; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -instcombine -S | FileCheck %s declare void @use(i32) ; PR1949 define i1 @test1(i32 %a) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: [[C:%.*]] = icmp ugt i32 [[A:%.*]], -5 ; CHECK-NEXT: ret i1 [[C]] ; %b = add i32 %a, 4 %c = icmp ult i32 %b, 4 ret i1 %c } define <2 x i1> @test1vec(<2 x i32> %a) { ; CHECK-LABEL: @test1vec( ; CHECK-NEXT: [[C:%.*]] = icmp ugt <2 x i32> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add <2 x i32> %a, %c = icmp ult <2 x i32> %b, ret <2 x i1> %c } define i1 @test2(i32 %a) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[A:%.*]], 4 ; CHECK-NEXT: ret i1 [[C]] ; %b = sub i32 %a, 4 %c = icmp ugt i32 %b, -5 ret i1 %c } define <2 x i1> @test2vec(<2 x i32> %a) { ; CHECK-LABEL: @test2vec( ; CHECK-NEXT: [[C:%.*]] = icmp ult <2 x i32> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = sub <2 x i32> %a, %c = icmp ugt <2 x i32> %b, ret <2 x i1> %c } define i1 @test3(i32 %a) { ; CHECK-LABEL: @test3( ; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[A:%.*]], 2147483643 ; CHECK-NEXT: ret i1 [[C]] ; %b = add i32 %a, 4 %c = icmp slt i32 %b, 2147483652 ret i1 %c } define <2 x i1> @test3vec(<2 x i32> %a) { ; CHECK-LABEL: @test3vec( ; CHECK-NEXT: [[C:%.*]] = icmp sgt <2 x i32> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add <2 x i32> %a, %c = icmp slt <2 x i32> %b, ret <2 x i1> %c } define i1 @test4(i32 %a) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[A:%.*]], -4 ; CHECK-NEXT: ret i1 [[C]] ; %b = add i32 %a, 2147483652 %c = icmp sge i32 %b, 4 ret i1 %c } define { i32, i1 } @test4multiuse(i32 %a) { ; CHECK-LABEL: @test4multiuse( ; CHECK-NEXT: [[B:%.*]] = add nsw i32 [[A:%.*]], -2147483644 ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[A]], 2147483640 ; CHECK-NEXT: [[TMP:%.*]] = insertvalue { i32, i1 } undef, i32 [[B]], 0 ; CHECK-NEXT: [[RES:%.*]] = insertvalue { i32, i1 } [[TMP]], i1 [[C]], 1 ; CHECK-NEXT: ret { i32, i1 } [[RES]] ; %b = add nsw i32 %a, -2147483644 %c = icmp slt i32 %b, -4 %tmp = insertvalue { i32, i1 } undef, i32 %b, 0 %res = insertvalue { i32, i1 } %tmp, i1 %c, 1 ret { i32, i1 } %res } define <2 x i1> @test4vec(<2 x i32> %a) { ; CHECK-LABEL: @test4vec( ; CHECK-NEXT: [[C:%.*]] = icmp slt <2 x i32> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add <2 x i32> %a, %c = icmp sge <2 x i32> %b, ret <2 x i1> %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; This becomes equality because it's at the limit. define i1 @nsw_slt1(i8 %a) { ; CHECK-LABEL: @nsw_slt1( ; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[A:%.*]], -128 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, 100 %c = icmp slt i8 %b, -27 ret i1 %c } define <2 x i1> @nsw_slt1_splat_vec(<2 x i8> %a) { ; CHECK-LABEL: @nsw_slt1_splat_vec( ; CHECK-NEXT: [[C:%.