; RUN: llc -mtriple=arm64_32-apple-ios7.0 %s -filetype=obj -o - -disable-post-ra -frame-pointer=non-leaf | \ ; RUN: llvm-objdump --private-headers - | \ ; RUN: FileCheck %s --check-prefix=CHECK-MACHO ; RUN: llc -mtriple=arm64_32-apple-ios7.0 %s -o - -aarch64-enable-atomic-cfg-tidy=0 -disable-post-ra -frame-pointer=non-leaf | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK-OPT ; RUN: llc -mtriple=arm64_32-apple-ios7.0 %s -o - -fast-isel -aarch64-enable-atomic-cfg-tidy=0 -disable-post-ra -frame-pointer=non-leaf | FileCheck %s --check-prefix=CHECK --check-prefix=CHECK-FAST ; CHECK-MACHO: Mach header ; CHECK-MACHO: MH_MAGIC ARM64_32 V8 @var64 = global i64 zeroinitializer, align 8 @var32 = global i32 zeroinitializer, align 4 @var_got = external global i8 define i32* @test_global_addr() { ; CHECK-LABEL: test_global_addr: ; CHECK: adrp [[PAGE:x[0-9]+]], _var32@PAGE ; CHECK-OPT: add x0, [[PAGE]], _var32@PAGEOFF ; CHECK-FAST: add [[TMP:x[0-9]+]], [[PAGE]], _var32@PAGEOFF ; CHECK-FAST: and x0, [[TMP]], #0xffffffff ret i32* @var32 } ; ADRP is necessarily 64-bit. The important point to check is that, however that ; gets truncated to 32-bits, it's free. No need to zero out higher bits of that ; register. define i64 @test_global_addr_extension() { ; CHECK-LABEL: test_global_addr_extension: ; CHECK: adrp [[PAGE:x[0-9]+]], _var32@PAGE ; CHECK: add x0, [[PAGE]], _var32@PAGEOFF ; CHECK-NOT: and ; CHECK: ret ret i64 ptrtoint(i32* @var32 to i64) } define i32 @test_global_value() { ; CHECK-LABEL: test_global_value: ; CHECK: adrp x[[PAGE:[0-9]+]], _var32@PAGE ; CHECK: ldr w0, [x[[PAGE]], _var32@PAGEOFF] %val = load i32, i32* @var32, align 4 ret i32 %val } ; Because the addition may wrap, it is not safe to use "ldr w0, [xN, #32]" here. define i32 @test_unsafe_indexed_add() { ; CHECK-LABEL: test_unsafe_indexed_add: ; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF ; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #32 ; CHECK: ldr w0, [x[[ADDR]]] %addr_int = ptrtoint i32* @var32 to i32 %addr_plus_32 = add i32 %addr_int, 32 %addr = inttoptr i32 %addr_plus_32 to i32* %val = load i32, i32* %addr, align 4 ret i32 %val } ; Since we've promised there is no unsigned overflow, @var32 must be at least ; 32-bytes below 2^32, and we can use the load this time. define i32 @test_safe_indexed_add() { ; CHECK-LABEL: test_safe_indexed_add: ; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF ; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #32 ; CHECK: ldr w0, [x[[ADDR]]] %addr_int = ptrtoint i32* @var32 to i64 %addr_plus_32 = add nuw i64 %addr_int, 32 %addr = inttoptr i64 %addr_plus_32 to i32* %val = load i32, i32* %addr, align 4 ret i32 %val } define i32 @test_safe_indexed_or(i32 %in) { ; CHECK-LABEL: test_safe_indexed_or: ; CHECK: and [[TMP:w[0-9]+]], {{w[0-9]+}}, #0xfffffff0 ; CHECK: orr w[[ADDR:[0-9]+]], [[TMP]], #0x4 ; CHECK: ldr w0, [x[[ADDR]]] %addr_int = and i32 %in, -16 %addr_plus_4 = or i32 %addr_int, 4 %addr = inttoptr i32 %addr_plus_4 to i32* %val = load i32, i32* %addr, align 4 ret i32 %val } ; Promising nsw is not sufficient because the addressing mode basically ; calculates "zext(base) + zext(offset)" and nsw only guarantees ; "sext(base) + sext(offset) == base + offset". define i32 @test_unsafe_nsw_indexed_add() { ; CHECK-LABEL: test_unsafe_nsw_indexed_add: ; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF ; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #32 ; CHECK-NOT: ubfx ; CHECK: ldr w0, [x[[ADDR]]] %addr_int = ptrtoint i32* @var32 to i32 %addr_plus_32 = add nsw i32 %addr_int, 32 %addr = inttoptr i32 %addr_plus_32 to i32* %val = load i32, i32* %addr, align 4 ret i32 %val } ; Because the addition may wrap, it is not safe to use "ldr w0, [xN, #32]" here. define i32 @test_unsafe_unscaled_add() { ; CHECK-LABEL: test_unsafe_unscaled_add: ; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF ; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #3 ; CHECK: ldr w0, [x[[ADDR]]] %addr_int = ptrtoint i32* @var32 to i32 %addr_plus_3 = add i32 %addr_int, 3 %addr = inttoptr i32 %addr_plus_3 to i32* %val = load i32, i32* %addr, align 1 ret i32 %val } ; Since we've promised there is no unsigned overflow, @var32 must be at least ; 32-bytes below 2^32, and we can use the load this time. define i32 @test_safe_unscaled_add() { ; CHECK-LABEL: test_safe_unscaled_add: ; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF ; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #3 ; CHECK: ldr w0, [x[[ADDR]]] %addr_int = ptrtoint i32* @var32 to i32 %addr_plus_3 = add nuw i32 %addr_int, 3 %addr = inttoptr i32 %addr_plus_3 to i32* %val = load i32, i32* %addr, align 1 ret i32 %val } ; Promising nsw is not sufficient because the addressing mode basically ; calculates "zext(base) + zext(offset)" and nsw only guarantees ; "sext(base) + sext(offset) == base + offset". define i32 @test_unsafe_nsw_unscaled_add() { ; CHECK-LABEL: test_unsafe_nsw_unscaled_add: ; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF ; CHECK: add w[[ADDR:[0-9]+]], w[[VAR32]], #3 ; CHECK-NOT: ubfx ; CHECK: ldr w0, [x[[ADDR]]] %addr_int = ptrtoint i32* @var32 to i32 %addr_plus_3 = add nsw i32 %addr_int, 3 %addr = inttoptr i32 %addr_plus_3 to i32* %val = load i32, i32* %addr, align 1 ret i32 %val } ; Because the addition may wrap, it is not safe to use "ldur w0, [xN, #-3]" ; here. define i32 @test_unsafe_negative_unscaled_add() { ; CHECK-LABEL: test_unsafe_negative_unscaled_add: ; CHECK: add x[[VAR32:[0-9]+]], {{x[0-9]+}}, _var32@PAGEOFF ; CHECK: sub w[[ADDR:[0-9]+]], w[[VAR32]], #3 ; CHECK: ldr w0, [x[[ADDR]]] %addr_int = ptrtoint i32* @var32 to i32 %addr_minus_3 = add i32 %addr_int, -3 %addr = inttoptr i32 %addr_minus_3 to i32* %val = load i32, i32* %addr, align 1 ret i32 %val } define i8* @test_got_addr() { ; CHECK-LABEL: test_got_addr: ; CHECK: adrp x[[PAGE:[0-9]+]], _var_got@GOTPAGE ; CHECK-OPT: ldr w0, [x[[PAGE]], _var_got@GOTPAGEOFF] ; CHECK-FAST: ldr w[[TMP:[0-9]+]], [x[[PAGE]], _var_got@GOTPAGEOFF] ; CHECK-FAST: and x0, x[[TMP]], #0xffffffff ret i8* @var_got } define float @test_va_arg_f32(i8** %list) { ; CHECK-LABEL: test_va_arg_f32: ; CHECK: ldr w[[START:[0-9]+]], [x0] ; CHECK: add [[AFTER:w[0-9]+]], w[[START]], #8 ; CHECK: str [[AFTER]], [x0] ; Floating point arguments get promoted to double as per C99. ; CHECK: ldr [[DBL:d[0-9]+]], [x[[START]]] ; CHECK: fcvt s0, [[DBL]] %res = va_arg i8** %list, float ret float %res } ; Interesting point is that the slot is 4 bytes. define i8 @test_va_arg_i8(i8** %list) { ; CHECK-LABEL: test_va_arg_i8: ; CHECK: ldr w[[START:[0-9]+]], [x0] ; CHECK: add [[AFTER:w[0-9]+]], w[[START]], #4 ; CHECK: str [[AFTER]], [x0] ; i8 gets promoted to int (again, as per C99). ; CHECK: ldr w0, [x[[START]]] %res = va_arg i8** %list, i8 ret i8 %res } ; Interesting point is that the slot needs aligning (again, min size is 4 ; bytes). define i64 @test_va_arg_i64(i64** %list) { ; CHECK-LABEL: test_va_arg_i64: ; Update the list for the next user (minimum slot size is 4, but the actual ; argument is 8 which had better be reflected!) ; CHECK: ldr w[[UNALIGNED_START:[0-9]+]], [x0] ; CHECK: add [[ALIGN_TMP:x[0-9]+]], x[[UNALIGNED_START]], #7 ; CHECK: and x[[START:[0-9]+]], [[ALIGN_TMP]], #0x1fffffff8 ; CHECK: add w[[AFTER:[0-9]+]], w[[START]], #8 ; CHECK: str w[[AFTER]], [x0] ; CHECK: ldr x0, [x[[START]]] %res = va_arg i64** %list, i64 ret i64 %res } declare void @bar(...) define void @test_va_call(i8 %l, i8 %r, float %in, i8* %ptr) { ; CHECK-LABEL: test_va_call: ; CHECK: add [[SUM:w[0-9]+]], {{w[0-9]+}}, w1 ; CHECK-DAG: str w2, [sp, #32] ; CHECK-DAG: str xzr, [sp, #24] ; CHECK-DAG: str s0, [sp, #16] ; CHECK-DAG: str xzr, [sp, #8] ; CHECK-DAG: str [[SUM]], [sp] ; Add them to ensure real promotion occurs. %sum = add i8 %l, %r call void(...) @bar(i8 %sum, i64 0, float %in, double 0.0, i8* %ptr) ret void } declare i8* @llvm.frameaddress(i32) define i8* @test_frameaddr() { ; CHECK-LABEL: test_frameaddr: ; CHECK-OPT: ldr x0, [x29] ; CHECK-FAST: ldr [[TMP:x[0-9]+]], [x29] ; CHECK-FAST: and x0, [[TMP]], #0xffffffff %val = call i8* @llvm.frameaddress(i32 1) ret i8* %val } declare i8* @llvm.returnaddress(i32) define i8* @test_toplevel_returnaddr() { ; CHECK-LABEL: test_toplevel_returnaddr: ; CHECK-OPT: mov x0, x30 ; CHECK-FAST: and x0, x30, #0xffffffff %val = call i8* @llvm.returnaddress(i32 0) ret i8* %val } define i8* @test_deep_returnaddr() { ; CHECK-LABEL: test_deep_returnaddr: ; CHECK: ldr x[[FRAME_REC:[0-9]+]], [x29] ; CHECK-OPT: ldr x30, [x[[FRAME_REC]], #8] ; CHECK-OPT: hint #7 ; CHECK-OPT: mov x0, x30 ; CHECK-FAST: ldr [[TMP:x[0-9]+]], [x[[FRAME_REC]], #8] ; CHECK-FAST: and x0, [[TMP]], #0xffffffff %val = call i8* @llvm.returnaddress(i32 1) ret i8* %val } define void @test_indirect_call(void()* %func) { ; CHECK-LABEL: test_indirect_call: ; CHECK: blr x0 call void() %func() ret void } ; Safe to use the unextended address here define void @test_indirect_safe_call(i32* %weird_funcs) { ; CHECK-LABEL: test_indirect_safe_call: ; CHECK: add w[[ADDR32:[0-9]+]], w0, #4 ; CHECK-OPT-NOT: ubfx ; CHECK: blr x[[ADDR32]] %addr = getelementptr i32, i32* %weird_funcs, i32 1 %func = bitcast i32* %addr to void()* call void() %func() ret void } declare void @simple() define void @test_simple_tail_call() { ; CHECK-LABEL: test_simple_tail_call: ; CHECK: b _simple tail call void @simple() ret void } define void @test_indirect_tail_call(void()* %func) { ; CHECK-LABEL: test_indirect_tail_call: ; CHECK: br x0 tail call void() %func() ret void } ; Safe to use the unextended address here define void @test_indirect_safe_tail_call(i32* %weird_funcs) { ; CHECK-LABEL: test_indirect_safe_tail_call: ; CHECK: add w[[ADDR32:[0-9]+]], w0, #4 ; CHECK-OPT-NOT: ubfx ; CHECK-OPT: br x[[ADDR32]] %addr = getelementptr i32, i32* %weird_funcs, i32 1 %func = bitcast i32* %addr to void()* tail call void() %func() ret void } ; For the "armv7k" slice, Clang will be emitting some small structs as [N x ; i32]. For ABI compatibility with arm64_32 these need to be passed in *X* ; registers (e.g. [2 x i32] would be packed into a single register). define i32 @test_in_smallstruct_low([3 x i32] %in) { ; CHECK-LABEL: test_in_smallstruct_low: ; CHECK: mov x0, x1 %val = extractvalue [3 x i32] %in, 2 ret i32 %val } define i32 @test_in_smallstruct_high([3 x i32] %in) { ; CHECK-LABEL: test_in_smallstruct_high: ; CHECK: lsr x0, x0, #32 %val = extractvalue [3 x i32] %in, 1 ret i32 %val } ; The 64-bit DarwinPCS ABI has the quirk that structs on the stack are always ; 64-bit aligned. This must not happen for arm64_32 since othwerwise va_arg will ; be incompatible with the armv7k ABI. define i32 @test_in_smallstruct_stack([8 x i64], i32, [3 x i32] %in) { ; CHECK-LABEL: test_in_smallstruct_stack: ; CHECK: ldr w0, [sp, #4] %val = extractvalue [3 x i32] %in, 0 ret i32 %val } define [2 x i32] @test_ret_smallstruct([3 x i32] %in) { ; CHECK-LABEL: test_ret_smallstruct: ; CHECK: mov x0, #1 ; CHECK: movk x0, #2, lsl #32 ret [2 x i32] [i32 1, i32 2] } declare void @smallstruct_callee([4 x i32]) define void @test_call_smallstruct() { ; CHECK-LABEL: test_call_smallstruct: ; CHECK: mov x0, #1 ; CHECK: movk x0, #2, lsl #32 ; CHECK: mov x1, #3 ; CHECK: movk