; RUN: llc < %s -asm-verbose=false -disable-wasm-fallthrough-return-opt -wasm-keep-registers | FileCheck %s ; Usually MIPS hosts uses a legacy (non IEEE 754-2008) encoding for NaNs. ; Tests like `nan_f32` failed in attempt to compare hard-coded IEEE 754-2008 ; NaN value and a legacy NaN value provided by a system. ; XFAIL: mips-, mipsel-, mips64-, mips64el- ; Test that basic immediates assemble as expected. target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128" target triple = "wasm32-unknown-unknown" ; CHECK-LABEL: zero_i32: ; CHECK-NEXT: .functype zero_i32 () -> (i32){{$}} ; CHECK-NEXT: i32.const $push[[NUM:[0-9]+]]=, 0{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define i32 @zero_i32() { ret i32 0 } ; CHECK-LABEL: one_i32: ; CHECK-NEXT: .functype one_i32 () -> (i32){{$}} ; CHECK-NEXT: i32.const $push[[NUM:[0-9]+]]=, 1{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define i32 @one_i32() { ret i32 1 } ; CHECK-LABEL: max_i32: ; CHECK-NEXT: .functype max_i32 () -> (i32){{$}} ; CHECK-NEXT: i32.const $push[[NUM:[0-9]+]]=, 2147483647{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define i32 @max_i32() { ret i32 2147483647 } ; CHECK-LABEL: min_i32: ; CHECK-NEXT: .functype min_i32 () -> (i32){{$}} ; CHECK-NEXT: i32.const $push[[NUM:[0-9]+]]=, -2147483648{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define i32 @min_i32() { ret i32 -2147483648 } ; CHECK-LABEL: zero_i64: ; CHECK-NEXT: .functype zero_i64 () -> (i64){{$}} ; CHECK-NEXT: i64.const $push[[NUM:[0-9]+]]=, 0{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define i64 @zero_i64() { ret i64 0 } ; CHECK-LABEL: one_i64: ; CHECK-NEXT: .functype one_i64 () -> (i64){{$}} ; CHECK-NEXT: i64.const $push[[NUM:[0-9]+]]=, 1{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define i64 @one_i64() { ret i64 1 } ; CHECK-LABEL: max_i64: ; CHECK-NEXT: .functype max_i64 () -> (i64){{$}} ; CHECK-NEXT: i64.const $push[[NUM:[0-9]+]]=, 9223372036854775807{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define i64 @max_i64() { ret i64 9223372036854775807 } ; CHECK-LABEL: min_i64: ; CHECK-NEXT: .functype min_i64 () -> (i64){{$}} ; CHECK-NEXT: i64.const $push[[NUM:[0-9]+]]=, -9223372036854775808{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define i64 @min_i64() { ret i64 -9223372036854775808 } ; CHECK-LABEL: negzero_f32: ; CHECK-NEXT: .functype negzero_f32 () -> (f32){{$}} ; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, -0x0p0{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define float @negzero_f32() { ret float -0.0 } ; CHECK-LABEL: zero_f32: ; CHECK-NEXT: .functype zero_f32 () -> (f32){{$}} ; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, 0x0p0{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define float @zero_f32() { ret float 0.0 } ; CHECK-LABEL: one_f32: ; CHECK-NEXT: .functype one_f32 () -> (f32){{$}} ; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, 0x1p0{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define float @one_f32() { ret float 1.0 } ; CHECK-LABEL: two_f32: ; CHECK-NEXT: .functype two_f32 () -> (f32){{$}} ; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, 0x1p1{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define float @two_f32() { ret float 2.0 } ; CHECK-LABEL: nan_f32: ; CHECK-NEXT: .functype nan_f32 () -> (f32){{$}} ; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, nan{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define float @nan_f32() { ret float 0x7FF8000000000000 } ; CHECK-LABEL: negnan_f32: ; CHECK-NEXT: .functype negnan_f32 () -> (f32){{$}} ; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, -nan{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define float @negnan_f32() { ret float 0xFFF8000000000000 } ; CHECK-LABEL: inf_f32: ; CHECK-NEXT: .functype inf_f32 () -> (f32){{$}} ; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, infinity{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define float @inf_f32() { ret float 0x7FF0000000000000 } ; CHECK-LABEL: neginf_f32: ; CHECK-NEXT: .functype neginf_f32 () -> (f32){{$}} ; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, -infinity{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define float @neginf_f32() { ret float 0xFFF0000000000000 } ; CHECK-LABEL: custom_nan_f32: ; CHECK-NEXT: .functype custom_nan_f32 () -> (f32){{$}} ; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, -nan:0x6bcdef{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define float @custom_nan_f32() { ret float 0xFFFD79BDE0000000 } ; TODO: LLVM's MC layer stores f32 operands as host doubles, requiring a ; conversion, so the bits of the NaN are not fully preserved. ; CHECK-LABEL: custom_nans_f32: ; CHECK-NEXT: .functype custom_nans_f32 () -> (f32){{$}} ; CHECK-NEXT: f32.const $push[[NUM:[0-9]+]]=, -nan:0x6bcdef{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define float @custom_nans_f32() { ret float 0xFFF579BDE0000000 } ; CHECK-LABEL: negzero_f64: ; CHECK-NEXT: .functype negzero_f64 () -> (f64){{$}} ; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, -0x0p0{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define double @negzero_f64() { ret double -0.0 } ; CHECK-LABEL: zero_f64: ; CHECK-NEXT: .functype zero_f64 () -> (f64){{$}} ; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, 0x0p0{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define double @zero_f64() { ret double 0.0 } ; CHECK-LABEL: one_f64: ; CHECK-NEXT: .functype one_f64 () -> (f64){{$}} ; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, 0x1p0{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define double @one_f64() { ret double 1.0 } ; CHECK-LABEL: two_f64: ; CHECK-NEXT: .functype two_f64 () -> (f64){{$}} ; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, 0x1p1{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define double @two_f64() { ret double 2.0 } ; CHECK-LABEL: nan_f64: ; CHECK-NEXT: .functype nan_f64 () -> (f64){{$}} ; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, nan{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define double @nan_f64() { ret double 0x7FF8000000000000 } ; CHECK-LABEL: negnan_f64: ; CHECK-NEXT: .functype negnan_f64 () -> (f64){{$}} ; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, -nan{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define double @negnan_f64() { ret double 0xFFF8000000000000 } ; CHECK-LABEL: inf_f64: ; CHECK-NEXT: .functype inf_f64 () -> (f64){{$}} ; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, infinity{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define double @inf_f64() { ret double 0x7FF0000000000000 } ; CHECK-LABEL: neginf_f64: ; CHECK-NEXT: .functype neginf_f64 () -> (f64){{$}} ; CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, -infinity{{$}} ; CHECK-NEXT: return $pop[[NUM]]{{$}} define double @neginf_f64() { ret double 0xFFF0000000000000 } ;; Custom NaN playloads are currently not always preserved because of the use of ;; native doubles in the MC layer. TODO: fix this problem or decide we don't ;; care about preserving NaN payloads. ; XXX-CHECK-LABEL: custom_nan_f64: ; XXX-CHECK-NEXT: .functype custom_nan_f64 () -> (f64){{$}} ; XXX-CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, -nan:0xabcdef0123456{{$}} ; XXX-CHECK-NEXT: return $pop[[NUM]]{{$}} ; define double @custom_nan_f64() { ; ret double 0xFFFABCDEF0123456 ; } ; XXX-CHECK-LABEL: custom_nans_f64: ; XXX-CHECK-NEXT: .functype custom_nans_f64 () -> (f64){{$}} ; XXX-CHECK-NEXT: f64.const $push[[NUM:[0-9]+]]=, -nan:0x2bcdef0123456{{$}} ; XXX-CHECK-NEXT: return $pop[[NUM]]{{$}} ; define double @custom_nans_f64() { ; ret double 0xFFF2BCDEF0123456 ; }