//===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the ARM specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMCallLowering.h" #include "ARMLegalizerInfo.h" #include "ARMRegisterBankInfo.h" #include "ARMSubtarget.h" #include "ARMFrameLowering.h" #include "ARMInstrInfo.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "MCTargetDesc/ARMMCTargetDesc.h" #include "Thumb1FrameLowering.h" #include "Thumb1InstrInfo.h" #include "Thumb2InstrInfo.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/TargetParser.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; #define DEBUG_TYPE "arm-subtarget" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "ARMGenSubtargetInfo.inc" static cl::opt UseFusedMulOps("arm-use-mulops", cl::init(true), cl::Hidden); enum ITMode { DefaultIT, RestrictedIT, NoRestrictedIT }; static cl::opt IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::ZeroOrMore, cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate IT block based on arch"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow deprecated IT based on ARMv8"), clEnumValN(NoRestrictedIT, "arm-no-restrict-it", "Allow IT blocks based on ARMv7"))); /// ForceFastISel - Use the fast-isel, even for subtargets where it is not /// currently supported (for testing only). static cl::opt ForceFastISel("arm-force-fast-isel", cl::init(false), cl::Hidden); static cl::opt EnableSubRegLiveness("arm-enable-subreg-liveness", cl::init(false), cl::Hidden); /// initializeSubtargetDependencies - Initializes using a CPU and feature string /// so that we can use initializer lists for subtarget initialization. ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { initializeEnvironment(); initSubtargetFeatures(CPU, FS); return *this; } ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU, StringRef FS) { ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS); if (STI.isThumb1Only()) return (ARMFrameLowering *)new Thumb1FrameLowering(STI); return new ARMFrameLowering(STI); } ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS, const ARMBaseTargetMachine &TM, bool IsLittle, bool MinSize) : ARMGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS), UseMulOps(UseFusedMulOps), CPUString(CPU), OptMinSize(MinSize), IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options), TM(TM), FrameLowering(initializeFrameLowering(CPU, FS)), // At this point initializeSubtargetDependencies has been called so // we can query directly. InstrInfo(isThumb1Only() ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this) : !isThumb() ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this) : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)), TLInfo(TM, *this) { CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering())); Legalizer.reset(new ARMLegalizerInfo(*this)); auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo()); // FIXME: At this point, we can't rely on Subtarget having RBI. // It's awkward to mix passing RBI and the Subtarget; should we pass // TII/TRI as well? InstSelector.reset(createARMInstructionSelector( *static_cast(&TM), *this, *RBI)); RegBankInfo.reset(RBI); } const CallLowering *ARMSubtarget::getCallLowering() const { return CallLoweringInfo.get(); } InstructionSelector *ARMSubtarget::getInstructionSelector() const { return InstSelector.get(); } const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const { return Legalizer.get(); } const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const { return RegBankInfo.get(); } bool ARMSubtarget::isXRaySupported() const { // We don't currently suppport Thumb, but Windows requires Thumb. return hasV6Ops() && hasARMOps() && !isTargetWindows(); } void ARMSubtarget::initializeEnvironment() { // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this // directly from it, but we can try to make sure they're consistent when both // available. UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() && Options.ExceptionModel == ExceptionHandling::None) || Options.ExceptionModel == ExceptionHandling::SjLj; assert((!TM.getMCAsmInfo() || (TM.getMCAsmInfo()->getExceptionHandlingType() == ExceptionHandling::SjLj) == UseSjLjEH) && "inconsistent sjlj choice between CodeGen and MC"); } void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) { if (CPUString.empty()) { CPUString = "generic"; if (isTargetDarwin()) { StringRef ArchName = TargetTriple.getArchName(); ARM::ArchKind AK = ARM::parseArch(ArchName); if (AK == ARM::ArchKind::ARMV7S) // Default to the Swift CPU when targeting armv7s/thumbv7s. CPUString = "swift"; else if (AK == ARM::ArchKind::ARMV7K) // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k. // ARMv7k does not use SjLj exception handling. CPUString = "cortex-a7"; } } // Insert the architecture feature derived