//===- R600MCCodeEmitter.cpp - Code Emitter for R600->Cayman GPU families -===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// /// The R600 code emitter produces machine code that can be executed /// directly on the GPU device. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "R600Defines.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Support/EndianStream.h" using namespace llvm; namespace { class R600MCCodeEmitter : public MCCodeEmitter { const MCRegisterInfo &MRI; const MCInstrInfo &MCII; public: R600MCCodeEmitter(const MCInstrInfo &mcii, const MCRegisterInfo &mri) : MRI(mri), MCII(mcii) {} R600MCCodeEmitter(const R600MCCodeEmitter &) = delete; R600MCCodeEmitter &operator=(const R600MCCodeEmitter &) = delete; /// Encode the instruction and write it to the OS. void encodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const override; /// \returns the encoding for an MCOperand. uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; private: void Emit(uint32_t value, raw_ostream &OS) const; void Emit(uint64_t value, raw_ostream &OS) const; unsigned getHWReg(unsigned regNo) const; uint64_t getBinaryCodeForInstr(const MCInst &MI, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; FeatureBitset computeAvailableFeatures(const FeatureBitset &FB) const; void verifyInstructionPredicates(const MCInst &MI, const FeatureBitset &AvailableFeatures) const; }; } // end anonymous namespace enum RegElement { ELEMENT_X = 0, ELEMENT_Y, ELEMENT_Z, ELEMENT_W }; enum FCInstr { FC_IF_PREDICATE = 0, FC_ELSE, FC_ENDIF, FC_BGNLOOP, FC_ENDLOOP, FC_BREAK_PREDICATE, FC_CONTINUE }; MCCodeEmitter *llvm::createR600MCCodeEmitter(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, MCContext &Ctx) { return new R600MCCodeEmitter(MCII, MRI); } void R600MCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { verifyInstructionPredicates(MI, computeAvailableFeatures(STI.getFeatureBits())); const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); if (MI.getOpcode() == R600::RETURN || MI.getOpcode() == R600::FETCH_CLAUSE || MI.getOpcode() == R600::ALU_CLAUSE || MI.getOpcode() == R600::BUNDLE || MI.getOpcode() == R600::KILL) { return; } else if (IS_VTX(Desc)) { uint64_t InstWord01 = getBinaryCodeForInstr(MI, Fixups, STI); uint32_t InstWord2 = MI.getOperand(2).getImm(); // Offset if (!(STI.getFeatureBits()[R600::FeatureCaymanISA])) { InstWord2 |= 1 << 19; // Mega-Fetch bit } Emit(InstWord01, OS); Emit(InstWord2, OS); Emit((uint32_t) 0, OS); } else if (IS_TEX(Desc)) { int64_t Sampler = MI.getOperand(14).getImm(); int64_t SrcSelect[4] = { MI.getOperand(2).getImm(), MI.getOperand(3).getImm(), MI.getOperand(4).getImm(), MI.getOperand(5).getImm() }; int64_t Offsets[3] = { MI.getOperand(6).getImm() & 0x1F, MI.getOperand(7).getImm() & 0x1F, MI.getOperand(8).getImm() & 0x1F }; uint64_t Word01 = getBinaryCodeForInstr(MI, Fixups, STI); uint32_t Word2 = Sampler << 15 | SrcSelect[ELEMENT_X] << 20 | SrcSelect[ELEMENT_Y] << 23 | SrcSelect[ELEMENT_Z] << 26 | SrcSelect[ELEMENT_W] << 29 | Offsets[0] << 0 | Offsets[1] << 5 | Offsets[2] << 10; Emit(Word01, OS); Emit(Word2, OS); Emit((uint32_t) 0, OS); } else { uint64_t Inst = getBinaryCodeForInstr(MI, Fixups, STI); if ((STI.getFeatureBits()[R600::FeatureR600ALUInst]) && ((Desc.TSFlags & R600_InstFlag::OP1) || Desc.TSFlags & R600_InstFlag::OP2)) { uint64_t ISAOpCode = Inst & (0x3FFULL << 39); Inst &= ~(0x3FFULL << 39); Inst |= ISAOpCode << 1; } Emit(Inst, OS); } } void R600MCCodeEmitter::Emit(uint32_t Value, raw_ostream &OS) const { support::endian::write(OS, Value, support::little); } void R600MCCodeEmitter::Emit(uint64_t Value, raw_ostream &OS) const { support::endian::write(OS, Value, support::little); } unsigned R600MCCodeEmitter::getHWReg(unsigned RegNo) const { return MRI.getEncodingValue(RegNo) & HW_REG_MASK; } uint64_t R600MCCodeEmitter::getMachineOpValue(const MCInst &MI, const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { if (MO.isReg()) { if (HAS_NATIVE_OPERANDS(MCII.get(MI.getOpcode()).TSFlags)) return MRI.getEncodingValue(MO.getReg()); return getHWReg(MO.getReg()); } if (MO.isExpr()) { // We put rodata at the end of code section, then map the entire // code secetion as vtx buf. Thus the section relative address is the // correct one. // Each R600 literal instruction has two operands // We can't easily get the order of the current one, so compare against // the first one and adjust offset. const unsigned offset = (&MO == &MI.getOperand(0)) ? 0 : 4; Fixups.push_back(MCFixup::create(offset, MO.getExpr(), FK_SecRel_4, MI.getLoc())); return 0; } assert(MO.isImm()); return MO.getImm(); } #define ENABLE_INSTR_PREDICATE_VERIFIER #include "R600GenMCCodeEmitter.inc"