x1, #4, lsl #32 ; CHECK: bl _smallstruct_callee call void @smallstruct_callee([4 x i32] [i32 1, i32 2, i32 3, i32 4]) ret void } declare void @smallstruct_callee_stack([8 x i64], i32, [2 x i32]) define void @test_call_smallstruct_stack() { ; CHECK-LABEL: test_call_smallstruct_stack: ; CHECK: mov [[VAL:x[0-9]+]], #1 ; CHECK: movk [[VAL]], #2, lsl #32 ; CHECK: stur [[VAL]], [sp, #4] call void @smallstruct_callee_stack([8 x i64] undef, i32 undef, [2 x i32] [i32 1, i32 2]) ret void } declare [3 x i32] @returns_smallstruct() define i32 @test_use_smallstruct_low() { ; CHECK-LABEL: test_use_smallstruct_low: ; CHECK: bl _returns_smallstruct ; CHECK: mov x0, x1 %struct = call [3 x i32] @returns_smallstruct() %val = extractvalue [3 x i32] %struct, 2 ret i32 %val } define i32 @test_use_smallstruct_high() { ; CHECK-LABEL: test_use_smallstruct_high: ; CHECK: bl _returns_smallstruct ; CHECK: lsr x0, x0, #32 %struct = call [3 x i32] @returns_smallstruct() %val = extractvalue [3 x i32] %struct, 1 ret i32 %val } ; If a small struct can't be allocated to x0-x7, the remaining registers should ; be marked as unavailable and subsequent GPR arguments should also be on the ; stack. Obviously the struct itself should be passed entirely on the stack. define i32 @test_smallstruct_padding([7 x i64], [4 x i32] %struct, i32 %in) { ; CHECK-LABEL: test_smallstruct_padding: ; CHECK-DAG: ldr [[IN:w[0-9]+]], [sp, #16] ; CHECK-DAG: ldr [[LHS:w[0-9]+]], [sp] ; CHECK: add w0, [[LHS]], [[IN]] %lhs = extractvalue [4 x i32] %struct, 0 %sum = add i32 %lhs, %in ret i32 %sum } declare void @take_small_smallstruct(i64, [1 x i32]) define void @test_small_smallstruct() { ; CHECK-LABEL: test_small_smallstruct: ; CHECK-DAG: mov w0, #1 ; CHECK-DAG: mov w1, #2 ; CHECK: bl _take_small_smallstruct call void @take_small_smallstruct(i64 1, [1 x i32] [i32 2]) ret void } define void @test_bare_frameaddr(i8** %addr) { ; CHECK-LABEL: test_bare_frameaddr: ; CHECK: add x[[LOCAL:[0-9]+]], sp, #{{[0-9]+}} ; CHECK: str w[[LOCAL]], %ptr = alloca i8 store i8* %ptr, i8** %addr, align 4 ret void } define void @test_sret_use([8 x i64]* sret([8 x i64]) %out) { ; CHECK-LABEL: test_sret_use: ; CHECK: str xzr, [x8] %addr = getelementptr [8 x i64], [8 x i64]* %out, i32 0, i32 0 store i64 0, i64* %addr ret void } define i64 @test_sret_call() { ; CHECK-LABEL: test_sret_call: ; CHECK: mov x8, sp ; CHECK: bl _test_sret_use %arr = alloca [8 x i64] call void @test_sret_use([8 x i64]* sret([8 x i64]) %arr) %addr = getelementptr [8 x i64], [8 x i64]* %arr, i32 0, i32 0 %val = load i64, i64* %addr ret i64 %val } define double @test_constpool() { ; CHECK-LABEL: test_constpool: ; CHECK: adrp x[[PAGE:[0-9]+]], [[POOL:lCPI[0-9]+_[0-9]+]]@PAGE ; CHECK: ldr d0, [x[[PAGE]], [[POOL]]@PAGEOFF] ret double 1.0e-6 } define