*]] = icmp eq <2 x i8> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add nsw <2 x i8> %a, %c = icmp slt <2 x i8> %b, ret <2 x i1> %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; This becomes equality because it's at the limit. define i1 @nsw_slt2(i8 %a) { ; CHECK-LABEL: @nsw_slt2( ; CHECK-NEXT: [[C:%.*]] = icmp ne i8 [[A:%.*]], 127 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, -100 %c = icmp slt i8 %b, 27 ret i1 %c } define <2 x i1> @nsw_slt2_splat_vec(<2 x i8> %a) { ; CHECK-LABEL: @nsw_slt2_splat_vec( ; CHECK-NEXT: [[C:%.*]] = icmp ne <2 x i8> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add nsw <2 x i8> %a, %c = icmp slt <2 x i8> %b, ret <2 x i1> %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; Less than the limit, so the predicate doesn't change. define i1 @nsw_slt3(i8 %a) { ; CHECK-LABEL: @nsw_slt3( ; CHECK-NEXT: [[C:%.*]] = icmp slt i8 [[A:%.*]], -126 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, 100 %c = icmp slt i8 %b, -26 ret i1 %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; Less than the limit, so the predicate doesn't change. define i1 @nsw_slt4(i8 %a) { ; CHECK-LABEL: @nsw_slt4( ; CHECK-NEXT: [[C:%.*]] = icmp slt i8 [[A:%.*]], 126 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, -100 %c = icmp slt i8 %b, 26 ret i1 %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; Try sgt to make sure that works too. define i1 @nsw_sgt1(i8 %a) { ; CHECK-LABEL: @nsw_sgt1( ; CHECK-NEXT: [[C:%.*]] = icmp eq i8 [[A:%.*]], 127 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, -100 %c = icmp sgt i8 %b, 26 ret i1 %c } define <2 x i1> @nsw_sgt1_splat_vec(<2 x i8> %a) { ; CHECK-LABEL: @nsw_sgt1_splat_vec( ; CHECK-NEXT: [[C:%.*]] = icmp eq <2 x i8> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add nsw <2 x i8> %a, %c = icmp sgt <2 x i8> %b, ret <2 x i1> %c } define i1 @nsw_sgt2(i8 %a) { ; CHECK-LABEL: @nsw_sgt2( ; CHECK-NEXT: [[C:%.*]] = icmp sgt i8 [[A:%.*]], -126 ; CHECK-NEXT: ret i1 [[C]] ; %b = add nsw i8 %a, 100 %c = icmp sgt i8 %b, -26 ret i1 %c } define <2 x i1> @nsw_sgt2_splat_vec(<2 x i8> %a) { ; CHECK-LABEL: @nsw_sgt2_splat_vec( ; CHECK-NEXT: [[C:%.*]] = icmp sgt <2 x i8> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[C]] ; %b = add nsw <2 x i8> %a, %c = icmp sgt <2 x i8> %b, ret <2 x i1> %c } ; icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2), when C - C2 does not overflow. ; Comparison with 0 doesn't need special-casing. define i1 @slt_zero_add_nsw(i32 %a) { ; CHECK-LABEL: @slt_zero_add_nsw( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 [[A:%.*]], -1 ; CHECK-NEXT: ret i1 [[CMP]] ; %add = add nsw i32 %a, 1 %cmp = icmp slt i32 %add, 0 ret i1 %cmp } ; The same fold should work with vectors. define <2 x i1> @slt_zero_add_nsw_splat_vec(<2 x i8> %a) { ; CHECK-LABEL: @slt_zero_add_nsw_splat_vec( ; CHECK-NEXT: [[CMP:%.