//===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass merges loads/stores to/from sequential memory addresses into vector // loads/stores. Although there's nothing GPU-specific in here, this pass is // motivated by the microarchitectural quirks of nVidia and AMD GPUs. // // (For simplicity below we talk about loads only, but everything also applies // to stores.) // // This pass is intended to be run late in the pipeline, after other // vectorization opportunities have been exploited. So the assumption here is // that immediately following our new vector load we'll need to extract out the // individual elements of the load, so we can operate on them individually. // // On CPUs this transformation is usually not beneficial, because extracting the // elements of a vector register is expensive on most architectures. It's // usually better just to load each element individually into its own scalar // register. // // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a // "vector load" loads directly into a series of scalar registers. In effect, // extracting the elements of the vector is free. It's therefore always // beneficial to vectorize a sequence of loads on these architectures. // // Vectorizing (perhaps a better name might be "coalescing") loads can have // large performance impacts on GPU kernels, and opportunities for vectorizing // are common in GPU code. This pass tries very hard to find such // opportunities; its runtime is quadratic in the number of loads in a BB. // // Some CPU architectures, such as ARM, have instructions that load into // multiple scalar registers, similar to a GPU vectorized load. In theory ARM // could use this pass (with some modifications), but currently it implements // its own pass to do something similar to what we do here. #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Vectorize.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "load-store-vectorizer" STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); // FIXME: Assuming stack alignment of 4 is always good enough static const unsigned StackAdjustedAlignment = 4; namespace { /// ChainID is an arbitrary token that is allowed to be different only for the /// accesses that are guaranteed to be considered non-consecutive by /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions /// together and reducing the number of instructions the main search operates on /// at a time, i.e. this is to reduce compile time and nothing else as the main /// search has O(n^2) time complexity. The underlying type of ChainID should not /// be relied upon. using ChainID = const Value *; using InstrList = SmallVector; using InstrListMap = MapVector; class Vectorizer { Function &F; AliasAnalysis &AA; DominatorTree &DT; ScalarEvolution &SE; TargetTransformInfo &TTI; const DataLayout &DL; IRBuilder<> Builder; public: Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI) : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} bool run(); private: unsigned getPointerAddressSpace(Value *I); static const unsigned MaxDepth = 3; bool isConsecutiveAccess(Value *A, Value *B); bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta, unsigned Depth = 0) const; bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta, unsigned Depth) const; bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta, unsigned Depth) const; /// After vectorization, reorder the instructions that I depends on /// (the instructions defining its operands), to ensure they dominate I. void reorder(Instruction *I); /// Returns the first and the last instructions in Chain. std::pair getBoundaryInstrs(ArrayRef Chain); /// Erases the original instructions after vectorizing. void eraseInstructions(ArrayRef Chain); /// "Legalize" the vector type that would be produced by combining \p /// ElementSizeBits elements in \p Chain. Break into two pieces such that the /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is /// expected to have more than 4 elements. std::pair, ArrayRef> splitOddVectorElts(ArrayRef Chain, unsigned ElementSizeBits); /// Finds the largest prefix of Chain that's vectorizable, checking for /// intervening instructions which may affect the memory accessed by the /// instructions within Chain. /// /// The elements of \p Chain must be all loads or all stores and must be in /// address order. ArrayRef getVectorizablePrefix(ArrayRef Chain); /// Collects load and store instructions to vectorize. std::pair collectInstructions(BasicBlock *BB); /// Processes the collected instructions, the \p Map. The values of \p Map /// should be all loads or all stores. bool vectorizeChains(InstrListMap &Map); /// Finds the load/stores to consecutive memory addresses and vectorizes them. bool