i8* @test_blockaddress() { ; CHECK-LABEL: test_blockaddress: ; CHECK: [[BLOCK:Ltmp[0-9]+]]: ; CHECK: adrp [[PAGE:x[0-9]+]], [[BLOCK]]@PAGE ; CHECK: add x0, [[PAGE]], [[BLOCK]]@PAGEOFF br label %dest dest: ret i8* blockaddress(@test_blockaddress, %dest) } define i8* @test_indirectbr(i8* %dest) { ; CHECK-LABEL: test_indirectbr: ; CHECK: br x0 indirectbr i8* %dest, [label %true, label %false] true: ret i8* blockaddress(@test_indirectbr, %true) false: ret i8* blockaddress(@test_indirectbr, %false) } ; ISelDAGToDAG tries to fold an offset FI load (in this case var+4) into the ; actual load instruction. This needs to be done slightly carefully since we ; claim the FI in the process -- it doesn't need extending. define float @test_frameindex_offset_load() { ; CHECK-LABEL: test_frameindex_offset_load: ; CHECK: ldr s0, [sp, #4] %arr = alloca float, i32 4, align 8 %addr = getelementptr inbounds float, float* %arr, i32 1 %val = load float, float* %addr, align 4 ret float %val } define void @test_unaligned_frameindex_offset_store() { ; CHECK-LABEL: test_unaligned_frameindex_offset_store: ; CHECK: mov x[[TMP:[0-9]+]], sp ; CHECK: orr w[[ADDR:[0-9]+]], w[[TMP]], #0x2 ; CHECK: mov [[VAL:w[0-9]+]], #42 ; CHECK: str [[VAL]], [x[[ADDR]]] %arr = alloca [4 x i32] %addr.int = ptrtoint [4 x i32]* %arr to i32 %addr.nextint = add nuw i32 %addr.int, 2 %addr.next = inttoptr i32 %addr.nextint to i32* store i32 42, i32* %addr.next ret void } define {i64, i64*} @test_pre_idx(i64* %addr) { ; CHECK-LABEL: test_pre_idx: ; CHECK: add w[[ADDR:[0-9]+]], w0, #8 ; CHECK: ldr x0, [x[[ADDR]]] %addr.int = ptrtoint i64* %addr to i32 %addr.next.int = add nuw i32 %addr.int, 8 %addr.next = inttoptr i32 %addr.next.int to i64* %val = load i64, i64* %addr.next %tmp = insertvalue {i64, i64*} undef, i64 %val, 0 %res = insertvalue {i64, i64*} %tmp, i64* %addr.next, 1 ret {i64, i64*} %res } ; Forming a post-indexed load is invalid here since the GEP needs to work when ; %addr wraps round to 0. define {i64, i64*} @test_invalid_pre_idx(i64* %addr) { ; CHECK-LABEL: test_invalid_pre_idx: ; CHECK: add w1, w0, #8 ; CHECK: ldr x0, [x1] %addr.next = getelementptr i64, i64* %addr, i32 1 %val = load i64, i64* %addr.next %tmp = insertvalue {i64, i64*} undef, i64 %val, 0 %res = insertvalue {i64, i64*} %tmp, i64* %addr.next, 1 ret {i64, i64*} %res } declare void @callee([8 x i32]*) define void @test_stack_guard() ssp { ; CHECK-LABEL: test_stack_guard: ; CHECK: adrp x[[GUARD_GOTPAGE:[0-9]+]], ___stack_chk_guard@GOTPAGE ; CHECK: ldr w[[GUARD_ADDR:[0-9]+]], [x[[GUARD_GOTPAGE]], ___stack_chk_guard@GOTPAGEOFF] ; CHECK: ldr [[GUARD_VAL:w[0-9]+]], [x[[GUARD_ADDR]]] ; CHECK: stur [[GUARD_VAL]], [x29, #[[GUARD_OFFSET:-[0-9]+]]] ; CHECK: add x0, sp, #{{[0-9]+}} ; CHECK: bl _callee ; CHECK-OPT: adrp