//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This simple pass provides alias and mod/ref information for global values // that do not have their address taken, and keeps track of whether functions // read or write memory (are "pure"). For this simple (but very common) case, // we can provide pretty accurate and useful information. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" using namespace llvm; #define DEBUG_TYPE "globalsmodref-aa" STATISTIC(NumNonAddrTakenGlobalVars, "Number of global vars without address taken"); STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); // An option to enable unsafe alias results from the GlobalsModRef analysis. // When enabled, GlobalsModRef will provide no-alias results which in extremely // rare cases may not be conservatively correct. In particular, in the face of // transforms which cause asymmetry between how effective getUnderlyingObject // is for two pointers, it may produce incorrect results. // // These unsafe results have been returned by GMR for many years without // causing significant issues in the wild and so we provide a mechanism to // re-enable them for users of LLVM that have a particular performance // sensitivity and no known issues. The option also makes it easy to evaluate // the performance impact of these results. static cl::opt EnableUnsafeGlobalsModRefAliasResults( "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); /// The mod/ref information collected for a particular function. /// /// We collect information about mod/ref behavior of a function here, both in /// general and as pertains to specific globals. We only have this detailed /// information when we know *something* useful about the behavior. If we /// saturate to fully general mod/ref, we remove the info for the function. class GlobalsAAResult::FunctionInfo { typedef SmallDenseMap GlobalInfoMapType; /// Build a wrapper struct that has 8-byte alignment. All heap allocations /// should provide this much alignment at least, but this makes it clear we /// specifically rely on this amount of alignment. struct alignas(8) AlignedMap { AlignedMap() {} AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} GlobalInfoMapType Map; }; /// Pointer traits for our aligned map. struct AlignedMapPointerTraits { static inline void *getAsVoidPointer(AlignedMap *P) { return P; } static inline AlignedMap *getFromVoidPointer(void *P) { return (AlignedMap *)P; } static constexpr int NumLowBitsAvailable = 3; static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), "AlignedMap insufficiently aligned to have enough low bits."); }; /// The bit that flags that this function may read any global. This is /// chosen to mix together with ModRefInfo bits. /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! /// It overlaps with ModRefInfo::Must bit! /// FunctionInfo.getModRefInfo() masks out everything except ModRef so /// this remains correct, but the Must info is lost. enum { MayReadAnyGlobal = 4 }; /// Checks to document the invariants of the bit packing here. static_assert((MayReadAnyGlobal & static_cast(ModRefInfo::MustModRef)) == 0, "ModRef and the MayReadAnyGlobal flag bits overlap."); static_assert(((MayReadAnyGlobal | static_cast(ModRefInfo::MustModRef)) >> AlignedMapPointerTraits::NumLowBitsAvailable) == 0, "Insufficient low bits to store our flag and ModRef info."); public: FunctionInfo() : Info() {} ~FunctionInfo() { delete Info.getPointer(); } // Spell out the copy ond move constructors and assignment operators to get // deep copy semantics and correct move semantics in the face of the // pointer-int pair. FunctionInfo(const FunctionInfo &Arg) : Info(nullptr, Arg.Info.getInt()) { if (const auto *ArgPtr = Arg.Info.getPointer()) Info.setPointer(new AlignedMap(*ArgPtr)); } FunctionInfo(FunctionInfo &&Arg) : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { Arg.Info.setPointerAndInt(nullptr, 0); } FunctionInfo &operator=(const FunctionInfo &RHS) { delete Info.getPointer(); Info.setPointerAndInt(nullptr, RHS.Info.getInt()); if (const auto *RHSPtr = RHS.Info.getPointer()) Info.setPointer(new AlignedMap(*RHSPtr)); return *this; } FunctionInfo &operator=(FunctionInfo &&RHS) { delete Info.getPointer(); Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); RHS.Info.setPointerAndInt(nullptr, 0); return *this; } /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return /// the corresponding ModRefInfo. It must align in functionality with /// clearMust(). ModRefInfo globalClearMayReadAnyGlobal(int