vectorizeInstructions(ArrayRef Instrs); /// Vectorizes the load instructions in Chain. bool vectorizeLoadChain(ArrayRef Chain, SmallPtrSet *InstructionsProcessed); /// Vectorizes the store instructions in Chain. bool vectorizeStoreChain(ArrayRef Chain, SmallPtrSet *InstructionsProcessed); /// Check if this load/store access is misaligned accesses. bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, unsigned Alignment); }; class LoadStoreVectorizerLegacyPass : public FunctionPass { public: static char ID; LoadStoreVectorizerLegacyPass() : FunctionPass(ID) { initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; StringRef getPassName() const override { return "GPU Load and Store Vectorizer"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); } }; } // end anonymous namespace char LoadStoreVectorizerLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, "Vectorize load and Store instructions", false, false) INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, "Vectorize load and store instructions", false, false) Pass *llvm::createLoadStoreVectorizerPass() { return new LoadStoreVectorizerLegacyPass(); } bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) { // Don't vectorize when the attribute NoImplicitFloat is used. if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) return false; AliasAnalysis &AA = getAnalysis().getAAResults(); DominatorTree &DT = getAnalysis().getDomTree(); ScalarEvolution &SE = getAnalysis().getSE(); TargetTransformInfo &TTI = getAnalysis().getTTI(F); Vectorizer V(F, AA, DT, SE, TTI); return V.run(); } PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { // Don't vectorize when the attribute NoImplicitFloat is used. if (F.hasFnAttribute(Attribute::NoImplicitFloat)) return PreservedAnalyses::all(); AliasAnalysis &AA = AM.getResult(F); DominatorTree &DT = AM.getResult(F); ScalarEvolution &SE = AM.getResult(F); TargetTransformInfo &TTI = AM.getResult(F); Vectorizer V(F, AA, DT, SE, TTI); bool Changed = V.run(); PreservedAnalyses PA; PA.preserveSet(); return Changed ? PA : PreservedAnalyses::all(); } // The real propagateMetadata expects a SmallVector, but we deal in // vectors of Instructions. static void propagateMetadata(Instruction *I, ArrayRef IL) { SmallVector VL(IL.begin(), IL.end()); propagateMetadata(I, VL); } // Vectorizer Implementation bool Vectorizer::run() { bool Changed = false; // Scan the blocks in the function in post order. for (BasicBlock *BB : post_order(&F)) { InstrListMap LoadRefs, StoreRefs; std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); Changed |= vectorizeChains(LoadRefs); Changed |= vectorizeChains(StoreRefs); } return Changed; } unsigned Vectorizer::getPointerAddressSpace(Value *I) { if (LoadInst *L = dyn_cast(I)) return L->getPointerAddressSpace(); if (StoreInst *S = dyn_cast(I)) return S->getPointerAddressSpace(); return -1; } // FIXME: Merge with llvm::isConsecutiveAccess bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { Value *PtrA = getLoadStorePointerOperand(A); Value *PtrB = getLoadStorePointerOperand(B); unsigned ASA = getPointerAddressSpace(A); unsigned ASB = getPointerAddressSpace(B); // Check that the address spaces match and that the pointers are valid. if (!PtrA || !PtrB || (ASA != ASB)) return false; // Make sure that A and B are different pointers of the same size type. Type *PtrATy = PtrA->getType()->getPointerElementType(); Type *PtrBTy = PtrB->getType()->getPointerElementType(); if (PtrA == PtrB || PtrATy->isVectorTy() != PtrBTy->isVectorTy() || DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || DL.getTypeStoreSize(PtrATy->getScalarType()) != DL.getTypeStoreSize(PtrBTy->getScalarType())) return false; unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); return areConsecutivePointers(PtrA, PtrB, Size); } bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta, unsigned Depth) const { unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType()); APInt OffsetA(PtrBitWidth, 0); APInt OffsetB(PtrBitWidth, 0); PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType()); if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType())) return false; // In case if we have to shrink the pointer // stripAndAccumulateInBoundsConstantOffsets should properly handle a // possible overflow and the value should fit into a smallest data type // used in the cast/gep chain. assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth && OffsetB.getMinSignedBits() <= NewPtrBitWidth); OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth); OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth); PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth); APInt OffsetDelta = OffsetB - OffsetA; // Check if they are based on the same pointer. That