; RUN: llc < %s -mtriple=ve | FileCheck %s ;;; Test ‘fneg’ Instruction ;;; ;;; Syntax: ;;; = fneg [fast-math flags]* ; yields ty:result ;;; ;;; Overview: ;;; The ‘fneg’ instruction returns the negation of its operand. ;;; ;;; Arguments: ;;; The argument to the ‘fneg’ instruction must be a floating-point or ;;; vector of floating-point values. ;;; ;;; Semantics: ;;; ;;; The value produced is a copy of the operand with its sign bit flipped. ;;; This instruction can also take any number of fast-math flags, which are ;;; optimization hints to enable otherwise unsafe floating-point ;;; optimizations. ;;; ;;; Example: ;;; = fneg float %val ; yields float:result = -%var ;;; ;;; Note: ;;; We test only float/double/fp128. ; Function Attrs: norecurse nounwind readnone define float @fneg_float(float %0) { ; CHECK-LABEL: fneg_float: ; CHECK: # %bb.0: ; CHECK-NEXT: sra.l %s0, %s0, 32 ; CHECK-NEXT: lea %s1, -2147483648 ; CHECK-NEXT: and %s1, %s1, (32)0 ; CHECK-NEXT: xor %s0, %s0, %s1 ; CHECK-NEXT: sll %s0, %s0, 32 ; CHECK-NEXT: b.l.t (, %s10) %2 = fneg float %0 ret float %2 } ; Function Attrs: norecurse nounwind readnone define double @fneg_double(double %0) { ; CHECK-LABEL: fneg_double: ; CHECK: # %bb.0: ; CHECK-NEXT: xor %s0, %s0, (1)1 ; CHECK-NEXT: b.l.t (, %s10) %2 = fneg double %0 ret double %2 } ; Function Attrs: norecurse nounwind readnone define fp128 @fneg_quad(fp128 %0) { ; CHECK-LABEL: fneg_quad: ; CHECK: .LBB{{[0-9]+}}_2: ; CHECK-NEXT: st %s1, (, %s11) ; CHECK-NEXT: st %s0, 8(, %s11) ; CHECK-NEXT: ld1b.zx %s0, 15(, %s11) ; CHECK-NEXT: lea %s1, 128 ; CHECK-NEXT: xor %s0, %s0, %s1 ; CHECK-NEXT: st1b %s0, 15(, %s11) ; CHECK-NEXT: ld %s1, (, %s11) ; CHECK-NEXT: ld %s0, 8(, %s11) ; CHECK-NEXT: adds.l %s11, 16, %s11 ; CHECK-NEXT: b.l.t (, %s10) %2 = fneg fp128 %0 ret fp128 %2 }