*]] = icmp slt <2 x i8> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[CMP]] ; %add = add nsw <2 x i8> %a, %cmp = icmp slt <2 x i8> %add, zeroinitializer ret <2 x i1> %cmp } ; Test the edges - instcombine should not interfere with simplification to constants. ; Constant subtraction does not overflow, but this is false. define i1 @nsw_slt3_ov_no(i8 %a) { ; CHECK-LABEL: @nsw_slt3_ov_no( ; CHECK-NEXT: ret i1 false ; %b = add nsw i8 %a, 100 %c = icmp slt i8 %b, -28 ret i1 %c } ; Test the edges - instcombine should not interfere with simplification to constants. ; Constant subtraction overflows. This is false. define i1 @nsw_slt4_ov(i8 %a) { ; CHECK-LABEL: @nsw_slt4_ov( ; CHECK-NEXT: ret i1 false ; %b = add nsw i8 %a, 100 %c = icmp slt i8 %b, -29 ret i1 %c } ; Test the edges - instcombine should not interfere with simplification to constants. ; Constant subtraction overflows. This is true. define i1 @nsw_slt5_ov(i8 %a) { ; CHECK-LABEL: @nsw_slt5_ov( ; CHECK-NEXT: ret i1 true ; %b = add nsw i8 %a, -100 %c = icmp slt i8 %b, 28 ret i1 %c } ; InstCombine should not thwart this opportunity to simplify completely. define i1 @slt_zero_add_nsw_signbit(i8 %x) { ; CHECK-LABEL: @slt_zero_add_nsw_signbit( ; CHECK-NEXT: ret i1 true ; %y = add nsw i8 %x, -128 %z = icmp slt i8 %y, 0 ret i1 %z } ; InstCombine should not thwart this opportunity to simplify completely. define i1 @slt_zero_add_nuw_signbit(i8 %x) { ; CHECK-LABEL: @slt_zero_add_nuw_signbit( ; CHECK-NEXT: ret i1 true ; %y = add nuw i8 %x, 128 %z = icmp slt i8 %y, 0 ret i1 %z } define i1 @reduce_add_ult(i32 %in) { ; CHECK-LABEL: @reduce_add_ult( ; CHECK-NEXT: [[A18:%.*]] = icmp ult i32 [[IN:%.*]], 9 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add nuw i32 %in, 3 %a18 = icmp ult i32 %a6, 12 ret i1 %a18 } define i1 @reduce_add_ugt(i32 %in) { ; CHECK-LABEL: @reduce_add_ugt( ; CHECK-NEXT: [[A18:%.*]] = icmp ugt i32 [[IN:%.*]], 9 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add nuw i32 %in, 3 %a18 = icmp ugt i32 %a6, 12 ret i1 %a18 } define i1 @reduce_add_ule(i32 %in) { ; CHECK-LABEL: @reduce_add_ule( ; CHECK-NEXT: [[A18:%.*]] = icmp ult i32 [[IN:%.*]], 10 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add nuw i32 %in, 3 %a18 = icmp ule i32 %a6, 12 ret i1 %a18 } define i1 @reduce_add_uge(i32 %in) { ; CHECK-LABEL: @reduce_add_uge( ; CHECK-NEXT: [[A18:%.*]] = icmp ugt i32 [[IN:%.*]], 8 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add nuw i32 %in, 3 %a18 = icmp uge i32 %a6, 12 ret i1 %a18 } define i1 @ult_add_ssubov(i32 %in) { ; CHECK-LABEL: @ult_add_ssubov( ; CHECK-NEXT: ret i1 false ; %a6 = add nuw i32 %in, 71 %a18 = icmp ult i32 %a6, 3 ret i1 %a18 } define i1 @ult_add_nonuw(i8 %in) { ; CHECK-LABEL: @ult_add_nonuw( ; CHECK-NEXT: [[A6:%.*]] = add i8 [[IN:%.*]], 71 ; CHECK-NEXT: [[A18:%.