//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass reassociates n-ary add expressions and eliminates the redundancy // exposed by the reassociation. // // A motivating example: // // void foo(int a, int b) { // bar(a + b); // bar((a + 2) + b); // } // // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify // the above code to // // int t = a + b; // bar(t); // bar(t + 2); // // However, the Reassociate pass is unable to do that because it processes each // instruction individually and believes (a + 2) + b is the best form according // to its rank system. // // To address this limitation, NaryReassociate reassociates an expression in a // form that reuses existing instructions. As a result, NaryReassociate can // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that // (a + b) is computed before. // // NaryReassociate works as follows. For every instruction in the form of (a + // b) + c, it checks whether a + c or b + c is already computed by a dominating // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b + // c) + a and removes the redundancy accordingly. To efficiently look up whether // an expression is computed before, we store each instruction seen and its SCEV // into an SCEV-to-instruction map. // // Although the algorithm pattern-matches only ternary additions, it // automatically handles many >3-ary expressions by walking through the function // in the depth-first order. For example, given // // (a + c) + d // ((a + b) + c) + d // // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites // ((a + c) + b) + d into ((a + c) + d) + b. // // Finally, the above dominator-based algorithm may need to be run multiple // iterations before emitting optimal code. One source of this need is that we // only split an operand when it is used only once. The above algorithm can // eliminate an instruction and decrease the usage count of its operands. As a // result, an instruction that previously had multiple uses may become a // single-use instruction and thus eligible for split consideration. For // example, // // ac = a + c // ab = a + b // abc = ab + c // ab2 = ab + b // ab2c = ab2 + c // // In the first iteration, we cannot reassociate abc to ac+b because ab is used // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a // result, ab2 becomes dead and ab will be used only once in the second // iteration. // // Limitations and TODO items: // // 1) We only considers n-ary adds and muls for now. This should be extended // and generalized. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/NaryReassociate.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include #include using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "nary-reassociate" namespace { class NaryReassociateLegacyPass : public FunctionPass { public: static char ID; NaryReassociateLegacyPass() : FunctionPass(ID) { initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); } bool doInitialization(Module &M) override { return false; } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); } private: NaryReassociatePass Impl; }; } // end anonymous namespace char NaryReassociateLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate", "Nary reassociation", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate", "Nary reassociation", false, false) FunctionPass *llvm::createNaryReassociatePass() { return new NaryReassociateLegacyPass(); } bool NaryReassociateLegacyPass::runOnFunction(Function &F) { if (skipFunction(F)) return false; auto *AC = &getAnalysis().getAssumptionCache(F); auto *DT = &getAnalysis().getDomTree(); auto *SE = &getAnalysis().getSE(); auto *TLI = &getAnalysis().getTLI(F); auto *TTI = &getAnalysis().getTTI(F); return Impl.runImpl(F, AC, DT, SE, TLI, TTI); } PreservedAnalyses NaryReassociatePass::run(Function &F, FunctionAnalysisManager &AM) { auto *AC = &AM.getResult(F); auto *DT = &AM.getResult(F); auto *SE = &AM.getResult(F); auto *TLI = &AM.getResult(F); auto *TTI = &AM.getResult(F); if (!runImpl(F, AC, DT, SE, TLI, TTI)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); return PA; } bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_, DominatorTree *DT_, ScalarEvolution *SE_, TargetLibraryInfo *TLI_, TargetTransformInfo *TTI_) { AC = AC_; DT = DT_; SE = SE_; TLI = TLI_; TTI = TTI_; DL = &F.getParent()->getDataLayout(); bool Changed = false, ChangedInThisIteration; do { ChangedInThisIteration = doOneIteration(F); Changed |= ChangedInThisIteration; } while (ChangedInThisIteration); return Changed; } bool NaryReassociatePass::doOneIteration(Function &F) { bool Changed = false; SeenExprs.clear(); // Process the basic blocks in a depth first traversal of the dominator // tree. This order ensures that all bases of a candidate are in Candidates // when we process it. SmallVector DeadInsts; for (const auto Node : depth_first(DT)) { BasicBlock *BB = Node->getBlock(); for (auto I = BB->begin(); I != BB->end(); ++I) { Instruction *OrigI = &*I; const SCEV *OrigSCEV = nullptr; if (Instruction *NewI = tryReassociate(OrigI, OrigSCEV)) { Changed = true; OrigI->replaceAllUsesWith(NewI); // Add 'OrigI' to the list of dead instructions. DeadInsts.push_back(WeakTrackingVH(OrigI)); // Add the rewritten instruction to SeenExprs; the original // instruction is deleted. const SCEV *NewSCEV = SE->getSCEV(NewI); SeenExprs[NewSCEV].push_back(WeakTrackingVH(NewI)); // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I) // is equivalent to I. However, ScalarEvolution::getSCEV may // weaken nsw causing NewSCEV not to equal OldSCEV. For example, // suppose we reassociate // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4 // to // NewI = &a[sext(i)] + sext(j). // // ScalarEvolution computes // getSCEV(I) = a + 4 * sext(i + j) // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j) // which are different SCEVs. // // To alleviate this issue of ScalarEvolution not always capturing // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can // map both SCEV before and after tryReassociate(I) to I. // // This improvement is exercised in @reassociate_gep_nsw in // nary-gep.ll. if (NewSCEV != OrigSCEV) SeenExprs[OrigSCEV].push_back(WeakTrackingVH(NewI)); } else if (OrigSCEV) SeenExprs[OrigSCEV].push_back(WeakTrackingVH(OrigI)); } } // Delete all dead instructions from 'DeadInsts'. // Please note ScalarEvolution is updated along the way. RecursivelyDeleteTriviallyDeadInstructionsPermissive( DeadInsts, TLI, nullptr, [this](Value *V) { SE->forgetValue(V); }); return Changed; } Instruction *NaryReassociatePass::tryReassociate(Instruction * I, const SCEV *&OrigSCEV) { if (!SE->isSCEVable(I->getType())) return nullptr; switch (I->getOpcode()) { case Instruction::Add: case Instruction::Mul: OrigSCEV = SE->getSCEV(I); return tryReassociateBinaryOp(cast(I)); case Instruction::GetElementPtr: OrigSCEV = SE->getSCEV(I); return tryReassociateGEP(cast(I)); default: return nullptr; } llvm_unreachable("should not be reached"); return nullptr; } static bool isGEPFoldable(GetElementPtrInst *GEP, const TargetTransformInfo *TTI) { SmallVector Indices(GEP->indices()); return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), Indices) == TargetTransformInfo::TCC_Free; } Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) { // Not worth reassociating GEP if it is foldable. if (isGEPFoldable(GEP, TTI)) return nullptr; gep_type_iterator GTI = gep_type_begin(*GEP); for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { if (GTI.isSequential()) { if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, GTI.getIndexedType())) { return NewGEP; } } } return nullptr; } bool NaryReassociatePass::requiresSignExtension(Value *Index, GetElementPtrInst *GEP) { unsigned PointerSizeInBits = DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace()); return cast(Index->getType())->getBitWidth() < PointerSizeInBits; } GetElementPtrInst * NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I, Type *IndexedType) { Value *IndexToSplit = GEP->getOperand(I + 1); if (SExtInst *SExt = dyn_cast(IndexToSplit)) { IndexToSplit = SExt->getOperand(0); } else if (ZExtInst *ZExt = dyn_cast(IndexToSplit)) { // zext can be treated as sext if the source is non-negative. if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT)) IndexToSplit = ZExt->getOperand(0); } if (AddOperator *AO = dyn_cast(IndexToSplit)) { // If the I-th index needs sext and the underlying add is not equipped with // nsw, we cannot split the add because // sext(LHS + RHS) != sext(LHS) + sext(RHS). if (requiresSignExtension(IndexToSplit, GEP) && computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) != OverflowResult::NeverOverflows) return nullptr; Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1); // IndexToSplit = LHS + RHS. if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType)) return NewGEP; // Symmetrically, try IndexToSplit = RHS + LHS. if (LHS != RHS) { if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType)) return NewGEP; } } return nullptr; } GetElementPtrInst * NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I, Value *LHS, Value *RHS, Type *IndexedType) { // Look for GEP's closest dominator that has the same SCEV as GEP except that // the I-th index is replaced with LHS. SmallVector IndexExprs; for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) IndexExprs.push_back(SE->getSCEV(*Index)); // Replace the I-th index with LHS. IndexExprs[I] = SE->getSCEV(LHS); if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) && DL->getTypeSizeInBits(LHS->getType()).getFixedSize() < DL->getTypeSizeInBits(GEP->getOperand(I)->getType()).getFixedSize()) { // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to // zext if the source operand is proved non-negative. We should do that // consistently so that CandidateExpr more likely appears before. See // @reassociate_gep_assume for an example of this canonicalization. IndexExprs[I] = SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType()); } const SCEV *CandidateExpr = SE->getGEPExpr(cast(GEP), IndexExprs); Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP); if (Candidate == nullptr) return nullptr; IRBuilder<> Builder(GEP); // Candidate does not necessarily have the same pointer type as GEP. Use // bitcast or pointer cast to make sure they have the same type, so that the // later RAUW doesn't complain. Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType()); assert(Candidate->getType() == GEP->getType()); // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType) uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType); Type *ElementType = GEP->getResultElementType(); uint64_t ElementSize = DL->getTypeAllocSize(ElementType); // Another less rare case: because I is not necessarily the last index of the // GEP, the size of the type at the I-th index (IndexedSize) is not // necessarily divisible by ElementSize. For example, // // #pragma pack(1) // struct S { // int a[3]; // int64 b[8]; // }; // #pragma pack() // // sizeof(S) = 100 is indivisible by sizeof(int64) = 8. // // TODO: bail out on this case for now. We could emit uglygep. if (IndexedSize % ElementSize != 0) return nullptr; // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0]))); Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); if (RHS->getType() != IntPtrTy) RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy); if (IndexedSize != ElementSize) { RHS = Builder.CreateMul( RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize)); } GetElementPtrInst *NewGEP = cast( Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS)); NewGEP->setIsInBounds(GEP->isInBounds()); NewGEP->takeName(GEP); return NewGEP; } Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) { Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); // There is no need to reassociate 0. if (SE->getSCEV(I)->isZero()) return nullptr; if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I)) return NewI; if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I)) return NewI; return nullptr; } Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS, BinaryOperator *I) { Value *A = nullptr, *B = nullptr; // To be conservative, we reassociate I only when it is the only user of (A op // B). if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) { // I = (A op B) op RHS // = (A op RHS) op B or (B op RHS) op A const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B); const SCEV *RHSExpr = SE->getSCEV(RHS); if (BExpr != RHSExpr) { if (auto *NewI = tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I)) return NewI; } if (AExpr != RHSExpr) { if (auto *NewI = tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I)) return NewI; } } return nullptr; } Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr, Value *RHS, BinaryOperator *I) { // Look for the closest dominator LHS of I that computes LHSExpr, and replace // I with LHS op RHS. auto *LHS = findClosestMatchingDominator(LHSExpr, I); if (LHS == nullptr) return nullptr; Instruction *NewI = nullptr; switch (I->getOpcode()) { case Instruction::Add: NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I); break; case Instruction::Mul: NewI = BinaryOperator::CreateMul(LHS, RHS, "", I); break; default: llvm_unreachable("Unexpected instruction."); } NewI->takeName(I); return NewI; } bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1, Value *&Op2) { switch (I->getOpcode()) { case Instruction::Add: return match(V, m_Add(m_Value(Op1), m_Value(Op2))); case Instruction::Mul: return match(V, m_Mul(m_Value(Op1), m_Value(Op2))); default: llvm_unreachable("Unexpected instruction."); } return false; } const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I, const SCEV *LHS, const SCEV *RHS) { switch (I->getOpcode()) { case Instruction::Add: return SE->getAddExpr(LHS, RHS); case Instruction::Mul: return SE->getMulExpr(LHS, RHS); default: llvm_unreachable("Unexpected instruction."); } return nullptr; } Instruction * NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr, Instruction *Dominatee) { auto Pos = SeenExprs.find(CandidateExpr); if (Pos == SeenExprs.end()) return nullptr; auto &Candidates = Pos->second; // Because we process the basic blocks in pre-order of the dominator tree, a // candidate that doesn't dominate the current instruction won't dominate any // future instruction either. Therefore, we pop it out of the stack. This // optimization makes the algorithm O(n). while (!Candidates.empty()) { // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's // removed // during rewriting. if (Value *Candidate = Candidates.back()) { Instruction *CandidateInstruction = cast(Candidate); if (DT->dominates(CandidateInstruction, Dominatee)) return CandidateInstruction; } Candidates.pop_back(); } return nullptr; }