makes the offsets // sufficient. if (PtrA == PtrB) return OffsetDelta == PtrDelta; // Compute the necessary base pointer delta to have the necessary final delta // equal to the pointer delta requested. APInt BaseDelta = PtrDelta - OffsetDelta; // Compute the distance with SCEV between the base pointers. const SCEV *PtrSCEVA = SE.getSCEV(PtrA); const SCEV *PtrSCEVB = SE.getSCEV(PtrB); const SCEV *C = SE.getConstant(BaseDelta); const SCEV *X = SE.getAddExpr(PtrSCEVA, C); if (X == PtrSCEVB) return true; // The above check will not catch the cases where one of the pointers is // factorized but the other one is not, such as (C + (S * (A + B))) vs // (AS + BS). Get the minus scev. That will allow re-combining the expresions // and getting the simplified difference. const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA); if (C == Dist) return true; // Sometimes even this doesn't work, because SCEV can't always see through // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking // things the hard way. return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth); } bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta, unsigned Depth) const { auto *GEPA = dyn_cast(PtrA); auto *GEPB = dyn_cast(PtrB); if (!GEPA || !GEPB) return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth); // Look through GEPs after checking they're the same except for the last // index. if (GEPA->getNumOperands() != GEPB->getNumOperands() || GEPA->getPointerOperand() != GEPB->getPointerOperand()) return false; gep_type_iterator GTIA = gep_type_begin(GEPA); gep_type_iterator GTIB = gep_type_begin(GEPB); for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) { if (GTIA.getOperand() != GTIB.getOperand()) return false; ++GTIA; ++GTIB; } Instruction *OpA = dyn_cast(GTIA.getOperand()); Instruction *OpB = dyn_cast(GTIB.getOperand()); if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || OpA->getType() != OpB->getType()) return false; if (PtrDelta.isNegative()) { if (PtrDelta.isMinSignedValue()) return false; PtrDelta.negate(); std::swap(OpA, OpB); } uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType()); if (PtrDelta.urem(Stride) != 0) return false; unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits(); APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth); // Only look through a ZExt/SExt. if (!isa(OpA) && !isa(OpA)) return false; bool Signed = isa(OpA); // At this point A could be a function parameter, i.e. not an instruction Value *ValA = OpA->getOperand(0); OpB = dyn_cast(OpB->getOperand(0)); if (!OpB || ValA->getType() != OpB->getType()) return false; // Now we need to prove that adding IdxDiff to ValA won't overflow. bool Safe = false; auto CheckFlags = [](Instruction *I, bool Signed) { BinaryOperator *BinOpI = cast(I); return (Signed && BinOpI->hasNoSignedWrap()) || (!Signed && BinOpI->hasNoUnsignedWrap()); }; // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to // ValA, we're okay. if (OpB->getOpcode() == Instruction::Add && isa(OpB->getOperand(1)) && IdxDiff.sle(cast(OpB->getOperand(1))->getSExtValue()) && CheckFlags(OpB, Signed)) Safe = true; // Second attempt: If both OpA and OpB is an add with NSW/NUW and with // the same LHS operand, we can guarantee that the transformation is safe // if we can prove that OpA won't overflow when IdxDiff added to the RHS // of OpA. // For example: // %tmp7 = add nsw i32 %tmp2, %v0 // %tmp8 = sext i32 %tmp7 to i64 // ... // %tmp11 = add nsw i32 %v0, 1 // %tmp12 = add nsw i32 %tmp2, %tmp11 // %tmp13 = sext i32 %tmp12 to i64 // // Both %tmp7 and %tmp2 has the nsw flag and the first operand // is %tmp2. It's guaranteed that adding 1 to %tmp7 won't overflow // because %tmp11 adds 1 to %v0 and both %tmp11 and %tmp12 has the // nsw flag. OpA = dyn_cast(ValA); if (!Safe && OpA && OpA->getOpcode() == Instruction::Add && OpB->getOpcode() == Instruction::Add && OpA->getOperand(0) == OpB->getOperand(0) && CheckFlags(OpA, Signed) && CheckFlags(OpB, Signed)) { Value *RHSA = OpA->getOperand(1); Value *RHSB = OpB->getOperand(1); Instruction *OpRHSA = dyn_cast(RHSA); Instruction *OpRHSB = dyn_cast(RHSB); // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`. if (OpRHSB && OpRHSB->getOpcode() == Instruction::Add && CheckFlags(OpRHSB, Signed) && isa(OpRHSB->getOperand(1))) { int64_t CstVal = cast(OpRHSB->getOperand(1))->getSExtValue(); if (OpRHSB->getOperand(0) == RHSA && IdxDiff.getSExtValue() == CstVal) Safe = true; } // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`. if (OpRHSA && OpRHSA->getOpcode() == Instruction::Add && CheckFlags(OpRHSA, Signed) && isa(OpRHSA->getOperand(1))) { int64_t CstVal = cast(OpRHSA->getOperand(1))->getSExtValue(); if (OpRHSA->getOperand(0) == RHSB && IdxDiff.getSExtValue() == -CstVal) Safe = true; } // Match `x +nsw/nuw (y +nsw/nuw c)` and // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`. if (OpRHSA && OpRHSB && OpRHSA->getOpcode() == Instruction::Add && OpRHSB->getOpcode() == Instruction::Add && CheckFlags(OpRHSA, Signed) && CheckFlags(OpRHSB, Signed) && isa(OpRHSA->getOperand(1)) && isa(OpRHSB->getOperand(1))) { int64_t CstValA = cast(OpRHSA->getOperand(1))->getSExtValue(); int64_t CstValB = cast(OpRHSB->getOperand(1))->getSExtValue(); if (OpRHSA->getOperand(0) == OpRHSB->getOperand(0) && IdxDiff.getSExtValue() == (CstValB - CstValA)) Safe = true; } } unsigned BitWidth = ValA->getType()->getScalarSizeInBits(); // Third attempt: // If all set bits of IdxDiff or any higher order bit other than the sign bit // are known to be zero in ValA, we can add Diff to it while guaranteeing no // overflow of any sort. if (!Safe) { OpA = dyn_cast(ValA); if (!OpA) return false; KnownBits Known(BitWidth); computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT); APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth()); if (Signed) BitsAllowedToBeSet.clearBit(BitWidth - 1); if (BitsAllowedToBeSet.ult(IdxDiff)) return false; } const SCEV *OffsetSCEVA = SE.getSCEV(ValA); const SCEV *OffsetSCEVB = SE.getSCEV(OpB); const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth)); const SCEV *X = SE.getAddExpr(OffsetSCEVA, C); return X == OffsetSCEVB; } bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta, unsigned Depth) const { if (Depth++ == MaxDepth) return false; if (auto *SelectA = dyn_cast(PtrA)) { if (auto *SelectB = dyn_cast(PtrB)) { return SelectA->getCondition() == SelectB->getCondition() && areConsecutivePointers(SelectA->getTrueValue(), SelectB->getTrueValue(), PtrDelta, Depth) && areConsecutivePointers(SelectA->getFalseValue(), SelectB->getFalseValue(), PtrDelta, Depth); } } return false; } void Vectorizer::reorder(Instruction *I) { SmallPtrSet InstructionsToMove; SmallVector Worklist; Worklist.push_back(I); while (!Worklist.empty()) { Instruction *IW = Worklist.pop_back_val(); int NumOperands = IW->getNumOperands(); for (int i = 0; i < NumOperands; i++) { Instruction *IM = dyn_cast(IW->getOperand(i)); if (!IM || IM->getOpcode() == Instruction::PHI) continue; // If IM is in another BB, no need to move it, because this pass only // vectorizes instructions within one BB. if (IM->getParent() != I->getParent()) continue; if (!IM->comesBefore(I)) { InstructionsToMove.insert(IM); Worklist.push_back(IM); } } } // All instructions to move should follow I. Start from I, not from begin(). for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; ++BBI) { if (!InstructionsToMove.count(&*BBI)) continue; Instruction *IM = &*BBI; --BBI; IM->removeFromParent(); IM->insertBefore(I); } } std::pair Vectorizer::getBoundaryInstrs(ArrayRef Chain) { Instruction *C0 = Chain[0]; BasicBlock::iterator FirstInstr = C0->getIterator(); BasicBlock::iterator LastInstr = C0->getIterator(); BasicBlock *BB = C0->getParent(); unsigned NumFound = 0; for (Instruction &I : *BB) { if (!is_contained(Chain, &I)) continue; ++NumFound; if (NumFound == 1) { FirstInstr = I.getIterator(); } if (NumFound == Chain.size()) { LastInstr = I.getIterator(); break; } } // Range is [first, last). return std::make_pair(FirstInstr, ++LastInstr); } void Vectorizer::eraseInstructions(ArrayRef Chain) { SmallVector Instrs; for (Instruction *I : Chain) { Value *PtrOperand = getLoadStorePointerOperand(I); assert(PtrOperand && "Instruction must have a pointer operand."); Instrs.push_back(I); if (GetElementPtrInst *GEP = dyn_cast(PtrOperand)) Instrs.push_back(GEP); } // Erase instructions. for (Instruction *I : Instrs) if (I->use_empty()) I->eraseFromParent(); } std::pair, ArrayRef> Vectorizer::splitOddVectorElts(ArrayRef Chain, unsigned ElementSizeBits) { unsigned ElementSizeBytes = ElementSizeBits / 8; unsigned SizeBytes = ElementSizeBytes * Chain.size(); unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; if (NumLeft == Chain.size()) { if ((NumLeft & 1) == 0) NumLeft /= 2; // Split even in half else --NumLeft; // Split off last element } else if (NumLeft == 0) NumLeft = 1; return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); } ArrayRef Vectorizer::getVectorizablePrefix(ArrayRef Chain) { // These are in BB order, unlike Chain, which is in address order. SmallVector MemoryInstrs; SmallVector ChainInstrs; bool IsLoadChain = isa(Chain[0]); LLVM_DEBUG({ for (Instruction *I : Chain) { if (IsLoadChain) assert(isa(I) && "All elements of Chain must be loads, or all must be stores."); else assert(isa(I) && "All elements of Chain must be loads, or all must be stores."); } }); for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { if (isa(I) || isa(I)) { if (!is_contained(Chain, &I)) MemoryInstrs.push_back(&I); else ChainInstrs.push_back(&I); } else if (isa(&I) && cast(&I)->getIntrinsicID() == Intrinsic::sideeffect) { // Ignore llvm.sideeffect calls. } else if (isa(&I) && cast(&I)->getIntrinsicID() == Intrinsic::pseudoprobe) { // Ignore llvm.pseudoprobe calls. } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I << '\n'); break; } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I << '\n'); break; } } // Loop until we find an instruction in ChainInstrs that we can't vectorize. unsigned ChainInstrIdx = 0; Instruction *BarrierMemoryInstr = nullptr; for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; // If a barrier memory instruction was found, chain instructions that follow // will not be added to the valid prefix. if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(ChainInstr)) break; // Check (in BB order) if any instruction prevents ChainInstr from being // vectorized. Find and store the first such "conflicting" instruction. for (Instruction *MemInstr : MemoryInstrs) { // If a barrier memory instruction was found, do not check past it. if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(MemInstr)) break; auto *MemLoad = dyn_cast(MemInstr); auto *ChainLoad = dyn_cast(ChainInstr); if (MemLoad && ChainLoad) continue; // We can ignore the alias if the we have a load store pair and the load // is known to be invariant. The load cannot be clobbered by the store. auto IsInvariantLoad = [](const LoadInst *LI) -> bool { return LI->hasMetadata(LLVMContext::MD_invariant_load); }; // We can ignore the alias as long as the load comes before the store, // because that means we won't be moving the load past the store to // vectorize it (the vectorized load is inserted at the location of the // first load in the chain). if (isa(MemInstr) && ChainLoad && (IsInvariantLoad(ChainLoad) || ChainLoad->comesBefore(MemInstr))) continue; // Same case, but in reverse. if (MemLoad && isa(ChainInstr) && (IsInvariantLoad(MemLoad) || MemLoad->comesBefore(ChainInstr))) continue; if (!AA.isNoAlias(MemoryLocation::get(MemInstr), MemoryLocation::get(ChainInstr))) { LLVM_DEBUG({ dbgs() << "LSV: Found alias:\n" " Aliasing instruction and pointer:\n" << " " << *MemInstr << '\n' << " " << *getLoadStorePointerOperand(MemInstr) << '\n' << " Aliased instruction and pointer:\n" << " " << *ChainInstr << '\n' << " " << *getLoadStorePointerOperand(ChainInstr) << '\n'; }); // Save this aliasing memory instruction as a barrier, but allow other // instructions that precede the barrier to be vectorized with this one. BarrierMemoryInstr = MemInstr; break; } } // Continue the search only for store chains, since vectorizing stores that // precede an aliasing load is valid. Conversely, vectorizing loads is valid // up to an aliasing store, but should not pull loads from further down in // the basic block. if (IsLoadChain && BarrierMemoryInstr) { // The BarrierMemoryInstr is a store that precedes ChainInstr. assert(BarrierMemoryInstr->comesBefore(ChainInstr)); break; } } // Find the largest prefix of Chain whose elements are all in // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB // order.) SmallPtrSet VectorizableChainInstrs( ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); unsigned ChainIdx = 0; for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { if (!VectorizableChainInstrs.count(Chain[ChainIdx])) break; } return Chain.slice(0, ChainIdx); } static ChainID getChainID(const Value *Ptr) { const Value *ObjPtr = getUnderlyingObject(Ptr); if (const auto *Sel = dyn_cast(ObjPtr)) { // The select's themselves are distinct instructions even if they share the // same condition and evaluate to consecutive pointers for true and false // values of the condition. Therefore using the select's themselves for // grouping instructions would put consecutive accesses into different lists // and they won't be even checked for being consecutive, and won't be // vectorized. return Sel->getCondition(); } return ObjPtr; } std::pair Vectorizer::collectInstructions(BasicBlock *BB) { InstrListMap LoadRefs; InstrListMap StoreRefs; for (Instruction &I : *BB) { if (!I.mayReadOrWriteMemory()) continue; if (LoadInst *LI = dyn_cast(&I)) { if (!LI->isSimple()) continue; // Skip if it's not legal. if (!TTI.isLegalToVectorizeLoad(LI)) continue; Type *Ty = LI->getType(); if (!VectorType::isValidElementType(Ty->getScalarType())) continue; // Skip weird non-byte sizes. They probably aren't worth the effort of // handling correctly. unsigned TySize = DL.getTypeSizeInBits(Ty); if ((TySize % 8) != 0) continue; // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain // functions are currently using an integer type for