from the target triple into the // feature string. This is important for setting features that are implied // based on the architecture version. std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString); if (!FS.empty()) { if (!ArchFS.empty()) ArchFS = (Twine(ArchFS) + "," + FS).str(); else ArchFS = std::string(FS); } ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, ArchFS); // FIXME: This used enable V6T2 support implicitly for Thumb2 mode. // Assert this for now to make the change obvious. assert(hasV6T2Ops() || !hasThumb2()); // Execute only support requires movt support if (genExecuteOnly()) { NoMovt = false; assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target"); } // Keep a pointer to static instruction cost data for the specified CPU. SchedModel = getSchedModelForCPU(CPUString); // Initialize scheduling itinerary for the specified CPU. InstrItins = getInstrItineraryForCPU(CPUString); // FIXME: this is invalid for WindowsCE if (isTargetWindows()) NoARM = true; if (isAAPCS_ABI()) stackAlignment = Align(8); if (isTargetNaCl() || isAAPCS16_ABI()) stackAlignment = Align(16); // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo:: // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation // support in the assembler and linker to be used. This would need to be // fixed to fully support tail calls in Thumb1. // // For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M // baseline, since the LDM/POP instruction on Thumb doesn't take LR. This // means if we need to reload LR, it takes extra instructions, which outweighs // the value of the tail call; but here we don't know yet whether LR is going // to be used. We take the optimistic approach of generating the tail call and // perhaps taking a hit if we need to restore the LR. // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, // but we need to make sure there are enough registers; the only valid // registers are the 4 used for parameters. We don't currently do this // case. SupportsTailCall = !isThumb() || hasV8MBaselineOps(); if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0)) SupportsTailCall = false; switch (IT) { case DefaultIT: RestrictIT = hasV8Ops() && !hasMinSize(); break; case RestrictedIT: RestrictIT = true; break; case NoRestrictedIT: RestrictIT = false; break; } // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default. const FeatureBitset &Bits = getFeatureBits(); if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters (Options.UnsafeFPMath || isTargetDarwin())) UseNEONForSinglePrecisionFP = true; if (isRWPI()) ReserveR9 = true; // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2 if (MVEVectorCostFactor == 0) MVEVectorCostFactor = 2; // FIXME: Teach TableGen to deal with these instead of doing it manually here. switch (ARMProcFamily) { case Others: case CortexA5: break; case CortexA7: LdStMultipleTiming = DoubleIssue; break; case CortexA8: LdStMultipleTiming = DoubleIssue; break; case CortexA9: LdStMultipleTiming = DoubleIssueCheckUnalignedAccess; PreISelOperandLatencyAdjustment = 1; break; case CortexA12: break; case CortexA15: MaxInterleaveFactor = 2; PreISelOperandLatencyAdjustment = 1; PartialUpdateClearance = 12; break; case CortexA17: case CortexA32: case CortexA35: case CortexA53: case CortexA55: case CortexA57: case CortexA72: case CortexA73: case CortexA75: case CortexA76: case CortexA77: case CortexA78: case CortexA78C: case CortexR4: case CortexR4F: case CortexR5: case CortexR7: case CortexM3: case CortexM7: case CortexR52: case CortexX1: break; case Exynos: LdStMultipleTiming = SingleIssuePlusExtras; MaxInterleaveFactor = 4; if (!isThumb()) PrefLoopLogAlignment = 3; break; case Kryo: break; case Krait: PreISelOperandLatencyAdjustment = 1; break; case NeoverseN1: case NeoverseN2: case NeoverseV1: break; case Swift: MaxInterleaveFactor = 2; LdStMultipleTiming = SingleIssuePlusExtras; PreISelOperandLatencyAdjustment = 1; PartialUpdateClearance = 12; break; } } bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); } bool ARMSubtarget::isAPCS_ABI() const { assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS; } bool ARMSubtarget::isAAPCS_ABI() const { assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS || TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; } bool ARMSubtarget::isAAPCS16_ABI() const { assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; } bool ARMSubtarget::isROPI() const { return TM.getRelocationModel() == Reloc::ROPI || TM.getRelocationModel() == Reloc::ROPI_RWPI; } bool ARMSubtarget::isRWPI() const { return TM.getRelocationModel() == Reloc::RWPI || TM.getRelocationModel() == Reloc::ROPI_RWPI; } bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const { if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) return true; // 32 bit macho has no relocation for a-b if a is undefined, even if b is in // the section that is being relocated. This means we have to use o load even // for GVs that are known to be local to the dso. if (isTargetMachO() && TM.isPositionIndependent() && (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) return true; return false; } bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const { return isTargetELF() && TM.isPositionIndependent() && !