//===- X86InterleavedAccess.cpp -------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This file contains the X86 implementation of the interleaved accesses /// optimization generating X86-specific instructions/intrinsics for /// interleaved access groups. // //===----------------------------------------------------------------------===// #include "X86ISelLowering.h" #include "X86Subtarget.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/MachineValueType.h" #include #include #include #include using namespace llvm; namespace { /// This class holds necessary information to represent an interleaved /// access group and supports utilities to lower the group into /// X86-specific instructions/intrinsics. /// E.g. A group of interleaving access loads (Factor = 2; accessing every /// other element) /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr /// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> /// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> class X86InterleavedAccessGroup { /// Reference to the wide-load instruction of an interleaved access /// group. Instruction *const Inst; /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'. ArrayRef Shuffles; /// Reference to the starting index of each user-shuffle. ArrayRef Indices; /// Reference to the interleaving stride in terms of elements. const unsigned Factor; /// Reference to the underlying target. const X86Subtarget &Subtarget; const DataLayout &DL; IRBuilder<> &Builder; /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors. void decompose(Instruction *Inst, unsigned NumSubVectors, FixedVectorType *T, SmallVectorImpl &DecomposedVectors); /// Performs matrix transposition on a 4x4 matrix \p InputVectors and /// returns the transposed-vectors in \p TransposedVectors. /// E.g. /// InputVectors: /// In-V0 = p1, p2, p3, p4 /// In-V1 = q1, q2, q3, q4 /// In-V2 = r1, r2, r3, r4 /// In-V3 = s1, s2, s3, s4 /// OutputVectors: /// Out-V0 = p1, q1, r1, s1 /// Out-V1 = p2, q2, r2, s2 /// Out-V2 = p3, q3, r3, s3 /// Out-V3 = P4, q4, r4, s4 void transpose_4x4(ArrayRef InputVectors, SmallVectorImpl &TransposedMatrix); void interleave8bitStride4(ArrayRef InputVectors, SmallVectorImpl &TransposedMatrix, unsigned NumSubVecElems); void interleave8bitStride4VF8(ArrayRef InputVectors, SmallVectorImpl &TransposedMatrix); void interleave8bitStride3(ArrayRef InputVectors, SmallVectorImpl &TransposedMatrix, unsigned NumSubVecElems); void deinterleave8bitStride3(ArrayRef InputVectors, SmallVectorImpl &TransposedMatrix, unsigned NumSubVecElems); public: /// In order to form an interleaved access group X86InterleavedAccessGroup /// requires a wide-load instruction \p 'I', a group of interleaved-vectors /// \p Shuffs, reference to the first indices of each interleaved-vector /// \p 'Ind' and the interleaving stride factor \p F. In order to generate /// X86-specific instructions/intrinsics it also requires the underlying /// target information \p STarget. explicit X86InterleavedAccessGroup(Instruction *I, ArrayRef Shuffs, ArrayRef Ind, const unsigned F, const X86Subtarget &STarget, IRBuilder<> &B) : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget), DL(Inst->getModule()->getDataLayout()), Builder(B) {} /// Returns true if this interleaved access group can be lowered into /// x86-specific instructions/intrinsics, false otherwise. bool isSupported() const; /// Lowers this interleaved access group into X86-specific /// instructions/intrinsics. bool lowerIntoOptimizedSequence(); }; } // end anonymous namespace bool X86InterleavedAccessGroup::isSupported() const { VectorType *ShuffleVecTy = Shuffles[0]->getType(); Type *ShuffleEltTy = ShuffleVecTy->getElementType(); unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy); unsigned WideInstSize; // Currently, lowering is supported for the following vectors: // Stride 4: // 1. Store and load of 4-element vectors of 64 bits on AVX. // 2. Store of 16/32-element vectors of 8 bits on AVX. // Stride 3: // 1. Load of 16/32-element vectors of 8 bits on AVX. if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3)) return false; if (isa(Inst)) { WideInstSize = DL.getTypeSizeInBits(Inst->getType()); if (cast(Inst)->getPointerAddressSpace()) return false; } else WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType()); // We support shuffle represents stride 4 for byte type with size of // WideInstSize. if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4) return true; if (ShuffleElemSize == 8 && isa(Inst) && Factor == 4 && (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 || WideInstSize == 2048)) return true; if (ShuffleElemSize == 8 && Factor == 3 && (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536)) return true; return false; } void X86InterleavedAccessGroup::decompose( Instruction *VecInst, unsigned NumSubVectors, FixedVectorType *SubVecTy, SmallVectorImpl &DecomposedVectors) { assert((isa(VecInst) || isa(VecInst)) && "Expected Load or Shuffle"); Type *VecWidth = VecInst->getType(); (void)VecWidth; assert(VecWidth->isVectorTy() && DL.getTypeSizeInBits(VecWidth) >= DL.getTypeSizeInBits(SubVecTy) * NumSubVectors && "Invalid Inst-size!!!"); if (auto *SVI = dyn_cast(VecInst)) { Value *Op0 = SVI->getOperand(0); Value *Op1 = SVI->getOperand(1); // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type. for (unsigned i = 0; i < NumSubVectors; ++i) DecomposedVectors.push_back( cast(Builder.CreateShuffleVector( Op0, Op1, createSequentialMask(Indices[i], SubVecTy->getNumElements(), 0)))); return; } // Decompose the load instruction. LoadInst *LI = cast(VecInst); Type *VecBaseTy, *VecBasePtrTy; Value *VecBasePtr; unsigned int NumLoads = NumSubVectors; // In the case of stride 3 with a vector of 32 elements load the information // in the following way: // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1] unsigned VecLength = DL.getTypeSizeInBits(VecWidth); if (VecLength == 768 || VecLength == 1536) { VecBaseTy = FixedVectorType::get(Type::getInt8Ty(LI->getContext()), 16); VecBasePtrTy = VecBaseTy->getPointerTo(LI->getPointerAddressSpace()); VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy); NumLoads = NumSubVectors * (VecLength / 384); } else { VecBaseTy = SubVecTy; VecBasePtrTy = VecBaseTy->getPointerTo(LI->getPointerAddressSpace()); VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy); } // Generate N loads of T type. assert(VecBaseTy->getPrimitiveSizeInBits().isKnownMultipleOf(8) && "VecBaseTy's size must be a multiple of 8"); const Align FirstAlignment = LI->getAlign(); const Align SubsequentAlignment = commonAlignment( FirstAlignment, VecBaseTy->getPrimitiveSizeInBits().getFixedSize() / 8); Align Alignment = FirstAlignment; for (unsigned i = 0; i < NumLoads; i++) { // TODO: Support inbounds GEP. Value *NewBasePtr = Builder.CreateGEP(VecBaseTy, VecBasePtr, Builder.getInt32(i)); Instruction *NewLoad = Builder.CreateAlignedLoad(VecBaseTy, NewBasePtr, Alignment); DecomposedVectors.push_back(NewLoad); Alignment = SubsequentAlignment; } } // Changing the scale of the vector type by reducing the number of elements and // doubling the scalar size. static MVT scaleVectorType(MVT VT) { unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2; return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), VT.getVectorNumElements() / 2); } static constexpr int Concat[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}; // genShuffleBland - Creates shuffle according to two vectors.This function is // only works on instructions with lane inside 256 registers. According to // the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The // offset amount depends on the two integer, 'LowOffset' and 'HighOffset'. // Where the 'LowOffset' refers to the first vector and the highOffset refers to // the second vector. // |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20| // |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25| // |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31| // For the sequence to work as a mirror to the load. // We must consider the elements order as above. // In this function we are combining two types of shuffles. // The first one is vpshufed and the second is a type of "blend" shuffle. // By computing the shuffle on a sequence of 16 elements(one lane) and add the // correct offset. We are creating a vpsuffed + blend sequence between two // shuffles. static void genShuffleBland(MVT VT, ArrayRef Mask, SmallVectorImpl &Out, int LowOffset, int HighOffset) { assert(VT.getSizeInBits() >= 256 && "This function doesn't accept width smaller then 256"); unsigned NumOfElm = VT.getVectorNumElements(); for (unsigned i = 0; i < Mask.size(); i++) Out.push_back(Mask[i] + LowOffset); for (unsigned i = 0; i < Mask.size(); i++) Out.push_back(Mask[i] + HighOffset + NumOfElm); } // reorderSubVector returns the data to is the original state. And de-facto is // the opposite of the function concatSubVector. // For VecElems = 16 // Invec[0] - |0| TransposedMatrix[0] - |0| // Invec[1] - |1| => TransposedMatrix[1] - |1| // Invec[2] - |2| TransposedMatrix[2] - |2| // For VecElems = 32 // Invec[0] - |0|3| TransposedMatrix[0] - |0|1| // Invec[1] - |1|4| => TransposedMatrix[1] - |2|3| // Invec[2] - |2|5| TransposedMatrix[2] - |4|5| // For VecElems = 64 // Invec[0] - |0|3|6|9 | TransposedMatrix[0] - |0|1|2 |3 | // Invec[1] - |1|4|7|10| => TransposedMatrix[1] - |4|5|6 |7 | // Invec[2] - |2|5|8|11| TransposedMatrix[2] - |8|9|10|11| static void reorderSubVector(MVT VT, SmallVectorImpl &TransposedMatrix, ArrayRef Vec, ArrayRef VPShuf, unsigned VecElems, unsigned Stride, IRBuilder<> &Builder) { if (VecElems == 16) { for (unsigned i = 0; i < Stride; i++) TransposedMatrix[i] = Builder.CreateShuffleVector(Vec[i], VPShuf); return; } SmallVector OptimizeShuf; Value *Temp[8]; for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) { genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16, (i + 1) / Stride * 16); Temp[i / 2] = Builder.CreateShuffleVector( Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf); OptimizeShuf.clear(); } if (VecElems == 32) { std::copy(Temp, Temp + Stride, TransposedMatrix.begin()); return; } else for (unsigned i = 0; i < Stride; i++) TransposedMatrix[i] = Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat); } void X86InterleavedAccessGroup::interleave8bitStride4VF8( ArrayRef Matrix, SmallVectorImpl &TransposedMatrix) { // Assuming we start from the following vectors: // Matrix[0]= c0 c1 c2 c3 c4 ... c7 // Matrix[1]= m0 m1 m2 m3 m4 ... m7 // Matrix[2]= y0 y1 y2 y3 y4 ... y7 // Matrix[3]= k0 k1 k2 k3 k4 ... k7 MVT VT = MVT::v8i16; TransposedMatrix.resize(2); SmallVector MaskLow; SmallVector MaskLowTemp1, MaskLowWord; SmallVector MaskHighTemp1, MaskHighWord; for (unsigned i = 0; i < 8; ++i) { MaskLow.push_back(i); MaskLow.push_back(i + 8); } createUnpackShuffleMask(VT, MaskLowTemp1, true, false); createUnpackShuffleMask(VT, MaskHighTemp1, false, false); narrowShuffleMaskElts(2, MaskHighTemp1, MaskHighWord); narrowShuffleMaskElts(2, MaskLowTemp1, MaskLowWord); // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7 // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7 Value *IntrVec1Low = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); Value *IntrVec2Low = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7 TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord); TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord); } void X86InterleavedAccessGroup::interleave8bitStride4( ArrayRef Matrix, SmallVectorImpl &TransposedMatrix, unsigned NumOfElm) { // Example: Assuming we start from the following vectors: // Matrix[0]= c0 c1 c2 c3 c4 ... c31 // Matrix[1]= m0 m1 m2 m3 m4 ... m31 // Matrix[2]= y0 y1 y2 y3 y4 ... y31 // Matrix[3]= k0 k1 k2 k3 k4 ... k31 MVT VT = MVT::getVectorVT(MVT::i8, NumOfElm); MVT HalfVT = scaleVectorType(VT); TransposedMatrix.resize(4); SmallVector MaskHigh; SmallVector MaskLow; SmallVector LowHighMask[2]; SmallVector MaskHighTemp; SmallVector MaskLowTemp; // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86 // shuffle pattern. createUnpackShuffleMask(VT, MaskLow, true, false); createUnpackShuffleMask(VT, MaskHigh, false, false); // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86 // shuffle pattern. createUnpackShuffleMask(HalfVT, MaskLowTemp, true, false); createUnpackShuffleMask(HalfVT, MaskHighTemp, false, false); narrowShuffleMaskElts(2, MaskLowTemp, LowHighMask[0]); narrowShuffleMaskElts(2, MaskHighTemp, LowHighMask[1]); // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23 // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31 // IntrVec2Low = y0 k0 y1 k1 ... y7 k7 | y16 k16 y17 k17 ... y23 k23 // IntrVec2High = y8 k8 y9 k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31 Value *IntrVec[4]; IntrVec[0] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow); IntrVec[1] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh); IntrVec[2] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow); IntrVec[3] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh); // cmyk4 cmyk5 cmyk6 cmyk7 | cmyk20 cmyk21 cmyk22 cmyk23 // cmyk12 cmyk13 cmyk14 cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31 // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk16 cmyk17 cmyk18 cmyk19 // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27 Value *VecOut[4]; for (int i = 0; i < 4; i++) VecOut[i] = Builder.CreateShuffleVector(IntrVec[i / 2], IntrVec[i / 2 + 2], LowHighMask[i % 2]); // cmyk0 cmyk1 cmyk2 cmyk3 | cmyk4 cmyk5 cmyk6 cmyk7 // cmyk8 cmyk9 cmyk10 cmyk11 | cmyk12 cmyk13 cmyk14 cmyk15 // cmyk16 cmyk17 cmyk18 cmyk19 | cmyk20 cmyk21 cmyk22 cmyk23 // cmyk24 cmyk25 cmyk26 cmyk27 | cmyk28 cmyk29 cmyk30 cmyk31 if (VT == MVT::v16i8) { std::copy(VecOut, VecOut + 4, TransposedMatrix.begin()); return; } reorderSubVector(VT, TransposedMatrix, VecOut, makeArrayRef(Concat, 16), NumOfElm, 4, Builder); } // createShuffleStride returns shuffle mask of size N. // The shuffle pattern is as following : // {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane), // (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),..., // (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)} // Where Lane is the # of lanes in a register: // VectorSize = 128 => Lane = 1 // VectorSize = 256 => Lane = 2 // For example shuffle pattern for VF 16 register size 256 -> lanes = 2 // {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>} static void createShuffleStride(MVT VT, int Stride, SmallVectorImpl &Mask) { int VectorSize = VT.getSizeInBits(); int VF = VT.getVectorNumElements(); int LaneCount = std::max(VectorSize / 128, 1); for (int Lane = 0; Lane < LaneCount; Lane++) for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i) Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane); } // setGroupSize sets 'SizeInfo' to the size(number of elements) of group // inside mask a shuffleMask. A mask contains exactly 3 groups, where // each group is a monotonically increasing sequence with stride 3. // For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2} static void setGroupSize(MVT VT, SmallVectorImpl &SizeInfo) { int VectorSize = VT.getSizeInBits(); int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1); for (int i = 0, FirstGroupElement = 0; i < 3; i++) { int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0); SizeInfo.push_back(GroupSize); FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF; } } // DecodePALIGNRMask returns the shuffle mask of vpalign instruction. // vpalign works according to lanes // Where Lane is the # of lanes in a register: // VectorWide = 128 => Lane = 1 // VectorWide = 256 => Lane = 2 // For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}. // For Lane = 2 shuffle pattern is: // {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}. // Imm variable sets the offset amount. The result of the // function is stored inside ShuffleMask vector and it built as described in // the begin of the description. AlignDirection is a boolean that indicates the // direction of the alignment. (false - align to the "right" side while true - // align to the "left" side) static void DecodePALIGNRMask(MVT VT, unsigned Imm, SmallVectorImpl &ShuffleMask, bool AlignDirection = true, bool Unary = false) { unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1); unsigned NumLaneElts = NumElts / NumLanes; Imm = AlignDirection ? Imm : (NumLaneElts - Imm); unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8); for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0; i != NumLaneElts; ++i) { unsigned Base = i + Offset; // if i+offset is out of this lane then we actually need the other source // If Unary the other source is the first source. if (Base >= NumLaneElts) Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts; ShuffleMask.push_back(Base + l); } } } // concatSubVector - The function rebuilds the data to a correct expected // order. An assumption(The shape of the matrix) was taken for the // deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'. // This function ensures that the data is built in correct way for the lane // instructions. Each lane inside the vector is a 128-bit length. // // The 'InVec' argument contains the data in increasing order. In InVec[0] You // can find the first 128 bit data. The number of different lanes inside a // vector depends on the 'VecElems'.In general, the formula is // VecElems * type / 128. The size of the array 'InVec' depends and equal to // 'VecElems'. // For VecElems = 16 // Invec[0] - |0| Vec[0] - |0| // Invec[1] - |1| => Vec[1] - |1| // Invec[2] - |2| Vec[2] - |2| // For VecElems = 32 // Invec[0] - |0|1| Vec[0] - |0|3| // Invec[1] - |2|3| => Vec[1] - |1|4| // Invec[2] - |4|5| Vec[2] - |2|5| // For VecElems = 64 // Invec[0] - |0|1|2 |3 | Vec[0] - |0|3|6|9 | // Invec[1] - |4|5|6 |7 | => Vec[1] - |1|4|7|10| // Invec[2] - |8|9|10|11| Vec[2] - |2|5|8|11| static void concatSubVector(Value **Vec, ArrayRef InVec, unsigned VecElems, IRBuilder<> &Builder) { if (VecElems == 16) { for (int i = 0; i < 3; i++) Vec[i] = InVec[i]; return; } for (unsigned j = 0; j < VecElems / 32; j++) for (int i = 0; i < 3; i++) Vec[i + j * 3] = Builder.CreateShuffleVector( InVec[j * 6 + i], InVec[j * 6 + i + 