x[[GUARD_GOTPAGE:[0-9]+]], ___stack_chk_guard@GOTPAGE ; CHECK-OPT: ldr w[[GUARD_ADDR:[0-9]+]], [x[[GUARD_GOTPAGE]], ___stack_chk_guard@GOTPAGEOFF] ; CHECK-OPT: ldr [[GUARD_VAL:w[0-9]+]], [x[[GUARD_ADDR]]] ; CHECK-OPT: ldur [[NEW_VAL:w[0-9]+]], [x29, #[[GUARD_OFFSET]]] ; CHECK-OPT: cmp [[GUARD_VAL]], [[NEW_VAL]] ; CHECK-OPT: b.ne [[FAIL:LBB[0-9]+_[0-9]+]] ; CHECK-OPT: [[FAIL]]: ; CHECK-OPT-NEXT: bl ___stack_chk_fail %arr = alloca [8 x i32] call void @callee([8 x i32]* %arr) ret void } declare i32 @__gxx_personality_v0(...) declare void @eat_landingpad_args(i32, i8*, i32) @_ZTI8Whatever = external global i8 define void @test_landingpad_marshalling() personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) { ; CHECK-LABEL: test_landingpad_marshalling: ; CHECK-OPT: mov x2, x1 ; CHECK-OPT: mov x1, x0 ; CHECK: bl _eat_landingpad_args invoke void @callee([8 x i32]* undef) to label %done unwind label %lpad lpad: ; preds = %entry %exc = landingpad { i8*, i32 } catch i8* @_ZTI8Whatever %pointer = extractvalue { i8*, i32 } %exc, 0 %selector = extractvalue { i8*, i32 } %exc, 1 call void @eat_landingpad_args(i32 undef, i8* %pointer, i32 %selector) ret void done: ret void } define void @test_dynamic_stackalloc() { ; CHECK-LABEL: test_dynamic_stackalloc: ; CHECK: sub [[REG:x[0-9]+]], sp, #32 ; CHECK: mov sp, [[REG]] ; CHECK-OPT-NOT: ubfx ; CHECK: bl _callee br label %next next: %val = alloca [8 x i32] call void @callee([8 x i32]* %val) ret void } define void @test_asm_memory(i32* %base.addr) { ; CHECK-LABEL: test_asm_memory: ; CHECK: add w[[ADDR:[0-9]+]], w0, #4 ; CHECK: str wzr, [x[[ADDR]] %addr = getelementptr i32, i32* %base.addr, i32 1 call void asm sideeffect "str wzr, $0", "*m"(i32* %addr) ret void } define void @test_unsafe_asm_memory(i64 %val) { ; CHECK-LABEL: test_unsafe_asm_memory: ; CHECK: and x[[ADDR:[0-9]+]], x0, #0xffffffff ; CHECK: str wzr, [x[[ADDR]]] %addr_int = trunc i64 %val to i32 %addr = inttoptr i32 %addr_int to i32* call void asm sideeffect "str wzr, $0", "*m"(i32* %addr) ret void } define [9 x i8*] @test_demoted_return(i8* %in) { ; CHECK-LABEL: test_demoted_return: ; CHECK: str w0, [x8, #32] %res = insertvalue [9 x i8*] undef, i8* %in, 8 ret [9 x i8*] %res } define i8* @test_inttoptr(i64 %in) { ; CHECK-LABEL: test_inttoptr: ; CHECK: and x0, x0, #0xffffffff %res = inttoptr i64 %in to i8* ret i8* %res } declare i32 @llvm.get.dynamic.area.offset.i32() define i32 @test_dynamic_area() { ; CHECK-LABEL: test_dynamic_area: ; CHECK: mov w0, wzr %res = call i32 @llvm.get.dynamic.area.offset.i32() ret i32 %res } define void @test_pointer_vec_store(<2 x i8*>* %addr) { ; CHECK-LABEL: test_pointer_vec_store: ; CHECK: str xzr, [x0] ; CHECK-NOT: str ; CHECK-NOT: stp store <2 x i8*> zeroinitializer, <2 x i8*>* %addr, align 16 ret void } define <2 x i8*> @test_pointer_vec_load(<2 