ) ret <4 x i8> %f } ; 1/Undef/8; Undef/-1/2; -1/Undef/2; 7/8/4 define <4 x i8> @fshl_vector_mix2() { ; CHECK-LABEL: @fshl_vector_mix2( ; CHECK-NEXT: ret <4 x i8> ; %f = call <4 x i8> @llvm.fshl.v4i8(<4 x i8> , <4 x i8> , <4 x i8> ) ret <4 x i8> %f } ; Undef/Undef/Undef; 1/2/Undef; Undef/Undef/3; Undef/1/0 define <4 x i8> @fshr_vector_mix1() { ; CHECK-LABEL: @fshr_vector_mix1( ; CHECK-NEXT: ret <4 x i8> ; %f = call <4 x i8> @llvm.fshr.v4i8(<4 x i8> , <4 x i8> , <4 x i8> ) ret <4 x i8> %f } ; 1/Undef/8; Undef/-1/2; -1/Undef/2; 7/8/4 define <4 x i8> @fshr_vector_mix2() { ; CHECK-LABEL: @fshr_vector_mix2( ; CHECK-NEXT: ret <4 x i8> ; %f = call <4 x i8> @llvm.fshr.v4i8(<4 x i8> , <4 x i8> , <4 x i8> ) ret <4 x i8> %f }