3], makeArrayRef(Concat, 32)); if (VecElems == 32) return; for (int i = 0; i < 3; i++) Vec[i] = Builder.CreateShuffleVector(Vec[i], Vec[i + 3], Concat); } void X86InterleavedAccessGroup::deinterleave8bitStride3( ArrayRef InVec, SmallVectorImpl &TransposedMatrix, unsigned VecElems) { // Example: Assuming we start from the following vectors: // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2 // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5 // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7 TransposedMatrix.resize(3); SmallVector VPShuf; SmallVector VPAlign[2]; SmallVector VPAlign2; SmallVector VPAlign3; SmallVector GroupSize; Value *Vec[6], *TempVector[3]; MVT VT = MVT::getVT(Shuffles[0]->getType()); createShuffleStride(VT, 3, VPShuf); setGroupSize(VT, GroupSize); for (int i = 0; i < 2; i++) DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false); DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true); DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true); concatSubVector(Vec, InVec, VecElems, Builder); // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 for (int i = 0; i < 3; i++) Vec[i] = Builder.CreateShuffleVector(Vec[i], VPShuf); // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2 // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5 // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7 for (int i = 0; i < 3; i++) TempVector[i] = Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]); // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 for (int i = 0; i < 3; i++) Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i], VPAlign[1]); // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7 Value *TempVec = Builder.CreateShuffleVector(Vec[1], VPAlign3); TransposedMatrix[0] = Builder.CreateShuffleVector(Vec[0], VPAlign2); TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec; TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2]; } // group2Shuffle reorder the shuffle stride back into continuous order. // For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} => // MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}. static void group2Shuffle(MVT VT, SmallVectorImpl &Mask, SmallVectorImpl &Output) { int IndexGroup[3] = {0, 0, 0}; int Index = 0; int VectorWidth = VT.getSizeInBits(); int VF = VT.getVectorNumElements(); // Find the index of the different groups. int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1; for (int i = 0; i < 3; i++) { IndexGroup[(Index * 3) % (VF / Lane)] = Index; Index += Mask[i]; } // According to the index compute the convert mask. for (int i = 0; i < VF / Lane; i++) { Output.push_back(IndexGroup[i % 3]); IndexGroup[i % 3]++; } } void X86InterleavedAccessGroup::interleave8bitStride3( ArrayRef InVec, SmallVectorImpl &TransposedMatrix, unsigned VecElems) { // Example: Assuming we start from the following vectors: // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7 // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7 // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7 TransposedMatrix.resize(3); SmallVector GroupSize; SmallVector VPShuf; SmallVector VPAlign[3]; SmallVector VPAlign2; SmallVector VPAlign3; Value *Vec[3], *TempVector[3]; MVT VT = MVT::getVectorVT(MVT::i8, VecElems); setGroupSize(VT, GroupSize); for (int i = 0; i < 3; i++) DecodePALIGNRMask(VT, GroupSize[i], VPAlign[i]); DecodePALIGNRMask(VT, GroupSize[1] + GroupSize[2], VPAlign2, false, true); DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, false, true); // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2 // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4 // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7 Vec[0] = Builder.CreateShuffleVector(InVec[0], VPAlign2); Vec[1] = Builder.CreateShuffleVector(InVec[1], VPAlign3); Vec[2] = InVec[2]; // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2 // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5 // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7 for (int i = 0; i < 3; i++) TempVector[i] = Builder.CreateShuffleVector(Vec[i], Vec[(i + 2) % 3], VPAlign[1]); // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1 // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4 // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7 for (int i = 0; i < 3; i++) Vec[i] = Builder.CreateShuffleVector(TempVector[i], TempVector[(i + 1) % 3], VPAlign[2]); // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2 // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5 // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7 unsigned