I) const { return ModRefInfo((I & static_cast(ModRefInfo::ModRef)) | static_cast(ModRefInfo::NoModRef)); } /// Returns the \c ModRefInfo info for this function. ModRefInfo getModRefInfo() const { return globalClearMayReadAnyGlobal(Info.getInt()); } /// Adds new \c ModRefInfo for this function to its state. void addModRefInfo(ModRefInfo NewMRI) { Info.setInt(Info.getInt() | static_cast(setMust(NewMRI))); } /// Returns whether this function may read any global variable, and we don't /// know which global. bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } /// Sets this function as potentially reading from any global. void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } /// Returns the \c ModRefInfo info for this function w.r.t. a particular /// global, which may be more precise than the general information above. ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { ModRefInfo GlobalMRI = mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; if (AlignedMap *P = Info.getPointer()) { auto I = P->Map.find(&GV); if (I != P->Map.end()) GlobalMRI = unionModRef(GlobalMRI, I->second); } return GlobalMRI; } /// Add mod/ref info from another function into ours, saturating towards /// ModRef. void addFunctionInfo(const FunctionInfo &FI) { addModRefInfo(FI.getModRefInfo()); if (FI.mayReadAnyGlobal()) setMayReadAnyGlobal(); if (AlignedMap *P = FI.Info.getPointer()) for (const auto &G : P->Map) addModRefInfoForGlobal(*G.first, G.second); } void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { AlignedMap *P = Info.getPointer(); if (!P) { P = new AlignedMap(); Info.setPointer(P); } auto &GlobalMRI = P->Map[&GV]; GlobalMRI = unionModRef(GlobalMRI, NewMRI); } /// Clear a global's ModRef info. Should be used when a global is being /// deleted. void eraseModRefInfoForGlobal(const GlobalValue &GV) { if (AlignedMap *P = Info.getPointer()) P->Map.erase(&GV); } private: /// All of the information is encoded into a single pointer, with a three bit /// integer in the low three bits. The high bit provides a flag for when this /// function may read any global. The low two bits are the ModRefInfo. And /// the pointer, when non-null, points to a map from GlobalValue to /// ModRefInfo specific to that GlobalValue. PointerIntPair Info; }; void GlobalsAAResult::DeletionCallbackHandle::deleted() { Value *V = getValPtr(); if (auto *F = dyn_cast(V)) GAR->FunctionInfos.erase(F); if (GlobalValue *GV = dyn_cast(V)) { if (GAR->NonAddressTakenGlobals.erase(GV)) { // This global might be an indirect global. If so, remove it and // remove any AllocRelatedValues for it. if (GAR->IndirectGlobals.erase(GV)) { // Remove any entries in AllocsForIndirectGlobals for this global. for (auto I = GAR->AllocsForIndirectGlobals.begin(), E = GAR->AllocsForIndirectGlobals.end(); I != E; ++I) if (I->second == GV) GAR->AllocsForIndirectGlobals.erase(I); } // Scan the function info we have collected and remove this global // from all of them. for (auto &FIPair : GAR->FunctionInfos) FIPair.second.eraseModRefInfoForGlobal(*GV); } } // If this is an allocation related to an indirect global, remove it. GAR->AllocsForIndirectGlobals.erase(V); // And clear out the handle. setValPtr(nullptr); GAR->Handles.erase(I); // This object is now destroyed! } FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; if (FunctionInfo *FI = getFunctionInfo(F)) { if (!isModOrRefSet(FI->getModRefInfo())) Min = FMRB_DoesNotAccessMemory; else if (!isModSet(FI->getModRefInfo())) Min = FMRB_OnlyReadsMemory; } return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); } FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const CallBase *Call) { FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; if (!Call->hasOperandBundles()) if (const Function *F = Call->getCalledFunction()) if (FunctionInfo *FI = getFunctionInfo(F)) { if (!isModOrRefSet(FI->getModRefInfo())) Min = FMRB_DoesNotAccessMemory; else if (!isModSet(FI->getModRefInfo())) Min = FMRB_OnlyReadsMemory; } return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min); } /// Returns the function info for the function, or null if we don't have /// anything useful to say about it. GlobalsAAResult::FunctionInfo * GlobalsAAResult::getFunctionInfo(const Function *F) { auto I = FunctionInfos.find(F); if (I != FunctionInfos.end()) return &I->second; return nullptr; } /// AnalyzeGlobals - Scan through the users of all of the internal /// GlobalValue's in the program. If none of them have their "address taken" /// (really, their