*]] = icmp ult i8 [[A6]], 12 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add i8 %in, 71 %a18 = icmp ult i8 %a6, 12 ret i1 %a18 } define i1 @uge_add_nonuw(i32 %in) { ; CHECK-LABEL: @uge_add_nonuw( ; CHECK-NEXT: [[A6:%.*]] = add i32 [[IN:%.*]], 3 ; CHECK-NEXT: [[A18:%.*]] = icmp ugt i32 [[A6]], 11 ; CHECK-NEXT: ret i1 [[A18]] ; %a6 = add i32 %in, 3 %a18 = icmp uge i32 %a6, 12 ret i1 %a18 } ; Test unsigned add overflow patterns. The div ops are only here to ; thwart complexity based canonicalization of the operand order. define i1 @op_ugt_sum_commute1(i8 %p1, i8 %p2) { ; CHECK-LABEL: @op_ugt_sum_commute1( ; CHECK-NEXT: [[X:%.*]] = sdiv i8 42, [[P1:%.*]] ; CHECK-NEXT: [[Y:%.*]] = sdiv i8 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i8 [[X]], -1 ; CHECK-NEXT: [[C:%.*]] = icmp ugt i8 [[Y]], [[TMP1]] ; CHECK-NEXT: ret i1 [[C]] ; %x = sdiv i8 42, %p1 %y = sdiv i8 42, %p2 %a = add i8 %x, %y %c = icmp ugt i8 %x, %a ret i1 %c } define <2 x i1> @op_ugt_sum_vec_commute2(<2 x i8> %p1, <2 x i8> %p2) { ; CHECK-LABEL: @op_ugt_sum_vec_commute2( ; CHECK-NEXT: [[X:%.*]] = sdiv <2 x i8> , [[P1:%.*]] ; CHECK-NEXT: [[Y:%.*]] = sdiv <2 x i8> , [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i8> [[X]], ; CHECK-NEXT: [[C:%.*]] = icmp ugt <2 x i8> [[Y]], [[TMP1]] ; CHECK-NEXT: ret <2 x i1> [[C]] ; %x = sdiv <2 x i8> , %p1 %y = sdiv <2 x i8> , %p2 %a = add <2 x i8> %y, %x %c = icmp ugt <2 x i8> %x, %a ret <2 x i1> %c } define i1 @sum_ugt_op_uses(i8 %p1, i8 %p2, i8* %p3) { ; CHECK-LABEL: @sum_ugt_op_uses( ; CHECK-NEXT: [[X:%.*]] = sdiv i8 42, [[P1:%.*]] ; CHECK-NEXT: [[Y:%.*]] = sdiv i8 42, [[P2:%.*]] ; CHECK-NEXT: [[A:%.*]] = add nsw i8 [[X]], [[Y]] ; CHECK-NEXT: store i8 [[A]], i8* [[P3:%.*]], align 1 ; CHECK-NEXT: [[C:%.*]] = icmp ugt i8 [[X]], [[A]] ; CHECK-NEXT: ret i1 [[C]] ; %x = sdiv i8 42, %p1 %y = sdiv i8 42, %p2 %a = add i8 %x, %y store i8 %a, i8* %p3 %c = icmp ugt i8 %x, %a ret i1 %c } define <2 x i1> @sum_ult_op_vec_commute1(<2 x i8> %p1, <2 x i8> %p2) { ; CHECK-LABEL: @sum_ult_op_vec_commute1( ; CHECK-NEXT: [[X:%.*]] = sdiv <2 x i8> , [[P1:%.*]] ; CHECK-NEXT: [[Y:%.*]] = sdiv <2 x i8> , [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i8> [[X]], ; CHECK-NEXT: [[C:%.*]] = icmp ugt <2 x i8> [[Y]], [[TMP1]] ; CHECK-NEXT: ret <2 x i1> [[C]] ; %x = sdiv <2 x i8> , %p1 %y = sdiv <2 x i8> , %p2 %a = add <2 x i8> %x, %y %c = icmp ult <2 x i8> %a, %x ret <2 x i1> %c } define i1 @sum_ult_op_commute2(i8 %p1, i8 %p2) { ; CHECK-LABEL: @sum_ult_op_commute2( ; CHECK-NEXT: [[X:%.*]] = sdiv i8 42, [[P1:%.*]] ; CHECK-NEXT: [[Y:%.*]] = sdiv i8 42, [[P2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i8 [[X]], -1 ; CHECK-NEXT: [[C:%.*]] = icmp ugt i8 [[Y]], [[TMP1]] ; CHECK-NEXT: ret i1 [[C]] ; %x = sdiv i8 42, %p1 %y = sdiv i8 42, %p2 %a = add i8 %y, %x %c = icmp ult i8 %a, %x ret i1 %c } define i1 @sum_ult_op_uses(i8 %x, i8 %y, i8* %p) { ; CHECK-LABEL: @sum_ult_op_uses( ; CHECK-NEXT: [[A:%.