; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc < %s -mtriple=i686-unknown-unknown -mattr=+sse | FileCheck %s --check-prefix=X32-SSE --check-prefix=X32-SSE1 ; RUN: llc < %s -mtriple=i686-unknown-unknown -mattr=+sse2 | FileCheck %s --check-prefix=X32-SSE --check-prefix=X32-SSE2 ; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=-sse2 | FileCheck %s --check-prefix=X64-SSE --check-prefix=X64-SSE1 ; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+sse2 | FileCheck %s --check-prefix=X64-SSE --check-prefix=X64-SSE2 ; FNEG is defined as subtraction from -0.0. ; This test verifies that we use an xor with a constant to flip the sign bits; no subtraction needed. define <4 x float> @t1(<4 x float> %Q) nounwind { ; X32-SSE-LABEL: t1: ; X32-SSE: # %bb.0: ; X32-SSE-NEXT: xorps {{\.LCPI.*}}, %xmm0 ; X32-SSE-NEXT: retl ; ; X64-SSE-LABEL: t1: ; X64-SSE: # %bb.0: ; X64-SSE-NEXT: xorps {{.*}}(%rip), %xmm0 ; X64-SSE-NEXT: retq %tmp = fsub <4 x float> , %Q ret <4 x float> %tmp } ; Possibly misplaced test, but since we're checking undef scenarios... define float @scalar_fsub_neg0_undef(float %x) nounwind { ; X32-SSE-LABEL: scalar_fsub_neg0_undef: ; X32-SSE: # %bb.0: ; X32-SSE-NEXT: fldz ; X32-SSE-NEXT: retl ; ; X64-SSE-LABEL: scalar_fsub_neg0_undef: ; X64-SSE: # %bb.0: ; X64-SSE-NEXT: retq %r = fsub float -0.0, undef ret float %r } define float @scalar_fneg_undef(float %x) nounwind { ; X32-SSE-LABEL: scalar_fneg_undef: ; X32-SSE: # %bb.0: ; X32-SSE-NEXT: fldz ; X32-SSE-NEXT: retl ; ; X64-SSE-LABEL: scalar_fneg_undef: ; X64-SSE: # %bb.0: ; X64-SSE-NEXT: retq %r = fneg float undef ret float %r } define <4 x float> @fsub_neg0_undef(<4 x float> %Q) nounwind { ; X32-SSE-LABEL: fsub_neg0_undef: ; X32-SSE: # %bb.0: ; X32-SSE-NEXT: retl ; ; X64-SSE-LABEL: fsub_neg0_undef: ; X64-SSE: # %bb.0: ; X64-SSE-NEXT: retq %r = fsub <4 x float> , undef ret <4 x float> %r } define <4 x float> @fneg_undef(<4 x float> %Q) nounwind { ; X32-SSE-LABEL: fneg_undef: ; X32-SSE: # %bb.0: ; X32-SSE-NEXT: retl ; ; X64-SSE-LABEL: fneg_undef: ; X64-SSE: # %bb.0: ; X64-SSE-NEXT: retq %r = fneg <4 x float> undef ret <4 x float> %r } define <4 x float> @fsub_neg0_undef_elts_undef(<4 x float> %x) { ; X32-SSE-LABEL: fsub_neg0_undef_elts_undef: ; X32-SSE: # %bb.0: ; X32-SSE-NEXT: retl ; ; X64-SSE-LABEL: fsub_neg0_undef_elts_undef: ; X64-SSE: # %bb.0: ; X64-SSE-NEXT: retq %r = fsub <4 x float> , undef ret <4 x float> %r } ; This test verifies that we generate an FP subtraction because "0.0 - x" is not an fneg. define <4 x float> @t2(<4 x float> %Q) nounwind { ; X32-SSE-LABEL: t2: ; X32-SSE: # %bb.0: ; X32-SSE-NEXT: xorps %xmm1, %xmm1 ; X32-SSE-NEXT: subps %xmm0, %xmm1 ; X32-SSE-NEXT: movaps %xmm1, %xmm0 ; X32-SSE-NEXT: retl ; ; X64-SSE-LABEL: t2: ; X64-SSE: # %bb.0: ; X64-SSE-NEXT: xorps %xmm1, %xmm1 ; X64-SSE-NEXT: subps %xmm0, %xmm1 ; X64-SSE-NEXT: movaps %xmm1, %xmm0 ; X64-SSE-NEXT: retq %tmp = fsub <4 x float> zeroinitializer, %Q ret <4 x float> %tmp } ; If we're bitcasting an integer