NumOfElm = VT.getVectorNumElements(); group2Shuffle(VT, GroupSize, VPShuf); reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm, 3, Builder); } void X86InterleavedAccessGroup::transpose_4x4( ArrayRef Matrix, SmallVectorImpl &TransposedMatrix) { assert(Matrix.size() == 4 && "Invalid matrix size"); TransposedMatrix.resize(4); // dst = src1[0,1],src2[0,1] static constexpr int IntMask1[] = {0, 1, 4, 5}; ArrayRef Mask = makeArrayRef(IntMask1, 4); Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); // dst = src1[2,3],src2[2,3] static constexpr int IntMask2[] = {2, 3, 6, 7}; Mask = makeArrayRef(IntMask2, 4); Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); // dst = src1[0],src2[0],src1[2],src2[2] static constexpr int IntMask3[] = {0, 4, 2, 6}; Mask = makeArrayRef(IntMask3, 4); TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); // dst = src1[1],src2[1],src1[3],src2[3] static constexpr int IntMask4[] = {1, 5, 3, 7}; Mask = makeArrayRef(IntMask4, 4); TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); } // Lowers this interleaved access group into X86-specific // instructions/intrinsics. bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { SmallVector DecomposedVectors; SmallVector TransposedVectors; auto *ShuffleTy = cast(Shuffles[0]->getType()); if (isa(Inst)) { // Try to generate target-sized register(/instruction). decompose(Inst, Factor, ShuffleTy, DecomposedVectors); auto *ShuffleEltTy = cast(Inst->getType()); unsigned NumSubVecElems = ShuffleEltTy->getNumElements() / Factor; // Perform matrix-transposition in order to compute interleaved // results by generating some sort of (optimized) target-specific // instructions. switch (NumSubVecElems) { default: return false; case 4: transpose_4x4(DecomposedVectors, TransposedVectors); break; case 8: case 16: case 32: case 64: deinterleave8bitStride3(DecomposedVectors, TransposedVectors, NumSubVecElems); break; } // Now replace the unoptimized-interleaved-vectors with the // transposed-interleaved vectors. for (unsigned i = 0, e = Shuffles.size(); i < e; ++i) Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]); return true; } Type *ShuffleEltTy = ShuffleTy->getElementType(); unsigned NumSubVecElems = ShuffleTy->getNumElements() / Factor; // Lower the interleaved stores: // 1. Decompose the interleaved wide shuffle into individual shuffle // vectors. decompose(Shuffles[0], Factor, FixedVectorType::get(ShuffleEltTy, NumSubVecElems), DecomposedVectors); // 2. Transpose the interleaved-vectors into vectors of contiguous // elements. switch (NumSubVecElems) { case 4: transpose_4x4(DecomposedVectors, TransposedVectors); break; case 8: interleave8bitStride4VF8(DecomposedVectors, TransposedVectors); break; case 16: case 32: case 64: if (Factor == 4) interleave8bitStride4(DecomposedVectors, TransposedVectors, NumSubVecElems); if (Factor == 3) interleave8bitStride3(DecomposedVectors, TransposedVectors, NumSubVecElems); break; default: return false; } // 3. Concatenate the contiguous-vectors back into a wide vector. Value *WideVec = concatenateVectors(Builder, TransposedVectors); // 4. Generate a store instruction for wide-vec. StoreInst *SI = cast(Inst); Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), SI->getAlign()); return true; } // Lower interleaved load(s) into target specific instructions/ // intrinsics. Lowering sequence varies depending on the vector-types, factor, // number of shuffles and ISA. // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX. bool X86TargetLowering::lowerInterleavedLoad( LoadInst *LI, ArrayRef Shuffles, ArrayRef Indices, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(!Shuffles.empty() && "Empty shufflevector input"); assert(Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices"); // Create an interleaved access group. IRBuilder<> Builder(LI); X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget, Builder); return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); } bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(cast(SVI->getType())->getNumElements() % Factor == 0 && "Invalid interleaved store"); // Holds the indices of SVI that correspond to the starting index of each // interleaved shuffle. SmallVector Indices; auto Mask = SVI->getShuffleMask(); for (unsigned i = 0; i < Factor; i++) Indices.push_back(Mask[i]); ArrayRef Shuffles = makeArrayRef(SVI); // Create an interleaved access group. IRBuilder<> Builder(SI); X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget, Builder); return Grp.isSupported() && Grp.lowerIntoOptimizedSequence(); }