address passed to something nontrivial), record this fact, /// and record the functions that they are used directly in. void GlobalsAAResult::AnalyzeGlobals(Module &M) { SmallPtrSet TrackedFunctions; for (Function &F : M) if (F.hasLocalLinkage()) { if (!AnalyzeUsesOfPointer(&F)) { // Remember that we are tracking this global. NonAddressTakenGlobals.insert(&F); TrackedFunctions.insert(&F); Handles.emplace_front(*this, &F); Handles.front().I = Handles.begin(); ++NumNonAddrTakenFunctions; } else UnknownFunctionsWithLocalLinkage = true; } SmallPtrSet Readers, Writers; for (GlobalVariable &GV : M.globals()) if (GV.hasLocalLinkage()) { if (!AnalyzeUsesOfPointer(&GV, &Readers, GV.isConstant() ? nullptr : &Writers)) { // Remember that we are tracking this global, and the mod/ref fns NonAddressTakenGlobals.insert(&GV); Handles.emplace_front(*this, &GV); Handles.front().I = Handles.begin(); for (Function *Reader : Readers) { if (TrackedFunctions.insert(Reader).second) { Handles.emplace_front(*this, Reader); Handles.front().I = Handles.begin(); } FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); } if (!GV.isConstant()) // No need to keep track of writers to constants for (Function *Writer : Writers) { if (TrackedFunctions.insert(Writer).second) { Handles.emplace_front(*this, Writer); Handles.front().I = Handles.begin(); } FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); } ++NumNonAddrTakenGlobalVars; // If this global holds a pointer type, see if it is an indirect global. if (GV.getValueType()->isPointerTy() && AnalyzeIndirectGlobalMemory(&GV)) ++NumIndirectGlobalVars; } Readers.clear(); Writers.clear(); } } /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. /// If this is used by anything complex (i.e., the address escapes), return /// true. Also, while we are at it, keep track of those functions that read and /// write to the value. /// /// If OkayStoreDest is non-null, stores into this global are allowed. bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, SmallPtrSetImpl *Readers, SmallPtrSetImpl *Writers, GlobalValue *OkayStoreDest) { if (!V->getType()->isPointerTy()) return true; for (Use &U : V->uses()) { User *I = U.getUser(); if (LoadInst *LI = dyn_cast(I)) { if (Readers) Readers->insert(LI->getParent()->getParent()); } else if (StoreInst *SI = dyn_cast(I)) { if (V == SI->getOperand(1)) { if (Writers) Writers->insert(SI->getParent()->getParent()); } else if (SI->getOperand(1) != OkayStoreDest) { return true; // Storing the pointer } } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { if (AnalyzeUsesOfPointer(I, Readers, Writers)) return true; } else if (Operator::getOpcode(I) == Instruction::BitCast || Operator::getOpcode(I) == Instruction::AddrSpaceCast) { if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) return true; } else if (auto *Call = dyn_cast(I)) { // Make sure that this is just the function being called, not that it is // passing into the function. if (Call->isDataOperand(&U)) { // Detect calls to free. if (Call->isArgOperand(&U) && isFreeCall(I, &GetTLI(*Call->getFunction()))) { if (Writers) Writers->insert(Call->getParent()->getParent()); } else { return true; // Argument of an unknown call. } } } else if (ICmpInst *ICI = dyn_cast(I)) { if (!isa(ICI->getOperand(1))) return true; // Allow comparison against null. } else if (Constant *C = dyn_cast(I)) { // Ignore constants which don't have any live uses. if (isa(C) || C->isConstantUsed()) return true; } else { return true; } } return false; } /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable /// which holds a pointer type. See if the global always points to non-aliased /// heap memory: that is, all initializers of the globals are allocations, and /// those allocations have no use other than initialization of the global. /// Further, all loads out of GV must directly use the memory, not store the /// pointer somewhere. If this is true, we consider the memory pointed to by /// GV to be owned by GV and can disambiguate other pointers from it. bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { // Keep track of values related to the allocation of the memory, f.e. the // value produced by the malloc call and any casts. std::vector AllocRelatedValues; // If the initializer is a valid pointer, bail. if (Constant *C = GV->getInitializer()) if (!C->isNullValue()) return false; // Walk the user list of the global. If we find anything other than a direct // load or store, bail out. for (User *U : GV->users()) { if (LoadInst *LI = dyn_cast(U)) { // The pointer loaded from the global can only be used in simple ways: // we allow addressing of it and loading storing to it. We do *not* allow // storing the loaded pointer somewhere else or passing to a function. if (AnalyzeUsesOfPointer(LI)) return false; // Loaded pointer escapes. // TODO: Could try some IP mod/ref of the loaded pointer. } else if (StoreInst *SI = dyn_cast(U)) { // Storing the global itself. if (SI->getOperand(0) == GV) return false; // If storing the null pointer, ignore it. if (isa(SI->getOperand(0))) continue; // Check the value being stored. Value *Ptr = getUnderlyingObject(SI->getOperand(0)); if (!isAllocLikeFn(Ptr, &GetTLI(*SI->getFunction()))) return false; // Too hard to analyze. // Analyze all uses of the allocation. If any of them are used in a // non-simple way (e.g. stored to another global) bail out. if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, GV)) return false; // Loaded pointer escapes. // Remember that this allocation is related to the indirect global. AllocRelatedValues.push_back(Ptr); } else { // Something complex, bail out. return false; } } // Okay, this is an indirect global. Remember all of the allocations for // this global in AllocsForIndirectGlobals. while (!AllocRelatedValues.empty()) { AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; Handles.emplace_front(*this, AllocRelatedValues.back()); Handles.front().I = Handles.begin(); AllocRelatedValues.pop_back(); } IndirectGlobals.insert(GV); Handles.emplace_front(*this, GV); Handles.front().I = Handles.begin(); return true; } void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { // We do a bottom-up SCC traversal of the call graph. In other words, we // visit all callees before callers (leaf-first). unsigned SCCID = 0; for (scc_iterator I = scc_begin(&CG); !I.isAtEnd(); ++I) { const std::vector &SCC = *I; assert(!SCC.empty() && "SCC with no functions?"); for (auto *CGN : SCC) if (Function *F = CGN->getFunction()) FunctionToSCCMap[F] = SCCID; ++SCCID; } } /// AnalyzeCallGraph - At this point, we know the functions where globals are /// immediately stored to and read from. Propagate this information up the call /// graph to all callers and compute the mod/ref info for all memory for each /// function. void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { // We do a bottom-up SCC traversal of the call graph. In other words, we // visit all callees before callers (leaf-first). for (scc_iterator I = scc_begin(&CG); !I.isAtEnd(); ++I) { const std::vector &SCC = *I; assert(!SCC.empty() && "SCC with no functions?"); Function *F = SCC[0]->getFunction(); if (!F || !F->isDefinitionExact()) { // Calls externally or not exact - can't say anything useful. Remove any // existing function records (may have been created when scanning // globals). for (auto *Node : SCC) FunctionInfos.erase(Node->getFunction()); continue; } FunctionInfo &FI = FunctionInfos[F]; Handles.emplace_front(*this, F); Handles.front().I = Handles.begin(); bool KnowNothing = false; // Collect the mod/ref properties due to called functions. We only compute // one mod-ref set. for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { if (!F) { KnowNothing = true; break; } if (F->isDeclaration() || F->hasOptNone()) { // Try to get mod/ref behaviour from function attributes. if (F->doesNotAccessMemory()) { // Can't do better than that! } else if (F->onlyReadsMemory()) { FI.addModRefInfo(ModRefInfo::Ref); if (!F->isIntrinsic() && !F->onlyAccessesArgMemory()) // This function might call back into the module and read a global - // consider every global as possibly being read by this function. FI.setMayReadAnyGlobal(); } else { FI.addModRefInfo(ModRefInfo::ModRef); if (!F->onlyAccessesArgMemory()) FI.setMayReadAnyGlobal(); if (!F->isIntrinsic()) { KnowNothing = true; break; } } continue; } for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); CI != E && !KnowNothing; ++CI) if (Function *Callee = CI->second->getFunction()) { if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { // Propagate function effect up. FI.addFunctionInfo(*CalleeFI); } else { // Can't say anything about it. However, if it is inside our SCC, // then nothing needs to be done. CallGraphNode *CalleeNode = CG[Callee]; if (!is_contained(SCC, CalleeNode)) KnowNothing = true; } } else { KnowNothing = true; } } // If we can't say anything useful about this SCC, remove all SCC functions // from the FunctionInfos map. if (KnowNothing) { for (auto *Node : SCC) FunctionInfos.erase(Node->getFunction()); continue; } // Scan the function bodies for explicit loads or stores. for (auto *Node : SCC) { if (isModAndRefSet(FI.getModRefInfo())) break; // The mod/ref lattice saturates here. // Don't prove any properties based on the implementation of an optnone // function. Function attributes were already used as a best approximation // above. if (Node->getFunction()->hasOptNone()) continue; for (Instruction &I : instructions(Node->getFunction())) { if (isModAndRefSet(FI.getModRefInfo())) break; // The mod/ref lattice saturates here. // We handle calls specially because the graph-relevant aspects are // handled above. if (auto *Call = dyn_cast(&I)) { auto &TLI = GetTLI(*Node->getFunction()); if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) { // FIXME: It is completely unclear why this is necessary and not // handled by the above graph code. FI.addModRefInfo(ModRefInfo::ModRef); } else if (Function *Callee = Call->getCalledFunction()) { // The callgraph doesn't include intrinsic calls. if (Callee->isIntrinsic()) { if (isa(Call)) // Don't let dbg intrinsics affect alias info. continue; FunctionModRefBehavior Behaviour = AAResultBase::getModRefBehavior(Callee); FI.addModRefInfo(createModRefInfo(Behaviour)); } } continue; } // All non-call instructions we use the primary predicates for whether // they read or write memory. if (I.mayReadFromMemory()) FI.addModRefInfo(ModRefInfo::Ref); if (I.mayWriteToMemory()) FI.addModRefInfo(ModRefInfo::Mod); } } if (!isModSet(FI.getModRefInfo())) ++NumReadMemFunctions; if (!isModOrRefSet(FI.getModRefInfo())) ++NumNoMemFunctions; // Finally, now that we know the full effect on this SCC, clone the // information to each function in the SCC. // FI is a reference into FunctionInfos, so copy it now so that it doesn't // get invalidated if DenseMap decides to re-hash. FunctionInfo CachedFI = FI; for (unsigned i = 1, e = SCC.size(); i != e; ++i) FunctionInfos[SCC[i]->getFunction()] = CachedFI; } } // GV is a non-escaping global. V is a pointer address that has been loaded from. // If we can prove that V must escape, we can conclude that a load from V cannot // alias GV. static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, const Value *V, int &Depth, const DataLayout &DL) { SmallPtrSet Visited; SmallVector Inputs; Visited.insert(V); Inputs.push_back(V); do { const Value *Input = Inputs.pop_back_val(); if (isa(Input) || isa(Input) || isa(Input) || isa(Input)) // Arguments to functions or returns from functions are inherently // escaping, so we can immediately classify those as not aliasing any // non-addr-taken globals. // // (Transitive) loads from a global are also safe - if this aliased // another global, its address would escape, so no alias. continue; // Recurse through a limited number of selects, loads and PHIs. This is an // arbitrary depth of 4, lower numbers could be used to fix compile time // issues if needed, but this is generally expected to be only be important // for small depths. if (++Depth > 4) return false; if (auto *LI = dyn_cast(Input)) { Inputs.push_back(getUnderlyingObject(LI->getPointerOperand())); continue; } if (auto *SI = dyn_cast(Input)) { const Value *LHS = getUnderlyingObject(SI->getTrueValue()); const Value *RHS = getUnderlyingObject(SI->getFalseValue()); if (Visited.insert(LHS).second) Inputs.push_back(LHS); if (Visited.insert(RHS).second) Inputs.push_back(RHS); continue; } if (auto *PN = dyn_cast(Input)) { for (const Value *Op : PN->incoming_values()) { Op = getUnderlyingObject(Op); if (Visited.insert(Op).second) Inputs.push_back(Op); } continue; } return false; } while (!Inputs.empty()); // All inputs were known to be no-alias. return true; } // There are particular cases where we can conclude no-alias between // a non-addr-taken global and some other underlying object. Specifically, // a non-addr-taken global is known to not be escaped from any function. It is // also incorrect for a transformation to introduce an escape of a global in // a way that is observable when it was not there previously. One function // being transformed to introduce an escape which could possibly be observed // (via loading from a global or the return value for example) within another // function is never safe. If the observation is made through non-atomic // operations on different threads, it is a data-race and UB. If the // observation is well defined, by being observed the transformation would have // changed program behavior