; RUN: opt -S -analyze -enable-new-pm=0 -scalar-evolution < %s 2>&1 | FileCheck %s ; RUN: opt -S -disable-output "-passes=print" < %s 2>&1 2>&1 | FileCheck %s ; umin is represented using -1 * umax in scalar evolution. -1 is considered as the ; constant of the multiply expression (-1 * ((-1 + (-1 * %a)) umax (-1 + (-1 * %b)))). ; Returns the greatest power of 2 divisor by evaluating the minimal trailing zeros ; for the trip count expression. ; ; int foo(uint32_t a, uint32_t b, uint32_t *c) { ; for (uint32_t i = 0; i < (uint32_t)(a < b ? a : b) + 1; i++) ; c[i] = i; ; return 0; ; } ; ; CHECK: Loop %for.body: Trip multiple is 1 define i32 @foo(i32 %a, i32 %b, i32* %c) { entry: %cmp = icmp ult i32 %a, %b %cond = select i1 %cmp, i32 %a, i32 %b %add = add i32 %cond, 1 %cmp18 = icmp eq i32 %add, 0 br i1 %cmp18, label %for.cond.cleanup, label %for.body.preheader for.body.preheader: ; preds = %entry br label %for.body for.cond.cleanup.loopexit: ; preds = %for.body br label %for.cond.cleanup for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry ret i32 0 for.body: ; preds = %for.body.preheader, %for.body %i.09 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ] %arrayidx = getelementptr inbounds i32, i32* %c, i32 %i.09 store i32 %i.09, i32* %arrayidx, align 4 %inc = add nuw i32 %i.09, 1 %cmp1 = icmp ult i32 %inc, %add br i1 %cmp1, label %for.body, label %for.cond.cleanup.loopexit } ; Overflow may happen for the multiply expression n * 3, verify that trip ; multiple is set to 1 if NUW/NSW are not set. ; ; __attribute__((noinline)) void a(unsigned n) { ; #pragma unroll(3) ; for (unsigned i = 0; i != n * 3; ++i) ; printf("TEST%u\n", i); ; } ; int main() { a(2863311531U); } ; ; CHECK: Loop %for.body: Trip multiple is 1 @.str2 = private unnamed_addr constant [8 x i8] c"TEST%u\0A\00", align 1 define void @foo2(i32 %n) { entry: %mul = mul i32 %n, 3 %cmp4 = icmp eq i32 %mul, 0 br i1 %cmp4, label %for.cond.cleanup, label %for.body.preheader for.body.preheader: ; preds = %entry br label %for.body for.cond.cleanup.loopexit: ; preds = %for.body br label %for.cond.cleanup for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry ret void for.body: ; preds = %for.body.preheader, %for.body %i.05 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ] %call = tail call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([8 x i8], [8 x i8]* @.str2, i32 0, i32 0), i32 %i.05) %inc = add nuw i32 %i.05, 1 %cmp = icmp eq i32 %inc, %mul br i1 %cmp, label %for.cond.cleanup.loopexit, label %for.body } declare i32 @printf(i8* nocapture readonly, ...) ; If we couldn't prove no overflow for the multiply expression 24 * n, ; returns the greatest power of 2 divisor. If overflows happens ; the trip count is still divisible by the greatest power of 2 divisor. ; ; CHECK: Loop %l3: Trip multiple is 8 declare void @f() define i32 @foo3(i32 %n) { entry: %loop_ctl = mul i32 %n, 24 br label %l3 l3: %x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ] call void @f() %inc = add i32 %x.0, 1 %exitcond = icmp eq i32 %inc, %loop_ctl br i1 %exitcond, label %exit, label %l3 exit: ret i32 0 } ; If the trip count is a constant, verify that we obtained the trip ; count itself. For huge trip counts, or zero, we return 1. ; ; CHECK: Loop %l3: Trip multiple is 3 define i32 @foo4(i32 %n) { entry: br label %l3 l3: %x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ] call void @f() %inc = add i32 %x.0, 1 %exitcond = icmp eq i32 %inc, 3 br i1 %exitcond, label %exit, label %l3 exit: ret i32 0 }