*]] = add i8 [[Y:%.*]], [[X:%.*]] ; CHECK-NEXT: store i8 [[A]], i8* [[P:%.*]], align 1 ; CHECK-NEXT: [[C:%.*]] = icmp ult i8 [[A]], [[X]] ; CHECK-NEXT: ret i1 [[C]] ; %a = add i8 %y, %x store i8 %a, i8* %p %c = icmp ult i8 %a, %x ret i1 %c } ; X + Z >s Y + Z -> X > Y if there is no overflow. define i1 @common_op_nsw(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: @common_op_nsw( ; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i1 [[C]] ; %lhs = add nsw i32 %x, %z %rhs = add nsw i32 %y, %z %c = icmp sgt i32 %lhs, %rhs ret i1 %c } define i1 @common_op_nsw_extra_uses(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: @common_op_nsw_extra_uses( ; CHECK-NEXT: [[LHS:%.*]] = add nsw i32 [[X:%.*]], [[Z:%.*]] ; CHECK-NEXT: call void @use(i32 [[LHS]]) ; CHECK-NEXT: [[RHS:%.*]] = add nsw i32 [[Y:%.*]], [[Z]] ; CHECK-NEXT: call void @use(i32 [[RHS]]) ; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[X]], [[Y]] ; CHECK-NEXT: ret i1 [[C]] ; %lhs = add nsw i32 %x, %z call void @use(i32 %lhs) %rhs = add nsw i32 %y, %z call void @use(i32 %rhs) %c = icmp sgt i32 %lhs, %rhs ret i1 %c } ; X + Z >u Z + Y -> X > Y if there is no overflow. define i1 @common_op_nuw(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: @common_op_nuw( ; CHECK-NEXT: [[C:%.*]] = icmp ugt i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i1 [[C]] ; %lhs = add nuw i32 %x, %z %rhs = add nuw i32 %z, %y %c = icmp ugt i32 %lhs, %rhs ret i1 %c } define i1 @common_op_nuw_extra_uses(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: @common_op_nuw_extra_uses( ; CHECK-NEXT: [[LHS:%.*]] = add nuw i32 [[X:%.*]], [[Z:%.*]] ; CHECK-NEXT: call void @use(i32 [[LHS]]) ; CHECK-NEXT: [[RHS:%.*]] = add nuw i32 [[Z]], [[Y:%.*]] ; CHECK-NEXT: call void @use(i32 [[RHS]]) ; CHECK-NEXT: [[C:%.*]] = icmp ugt i32 [[X]], [[Y]] ; CHECK-NEXT: ret i1 [[C]] ; %lhs = add nuw i32 %x, %z call void @use(i32 %lhs) %rhs = add nuw i32 %z, %y call void @use(i32 %rhs) %c = icmp ugt i32 %lhs, %rhs ret i1 %c } define i1 @common_op_nsw_commute(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: @common_op_nsw_commute( ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i1 [[C]] ; %lhs = add nsw i32 %z, %x %rhs = add nsw i32 %y, %z %c = icmp slt i32 %lhs, %rhs ret i1 %c } define i1 @common_op_nuw_commute(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: @common_op_nuw_commute( ; CHECK-NEXT: [[C:%.*]] = icmp ult i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i1 [[C]] ; %lhs = add nuw i32 %z, %x %rhs = add nuw i32 %z, %y %c = icmp ult i32 %lhs, %rhs ret i1 %c } ; X + Y > X -> Y > 0 if there is no overflow. define i1 @common_op_test29(i32 %x, i32 %y) { ; CHECK-LABEL: @common_op_test29( ; CHECK-NEXT: [[C:%.*]] = icmp sgt i32 [[Y:%.