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); } unsigned ARMSubtarget::getMispredictionPenalty() const { return SchedModel.MispredictPenalty; } bool ARMSubtarget::enableMachineScheduler() const { // The MachineScheduler can increase register usage, so we use more high // registers and end up with more T2 instructions that cannot be converted to // T1 instructions. At least until we do better at converting to thumb1 // instructions, on cortex-m at Oz where we are size-paranoid, don't use the // Machine scheduler, relying on the DAG register pressure scheduler instead. if (isMClass() && hasMinSize()) return false; // Enable the MachineScheduler before register allocation for subtargets // with the use-misched feature. return useMachineScheduler(); } bool ARMSubtarget::enableSubRegLiveness() const { return EnableSubRegLiveness; } // This overrides the PostRAScheduler bit in the SchedModel for any CPU. bool ARMSubtarget::enablePostRAScheduler() const { if (enableMachineScheduler()) return false; if (disablePostRAScheduler()) return false; // Thumb1 cores will generally not benefit from post-ra scheduling return !isThumb1Only(); } bool ARMSubtarget::enablePostRAMachineScheduler() const { if (!enableMachineScheduler()) return false; if (disablePostRAScheduler()) return false; return !isThumb1Only(); } bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); } bool ARMSubtarget::useStride4VFPs() const { // For general targets, the prologue can grow when VFPs are allocated with // stride 4 (more vpush instructions). But WatchOS uses a compact unwind // format which it's more important to get right. return isTargetWatchABI() || (useWideStrideVFP() && !OptMinSize); } bool ARMSubtarget::useMovt() const { // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit // immediates as it is inherently position independent, and may be out of // range otherwise. return !NoMovt && hasV8MBaselineOps() && (isTargetWindows() || !OptMinSize || genExecuteOnly()); } bool ARMSubtarget::useFastISel() const { // Enable fast-isel for any target, for testing only. if (ForceFastISel) return true; // Limit fast-isel to the targets that are or have been tested. if (!hasV6Ops()) return false; // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. return TM.Options.EnableFastISel && ((isTargetMachO() && !isThumb1Only()) || (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb())); } unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const { // The GPR register class has multiple possible allocation orders, with // tradeoffs preferred by different sub-architectures and optimisation goals. // The allocation orders are: // 0: (the default tablegen order, not used) // 1: r14, r0-r13 // 2: r0-r7 // 3: r0-r7, r12, lr, r8-r11 // Note that the register allocator will change this order so that // callee-saved registers are used later, as they require extra work in the // prologue/epilogue (though we sometimes override that). // For thumb1-only targets, only the low registers are allocatable. if (isThumb1Only()) return 2; // Allocate low registers first, so we can select more 16-bit instructions. // We also (in ignoreCSRForAllocationOrder) override the default behaviour // with regards to callee-saved registers, because pushing extra registers is // much cheaper (in terms of code size) than using high registers. After // that, we allocate r12 (doesn't need to be saved), lr (saving it means we // can return with the pop, don't need an extra "bx lr") and then the rest of // the high registers. if (isThumb2() && MF.getFunction().hasMinSize()) return 3; // Otherwise, allocate in the default order, using LR first because saving it // allows a shorter epilogue sequence. return 1; } bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF, unsigned PhysReg) const { // To minimize code size in Thumb2, we prefer the usage of low regs (lower // cost per use) so we can use narrow encoding. By default, caller-saved // registers (e.g. lr, r12) are always allocated first, regardless of // their cost per use. When optForMinSize, we prefer the low regs even if // they are CSR because usually push/pop can be folded into existing ones. return isThumb2() && MF.getFunction().hasMinSize() && ARM::GPRRegClass.contains(PhysReg); }