the vectorized // load/store, and does not support casting between the integer type and a // vector of pointers (e.g. i64 to <2 x i16*>) if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) continue; Value *Ptr = LI->getPointerOperand(); unsigned AS = Ptr->getType()->getPointerAddressSpace(); unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); unsigned VF = VecRegSize / TySize; VectorType *VecTy = dyn_cast(Ty); // No point in looking at these if they're too big to vectorize. if (TySize > VecRegSize / 2 || (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) continue; // Make sure all the users of a vector are constant-index extracts. if (isa(Ty) && !llvm::all_of(LI->users(), [](const User *U) { const ExtractElementInst *EEI = dyn_cast(U); return EEI && isa(EEI->getOperand(1)); })) continue; // Save the load locations. const ChainID ID = getChainID(Ptr); LoadRefs[ID].push_back(LI); } else if (StoreInst *SI = dyn_cast(&I)) { if (!SI->isSimple()) continue; // Skip if it's not legal. if (!TTI.isLegalToVectorizeStore(SI)) continue; Type *Ty = SI->getValueOperand()->getType(); if (!VectorType::isValidElementType(Ty->getScalarType())) continue; // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain // functions are currently using an integer type for the vectorized // load/store, and does not support casting between the integer type and a // vector of pointers (e.g. i64 to <2 x i16*>) if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) continue; // Skip weird non-byte sizes. They probably aren't worth the effort of // handling correctly. unsigned TySize = DL.getTypeSizeInBits(Ty); if ((TySize % 8) != 0) continue; Value *Ptr = SI->getPointerOperand(); unsigned AS = Ptr->getType()->getPointerAddressSpace(); unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); unsigned VF = VecRegSize / TySize; VectorType *VecTy = dyn_cast(Ty); // No point in looking at these if they're too big to vectorize. if (TySize > VecRegSize / 2 || (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) continue; if (isa(Ty) && !llvm::all_of(SI->users(), [](const User *U) { const ExtractElementInst *EEI = dyn_cast(U); return EEI && isa(EEI->getOperand(1)); })) continue; // Save store location. const ChainID ID = getChainID(Ptr); StoreRefs[ID].push_back(SI); } } return {LoadRefs, StoreRefs}; } bool Vectorizer::vectorizeChains(InstrListMap &Map) { bool Changed = false; for (const std::pair &Chain : Map) { unsigned Size = Chain.second.size(); if (Size < 2) continue; LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); // Process the stores in chunks of 64. for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { unsigned Len = std::min(CE - CI, 64); ArrayRef Chunk(&Chain.second[CI], Len); Changed |= vectorizeInstructions(Chunk); } } return Changed; } bool Vectorizer::vectorizeInstructions(ArrayRef Instrs) { LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n"); SmallVector Heads, Tails; int ConsecutiveChain[64]; // Do a quadratic search on all of the given loads/stores and find all of the // pairs of loads/stores that follow each other. for (int i = 0, e = Instrs.size(); i < e; ++i) { ConsecutiveChain[i] = -1; for (int j = e - 1; j >= 0; --j) { if (i == j) continue; if (isConsecutiveAccess(Instrs[i], Instrs[j])) { if (ConsecutiveChain[i] != -1) { int CurDistance = std::abs(ConsecutiveChain[i] - i); int NewDistance = std::abs(ConsecutiveChain[i] - j); if (j < i || NewDistance > CurDistance) continue; // Should not insert. } Tails.push_back(j); Heads.push_back(i); ConsecutiveChain[i] = j; } } } bool Changed = false; SmallPtrSet InstructionsProcessed; for (int Head : Heads) { if (InstructionsProcessed.count(Instrs[Head])) continue; bool LongerChainExists = false; for (unsigned TIt = 0; TIt < Tails.size(); TIt++) if (Head == Tails[TIt] && !InstructionsProcessed.count(Instrs[Heads[TIt]])) { LongerChainExists = true; break; } if (LongerChainExists) continue; // We found an instr that starts a chain. Now follow the chain and try to // vectorize it. SmallVector Operands; int I = Head; while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { if (InstructionsProcessed.count(Instrs[I])) break; Operands.push_back(Instrs[I]); I = ConsecutiveChain[I]; } bool Vectorized = false; if (isa(*Operands.begin())) Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); else Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); Changed |= Vectorized; } return Changed; } bool Vectorizer::vectorizeStoreChain( ArrayRef Chain, SmallPtrSet *InstructionsProcessed) { StoreInst *S0 = cast(Chain[0]); // If the vector has an int element, default to int for the whole store. Type *StoreTy = nullptr; for (Instruction *I : Chain) { StoreTy = cast(I)->getValueOperand()->getType(); if (StoreTy->isIntOrIntVectorTy()) break; if (StoreTy->isPtrOrPtrVectorTy()) { StoreTy = Type::getIntNTy(F.getParent()->getContext(), DL.getTypeSizeInBits(StoreTy)); break; } } assert(StoreTy && "Failed to find store type"); unsigned Sz = DL.getTypeSizeInBits(StoreTy); unsigned AS = S0->getPointerAddressSpace(); unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); unsigned VF = VecRegSize / Sz; unsigned ChainSize = Chain.size(); Align Alignment = S0->getAlign(); if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { InstructionsProcessed->insert(Chain.begin(), Chain.end()); return false; } ArrayRef NewChain = getVectorizablePrefix(Chain); if (NewChain.empty()) { // No vectorization possible. InstructionsProcessed->insert(Chain.begin(), Chain.end()); return false; } if (NewChain.size() == 1) { // Failed after the first instruction. Discard it and try the smaller chain. InstructionsProcessed->insert(NewChain.front()); return false; } // Update Chain to the valid vectorizable subchain. Chain = NewChain; ChainSize = Chain.size(); // Check if it's legal to vectorize this chain. If not, split the chain and // try again. unsigned EltSzInBytes = Sz / 8; unsigned SzInBytes = EltSzInBytes * ChainSize; FixedVectorType *VecTy; auto *VecStoreTy = dyn_cast(StoreTy); if (VecStoreTy) VecTy = FixedVectorType::get(StoreTy->getScalarType(), Chain.size() * VecStoreTy->getNumElements()); else VecTy = FixedVectorType::get(StoreTy, Chain.size()); // If it's more than the max vector size or the target has a better // vector factor, break it into two pieces. unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." " Creating two separate arrays.\n"); return vectorizeStoreChain(Chain.slice(0, TargetVF), InstructionsProcessed) | vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); } LLVM_DEBUG({ dbgs() << "LSV: Stores to vectorize:\n"; for (Instruction *I : Chain) dbgs() << " " << *I << "\n"; }); // We won't try again to vectorize the elements of the chain, regardless of // whether we succeed below. InstructionsProcessed->insert(Chain.begin(), Chain.end()); // If the store is going to be misaligned, don't vectorize it. if (accessIsMisaligned(SzInBytes, AS, Alignment.value())) { if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { auto Chains = splitOddVectorElts(Chain, Sz); return vectorizeStoreChain(Chains.first, InstructionsProcessed) | vectorizeStoreChain(Chains.second, InstructionsProcessed); } Align NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), Align(StackAdjustedAlignment), DL, S0, nullptr, &DT); if (NewAlign >= Alignment) Alignment = NewAlign; else return false; } if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) { auto Chains = splitOddVectorElts(Chain, Sz); return vectorizeStoreChain(Chains.first, InstructionsProcessed) | vectorizeStoreChain(Chains.second, InstructionsProcessed); } BasicBlock::iterator First, Last; std::tie(First, Last) = getBoundaryInstrs(Chain); Builder.SetInsertPoint(&*Last); Value *Vec = UndefValue::get(VecTy); if (VecStoreTy) { unsigned VecWidth = VecStoreTy->getNumElements(); for (unsigned I = 0, E = Chain.size(); I != E; ++I) { StoreInst *Store = cast(Chain[I]); for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { unsigned NewIdx = J + I * VecWidth; Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), Builder.getInt32(J)); if (Extract->getType() != StoreTy->getScalarType()) Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); Value *Insert = Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); Vec = Insert; } } } else { for (unsigned I = 0, E = Chain.size(); I != E; ++I) { StoreInst *Store = cast(Chain[I]); Value *Extract = Store->getValueOperand(); if (Extract->getType() != StoreTy->getScalarType()) Extract = Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); Value *Insert = Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); Vec = Insert; } } StoreInst *SI = Builder.CreateAlignedStore( Vec, Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)), Alignment); propagateMetadata(SI, Chain); eraseInstructions(Chain); ++NumVectorInstructions; NumScalarsVectorized += Chain.size(); return true; } bool Vectorizer::vectorizeLoadChain( ArrayRef Chain, SmallPtrSet *InstructionsProcessed) { LoadInst *L0 = cast(Chain[0]); // If the vector has an int element, default to int for the whole load. Type *LoadTy = nullptr; for (const auto &V : Chain) { LoadTy = cast(V)->getType(); if (LoadTy->isIntOrIntVectorTy()) break; if (LoadTy->isPtrOrPtrVectorTy()) { LoadTy = Type::getIntNTy(F.getParent()->getContext(), DL.getTypeSizeInBits(LoadTy)); break; } } assert(LoadTy && "Can't determine LoadInst type from chain"); unsigned Sz = DL.getTypeSizeInBits(LoadTy); unsigned AS = L0->getPointerAddressSpace(); unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); unsigned VF = VecRegSize / Sz; unsigned ChainSize = Chain.size(); Align Alignment = L0->getAlign(); if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { InstructionsProcessed->insert(Chain.begin(), Chain.end()); return false; } ArrayRef NewChain = getVectorizablePrefix(Chain); if (NewChain.empty()) { // No vectorization possible. InstructionsProcessed->insert(Chain.begin(), Chain.end()); return false; } if (NewChain.size() == 1) { // Failed after the first instruction. Discard it and try the smaller chain. InstructionsProcessed->insert(NewChain.front()); return false; } // Update Chain to the valid vectorizable subchain. Chain = NewChain; ChainSize = Chain.size(); // Check if it's legal to vectorize this chain. If not, split the chain and // try again. unsigned EltSzInBytes = Sz / 8; unsigned SzInBytes = EltSzInBytes * ChainSize; VectorType *VecTy; auto *VecLoadTy = dyn_cast(LoadTy); if (VecLoadTy) VecTy = FixedVectorType::get(LoadTy->getScalarType(), Chain.size() * VecLoadTy->getNumElements()); else VecTy = FixedVectorType::get(LoadTy, Chain.size()); // If it's more than the max vector size or the target has a better // vector factor, break it into two pieces. unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." " Creating two separate arrays.\n"); return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); } // We won't try again to vectorize the elements of the chain, regardless of // whether we succeed below. InstructionsProcessed->insert(Chain.begin(), Chain.end()); // If the load is going to be misaligned, don't vectorize it. if (accessIsMisaligned(SzInBytes, AS, Alignment.value())) { if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { auto Chains = splitOddVectorElts(Chain, Sz); return vectorizeLoadChain(Chains.first, InstructionsProcessed) | vectorizeLoadChain(Chains.second, InstructionsProcessed); } Align NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(), Align(StackAdjustedAlignment), DL, L0, nullptr, &DT); if (NewAlign >= Alignment) Alignment = NewAlign; else return false; } if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) { auto Chains = splitOddVectorElts(Chain, Sz); return vectorizeLoadChain(Chains.first, InstructionsProcessed) | vectorizeLoadChain(Chains.second, InstructionsProcessed); } LLVM_DEBUG({ dbgs() << "LSV: Loads to vectorize:\n"; for (Instruction *I : Chain) I->dump(); }); // getVectorizablePrefix already computed getBoundaryInstrs. The value of // Last may have changed since then, but the value of First won't have. If it // matters, we could compute getBoundaryInstrs only once and reuse it here. BasicBlock::iterator First, Last; std::tie(First, Last) = getBoundaryInstrs(Chain); Builder.SetInsertPoint(&*First); Value *Bitcast = Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); LoadInst *LI = Builder.CreateAlignedLoad(VecTy, Bitcast, MaybeAlign(Alignment)); propagateMetadata(LI, Chain); if (VecLoadTy) { SmallVector InstrsToErase; unsigned VecWidth = VecLoadTy->getNumElements(); for (unsigned I = 0, E = Chain.size(); I != E; ++I) { for (auto Use : Chain[I]->users()) { // All users of vector loads are ExtractElement instructions with // constant indices, otherwise we would have bailed before now. Instruction *UI = cast(Use); unsigned Idx = cast(UI->getOperand(1))->getZExtValue(); unsigned NewIdx = Idx + I * VecWidth; Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), UI->getName()); if (V->getType() != UI->getType()) V = Builder.CreateBitCast(V, UI->getType()); // Replace the old instruction. UI->replaceAllUsesWith(V); InstrsToErase.push_back(UI); } } // Bitcast might not be an Instruction, if the value being loaded is a // constant. In that case, no need to reorder anything. if (Instruction *BitcastInst = dyn_cast(Bitcast)) reorder(BitcastInst); for (auto I : InstrsToErase) I->eraseFromParent(); } else { for (unsigned I = 0, E = Chain.size(); I != E; ++I) { Value *CV = Chain[I]; Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); if (V->getType() != CV->getType()) { V = Builder.CreateBitOrPointerCast(V, CV->getType()); } // Replace the old instruction. CV->replaceAllUsesWith(V); } if (Instruction *BitcastInst = dyn_cast(Bitcast)) reorder(BitcastInst); } eraseInstructions(Chain); ++NumVectorInstructions; NumScalarsVectorized += Chain.size(); return true; } bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, unsigned Alignment) { if (Alignment % SzInBytes == 0) return false; bool Fast = false; bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), SzInBytes * 8, AddressSpace, Alignment, &Fast); LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows << " and fast? " << Fast << "\n";); return !Allows || !Fast; }