*]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %lhs = add nsw i32 %x, %y %c = icmp sgt i32 %lhs, %x ret i1 %c } ; X + Y > X -> Y > 0 if there is no overflow. define i1 @sum_nuw(i32 %x, i32 %y) { ; CHECK-LABEL: @sum_nuw( ; CHECK-NEXT: [[C:%.*]] = icmp ne i32 [[Y:%.*]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %lhs = add nuw i32 %x, %y %c = icmp ugt i32 %lhs, %x ret i1 %c } ; X > X + Y -> 0 > Y if there is no overflow. define i1 @sum_nsw_commute(i32 %x, i32 %y) { ; CHECK-LABEL: @sum_nsw_commute( ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[Y:%.*]], 0 ; CHECK-NEXT: ret i1 [[C]] ; %rhs = add nsw i32 %x, %y %c = icmp sgt i32 %x, %rhs ret i1 %c } ; X > X + Y -> 0 > Y if there is no overflow. define i1 @sum_nuw_commute(i32 %x, i32 %y) { ; CHECK-LABEL: @sum_nuw_commute( ; CHECK-NEXT: ret i1 false ; %rhs = add nuw i32 %x, %y %c = icmp ugt i32 %x, %rhs ret i1 %c } ; PR2698 - https://bugs.llvm.org/show_bug.cgi?id=2698 declare void @use1(i1) declare void @use8(i8) define void @bzip1(i8 %a, i8 %b, i8 %x) { ; CHECK-LABEL: @bzip1( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: call void @use1(i1 [[CMP]]) ; CHECK-NEXT: ret void ; %add1 = add i8 %a, %x %add2 = add i8 %b, %x %cmp = icmp eq i8 %add1, %add2 call void @use1(i1 %cmp) ret void } define void @bzip2(i8 %a, i8 %b, i8 %x) { ; CHECK-LABEL: @bzip2( ; CHECK-NEXT: [[ADD1:%.*]] = add i8 [[A:%.*]], [[X:%.*]] ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i8 [[A]], [[B:%.*]] ; CHECK-NEXT: call void @use1(i1 [[CMP]]) ; CHECK-NEXT: call void @use8(i8 [[ADD1]]) ; CHECK-NEXT: ret void ; %add1 = add i8 %a, %x %add2 = add i8 %b, %x %cmp = icmp eq i8 %add1, %add2 call void @use1(i1 %cmp) call void @use8(i8 %add1) ret void } define <2 x i1> @icmp_eq_add_undef(<2 x i32> %a) { ; CHECK-LABEL: @icmp_eq_add_undef( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq <2 x i32> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[CMP]] ; %add = add <2 x i32> %a, %cmp = icmp eq <2 x i32> %add, ret <2 x i1> %cmp } define <2 x i1> @icmp_eq_add_non_splat(<2 x i32> %a) { ; CHECK-LABEL: @icmp_eq_add_non_splat( ; CHECK-NEXT: [[CMP:%.*]] = icmp eq <2 x i32> [[A:%.*]], ; CHECK-NEXT: ret <2 x i1> [[CMP]] ; %add = add <2 x i32> %a, %cmp = icmp eq <2 x i32> %add, ret <2 x i1> %cmp } define <2 x i1> @icmp_eq_add_undef2(<2 x i32> %a) { ; CHECK-LABEL: @icmp_eq_add_undef2( ; CHECK-NEXT: [[ADD:%.*]] = add <2 x i32> [[A:%.*]], ; CHECK-NEXT: [[CMP:%.*]] = icmp eq <2 x i32> [[ADD]], ; CHECK-NEXT: ret <2 x i1> [[CMP]] ; %add = add <2 x i32> %a, %cmp = icmp eq <2 x i32> %add, ret <2 x i1> %cmp } define <2 x i1> @icmp_eq_add_non_splat2(<2 x i32> %a) { ; CHECK-LABEL: @icmp_eq_add_non_splat2( ; CHECK-NEXT: [[ADD:%.*]] = add <2 x i32> [[A:%.*]], ; CHECK-NEXT: [[CMP:%.*]] = icmp eq <2 x i32> [[ADD]], ; CHECK-NEXT: ret <2 x i1> [[CMP]] ; %add = add <2 x i32> %a, %cmp = icmp eq <2 x i32> %add, ret <2 x i1> %cmp }