to an FP vector, we should avoid the FPU/vector unit entirely. ; Make sure that we're flipping the sign bit and only the sign bit of each float. ; So instead of something like this: ; movd %rdi, %xmm0 ; xorps .LCPI2_0(%rip), %xmm0 ; ; We should generate: ; movabsq (put sign bit mask in integer register)) ; xorq (flip sign bits) ; movd (move to xmm return register) define <2 x float> @fneg_bitcast(i64 %i) nounwind { ; X32-SSE1-LABEL: fneg_bitcast: ; X32-SSE1: # %bb.0: ; X32-SSE1-NEXT: pushl %ebp ; X32-SSE1-NEXT: movl %esp, %ebp ; X32-SSE1-NEXT: andl $-16, %esp ; X32-SSE1-NEXT: subl $16, %esp ; X32-SSE1-NEXT: movl $-2147483648, %eax # imm = 0x80000000 ; X32-SSE1-NEXT: movl 12(%ebp), %ecx ; X32-SSE1-NEXT: xorl %eax, %ecx ; X32-SSE1-NEXT: movl %ecx, {{[0-9]+}}(%esp) ; X32-SSE1-NEXT: xorl 8(%ebp), %eax ; X32-SSE1-NEXT: movl %eax, (%esp) ; X32-SSE1-NEXT: movaps (%esp), %xmm0 ; X32-SSE1-NEXT: movl %ebp, %esp ; X32-SSE1-NEXT: popl %ebp ; X32-SSE1-NEXT: retl ; ; X32-SSE2-LABEL: fneg_bitcast: ; X32-SSE2: # %bb.0: ; X32-SSE2-NEXT: movl $-2147483648, %eax # imm = 0x80000000 ; X32-SSE2-NEXT: movl {{[0-9]+}}(%esp), %ecx ; X32-SSE2-NEXT: xorl %eax, %ecx ; X32-SSE2-NEXT: movd %ecx, %xmm1 ; X32-SSE2-NEXT: xorl {{[0-9]+}}(%esp), %eax ; X32-SSE2-NEXT: movd %eax, %xmm0 ; X32-SSE2-NEXT: punpckldq {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1] ; X32-SSE2-NEXT: retl ; ; X64-SSE1-LABEL: fneg_bitcast: ; X64-SSE1: # %bb.0: ; X64-SSE1-NEXT: movabsq $-9223372034707292160, %rax # imm = 0x8000000080000000 ; X64-SSE1-NEXT: xorq %rdi, %rax ; X64-SSE1-NEXT: movq %rax, -{{[0-9]+}}(%rsp) ; X64-SSE1-NEXT: movaps -{{[0-9]+}}(%rsp), %xmm0 ; X64-SSE1-NEXT: retq ; ; X64-SSE2-LABEL: fneg_bitcast: ; X64-SSE2: # %bb.0: ; X64-SSE2-NEXT: movabsq $-9223372034707292160, %rax # imm = 0x8000000080000000 ; X64-SSE2-NEXT: xorq %rdi, %rax ; X64-SSE2-NEXT: movq %rax, %xmm0 ; X64-SSE2-NEXT: retq %bitcast = bitcast i64 %i to <2 x float> %fneg = fsub <2 x float> , %bitcast ret <2 x float> %fneg } define <4 x float> @fneg_undef_elts_v4f32(<4 x float> %x) { ; X32-SSE-LABEL: fneg_undef_elts_v4f32: ; X32-SSE: # %bb.0: ; X32-SSE-NEXT: xorps {{\.LCPI.*}}, %xmm0 ; X32-SSE-NEXT: retl ; ; X64-SSE-LABEL: fneg_undef_elts_v4f32: ; X64-SSE: # %bb.0: ; X64-SSE-NEXT: xorps {{.*}}(%rip), %xmm0 ; X64-SSE-NEXT: retq %r = fsub <4 x float> , %x ret <4 x float> %r } ; This isn't fneg, but similarly check that (X - 0.0) is simplified. define <4 x float> @fsub0_undef_elts_v4f32(<4 x float> %x) { ; X32-SSE-LABEL: fsub0_undef_elts_v4f32: ; X32-SSE: # %bb.0: ; X32-SSE-NEXT: retl ; ; X64-SSE-LABEL: fsub0_undef_elts_v4f32: ; X64-SSE: # %bb.0: ; X64-SSE-NEXT: retq %r = fsub <4 x float> %x, ret <4 x float> %r } define <4 x float> @fneg(<4 x float> %Q) nounwind { ; X32-SSE-LABEL: fneg: ; X32-SSE: # %bb.0: ; X32-SSE-NEXT: xorps {{\.LCPI.*}}, %xmm0 ; X32-SSE-NEXT: retl ; ; X64-SSE-LABEL: fneg: ; X64-SSE: # %bb.0: ; X64-SSE-NEXT: xorps {{.*}}(%rip), %xmm0 ; X64-SSE-NEXT: retq %tmp = fneg <4 x float> %Q ret <4 x float> %tmp }