x i8*>* %addr) { ; CHECK-LABEL: test_pointer_vec_load: ; CHECK: ldr d[[TMP:[0-9]+]], [x0] ; CHECK: ushll.2d v0, v[[TMP]], #0 %val = load <2 x i8*>, <2 x i8*>* %addr, align 16 ret <2 x i8*> %val } define void @test_inline_asm_mem_pointer(i32* %in) { ; CHECK-LABEL: test_inline_asm_mem_pointer: ; CHECK: str w0, tail call void asm sideeffect "ldr x0, $0", "rm"(i32* %in) ret void } define void @test_struct_hi(i32 %hi) nounwind { ; CHECK-LABEL: test_struct_hi: ; CHECK: mov w[[IN:[0-9]+]], w0 ; CHECK: bl _get_int ; CHECK-FAST-NEXT: mov w0, w0 ; CHECK-NEXT: bfi x0, x[[IN]], #32, #32 ; CHECK-NEXT: bl _take_pair %val.64 = call i64 @get_int() %val.32 = trunc i64 %val.64 to i32 %pair.0 = insertvalue [2 x i32] undef, i32 %val.32, 0 %pair.1 = insertvalue [2 x i32] %pair.0, i32 %hi, 1 call void @take_pair([2 x i32] %pair.1) ret void } declare void @take_pair([2 x i32]) declare i64 @get_int() define i1 @test_icmp_ptr(i8* %in) { ; CHECK-LABEL: test_icmp_ptr ; CHECK: ubfx x0, x0, #31, #1 %res = icmp slt i8* %in, null ret i1 %res } define void @test_multiple_icmp_ptr(i8* %l, i8* %r) { ; CHECK-LABEL: test_multiple_icmp_ptr: ; CHECK: tbnz w0, #31, [[FALSEBB:LBB[0-9]+_[0-9]+]] ; CHECK: tbnz w1, #31, [[FALSEBB]] %tst1 = icmp sgt i8* %l, inttoptr (i32 -1 to i8*) %tst2 = icmp sgt i8* %r, inttoptr (i32 -1 to i8*) %tst = and i1 %tst1, %tst2 br i1 %tst, label %true, label %false true: call void(...) @bar() ret void false: ret void } define void @test_multiple_icmp_ptr_select(i8* %l, i8* %r) { ; CHECK-LABEL: test_multiple_icmp_ptr_select: ; CHECK: tbnz w0, #31, [[FALSEBB:LBB[0-9]+_[0-9]+]] ; CHECK: tbnz w1, #31, [[FALSEBB]] %tst1 = icmp sgt i8* %l, inttoptr (i32 -1 to i8*) %tst2 = icmp sgt i8* %r, inttoptr (i32 -1 to i8*) %tst = select i1 %tst1, i1 %tst2, i1 false br i1 %tst, label %true, label %false true: call void(...) @bar() ret void false: ret void } define { [18 x i8] }* @test_gep_nonpow2({ [18 x i8] }* %a0, i32 %a1) { ; CHECK-LABEL: test_gep_nonpow2: ; CHECK-OPT: mov w[[SIZE:[0-9]+]], #18 ; CHECK-OPT-NEXT: smaddl x0, w1, w[[SIZE]], x0 ; CHECK-OPT-NEXT: ret ; CHECK-FAST: mov w[[SIZE:[0-9]+]], #18 ; CHECK-FAST-NEXT: smaddl [[TMP:x[0-9]+]], w1, w[[SIZE]], x0 ; CHECK-FAST-NEXT: and x0, [[TMP]], #0xffffffff ; CHECK-FAST-NEXT: ret %tmp0 = getelementptr inbounds { [18 x i8] }, { [18 x i8] }* %a0, i32 %a1 ret { [18 x i8] }* %tmp0 } define void @test_bzero(i64 %in) { ; CHECK-LABEL: test_bzero: ; CHECK-DAG: lsr x1, x0, #32 ; CHECK-DAG: and x0, x0, #0xffffffff ; CHECK: bl _bzero %ptr.i32 = trunc i64 %in to i32 %size.64 = lshr i64 %in, 32 %size = trunc i64 %size.64 to i32 %ptr = inttoptr i32 %ptr.i32 to i8* tail call void @llvm.memset.p0i8.i32(i8* align 4 %ptr, i8 0, i32 %size, i1 false) ret void } declare void @llvm.memset.p0i8.i32(i8* nocapture writeonly, i8, i32, i1)