by introducing the observed escape, making it an // invalid transform. // // This property does require that transformations which *temporarily* escape // a global that was not previously escaped, prior to restoring it, cannot rely // on the results of GMR::alias. This seems a reasonable restriction, although // currently there is no way to enforce it. There is also no realistic // optimization pass that would make this mistake. The closest example is // a transformation pass which does reg2mem of SSA values but stores them into // global variables temporarily before restoring the global variable's value. // This could be useful to expose "benign" races for example. However, it seems // reasonable to require that a pass which introduces escapes of global // variables in this way to either not trust AA results while the escape is // active, or to be forced to operate as a module pass that cannot co-exist // with an alias analysis such as GMR. bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, const Value *V) { // In order to know that the underlying object cannot alias the // non-addr-taken global, we must know that it would have to be an escape. // Thus if the underlying object is a function argument, a load from // a global, or the return of a function, it cannot alias. We can also // recurse through PHI nodes and select nodes provided all of their inputs // resolve to one of these known-escaping roots. SmallPtrSet Visited; SmallVector Inputs; Visited.insert(V); Inputs.push_back(V); int Depth = 0; do { const Value *Input = Inputs.pop_back_val(); if (auto *InputGV = dyn_cast(Input)) { // If one input is the very global we're querying against, then we can't // conclude no-alias. if (InputGV == GV) return false; // Distinct GlobalVariables never alias, unless overriden or zero-sized. // FIXME: The condition can be refined, but be conservative for now. auto *GVar = dyn_cast(GV); auto *InputGVar = dyn_cast(InputGV); if (GVar && InputGVar && !GVar->isDeclaration() && !InputGVar->isDeclaration() && !GVar->isInterposable() && !InputGVar->isInterposable()) { Type *GVType = GVar->getInitializer()->getType(); Type *InputGVType = InputGVar->getInitializer()->getType(); if (GVType->isSized() && InputGVType->isSized() && (DL.getTypeAllocSize(GVType) > 0) && (DL.getTypeAllocSize(InputGVType) > 0)) continue; } // Conservatively return false, even though we could be smarter // (e.g. look through GlobalAliases). return false; } if (isa(Input) || isa(Input) || isa(Input)) { // Arguments to functions or returns from functions are inherently // escaping, so we can immediately classify those as not aliasing any // non-addr-taken globals. continue; } // Recurse through a limited number of selects, loads and PHIs. This is an // arbitrary depth of 4, lower numbers could be used to fix compile time // issues if needed, but this is generally expected to be only be important // for small depths. if (++Depth > 4) return false; if (auto *LI = dyn_cast(Input)) { // A pointer loaded from a global would have been captured, and we know // that the global is non-escaping, so no alias. const Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) // The load does not alias with GV. continue; // Otherwise, a load could come from anywhere, so bail. return false; } if (auto *SI = dyn_cast(Input)) { const Value *LHS = getUnderlyingObject(SI->getTrueValue()); const Value *RHS = getUnderlyingObject(SI->getFalseValue()); if (Visited.insert(LHS).second) Inputs.push_back(LHS); if (Visited.insert(RHS).second) Inputs.push_back(RHS); continue; } if (auto *PN = dyn_cast(Input)) { for (const Value *Op : PN->incoming_values()) { Op = getUnderlyingObject(Op); if (Visited.insert(Op).second) Inputs.push_back(Op); } continue; } // FIXME: It would be good to handle other obvious no-alias cases here, but // it isn't clear how to do so reasonably without building a small version // of BasicAA into this code. We could recurse into AAResultBase::alias // here but that seems likely to go poorly as we're inside the // implementation of such a query. Until then, just conservatively return // false. return false; } while (!Inputs.empty()); // If all the inputs to V were definitively no-alias, then V is no-alias. return true; } bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA, ModuleAnalysisManager::Invalidator &) { // Check whether the analysis has been explicitly invalidated. Otherwise, it's // stateless and remains preserved. auto PAC = PA.getChecker(); return !PAC.preservedWhenStateless(); } /// alias - If one of the pointers is to a global that we are tracking, and the /// other is some random pointer, we know there cannot be an alias, because the /// address of the global isn't taken. AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, const MemoryLocation &LocB, AAQueryInfo &AAQI) { // Get the base object these pointers point to. const Value *UV1 = getUnderlyingObject(LocA.Ptr->stripPointerCastsAndInvariantGroups()); const Value *UV2 = getUnderlyingObject(LocB.Ptr->stripPointerCastsAndInvariantGroups()); // If either of the underlying values is a global, they may be non-addr-taken // globals, which we can answer queries about. const GlobalValue *GV1 = dyn_cast(UV1); const GlobalValue *GV2 = dyn_cast(UV2); if (GV1 || GV2) { // If the global's address is taken, pretend we don't know it's a pointer to // the global. if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = nullptr; if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = nullptr; // If the two pointers are derived from two different non-addr-taken // globals we know these can't alias. if (GV1 && GV2 && GV1 != GV2) return NoAlias; // If one is and the other isn't, it isn't strictly safe but we can fake // this result if necessary for performance. This does not appear to be // a common problem in practice. if (EnableUnsafeGlobalsModRefAliasResults) if ((GV1 || GV2) && GV1 != GV2) return NoAlias; // Check for a special case where a non-escaping global can be used to // conclude no-alias. if ((GV1 || GV2) && GV1 != GV2) { const GlobalValue *GV = GV1 ? GV1 : GV2; const Value *UV = GV1 ? UV2 : UV1; if (isNonEscapingGlobalNoAlias(GV, UV)) return NoAlias; } // Otherwise if they are both derived from the same addr-taken global, we // can't know the two accesses don't overlap. } // These pointers may be based on the memory owned by an indirect global. If // so, we may be able to handle this. First check to see if the base pointer // is a direct load from an indirect global. GV1 = GV2 = nullptr; if (const LoadInst *LI = dyn_cast(UV1)) if (GlobalVariable *GV = dyn_cast(LI->getOperand(0))) if (IndirectGlobals.count(GV)) GV1 = GV; if (const LoadInst *LI = dyn_cast(UV2)) if (const GlobalVariable *GV = dyn_cast(LI->getOperand(0))) if (IndirectGlobals.count(GV)) GV2 = GV; // These pointers may also be from an allocation for the indirect global. If // so, also handle them. if (!GV1) GV1 = AllocsForIndirectGlobals.lookup(UV1); if (!GV2) GV2 = AllocsForIndirectGlobals.lookup(UV2); // Now that we know whether the two pointers are related to indirect globals, // use this to disambiguate the pointers. If the pointers are based on // different indirect globals they cannot alias. if (GV1 && GV2 && GV1 != GV2) return NoAlias; // If one is based on an indirect global and the other isn't, it isn't // strictly safe but we can fake this result if necessary for performance. // This does not appear to be a common problem in practice. if (EnableUnsafeGlobalsModRefAliasResults) if ((GV1 || GV2) && GV1 != GV2) return NoAlias; return AAResultBase::alias(LocA, LocB, AAQI); } ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call, const GlobalValue *GV, AAQueryInfo &AAQI) { if (Call->doesNotAccessMemory()) return ModRefInfo::NoModRef; ModRefInfo ConservativeResult = Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; // Iterate through all the arguments to the called function. If any argument // is based on GV, return the conservative result. for (auto &A : Call->args()) { SmallVector Objects; getUnderlyingObjects(A, Objects); // All objects must be identified. if (!all_of(Objects, isIdentifiedObject) && // Try ::alias to see if all objects are known not to alias GV. !all_of(Objects, [&](const Value *V) { return this->alias(MemoryLocation::getBeforeOrAfter(V), MemoryLocation::getBeforeOrAfter(GV), AAQI) == NoAlias; })) return ConservativeResult; if (is_contained(Objects, GV)) return ConservativeResult; } // We identified all objects in the argument list, and none of them were GV. return ModRefInfo::NoModRef; } ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call, const MemoryLocation &Loc, AAQueryInfo &AAQI) { ModRefInfo Known = ModRefInfo::ModRef; // If we are asking for mod/ref info of a direct call with a pointer to a // global we are tracking, return information if we have it. if (const GlobalValue *GV = dyn_cast(getUnderlyingObject(Loc.Ptr))) // If GV is internal to this IR and there is no function with local linkage // that has had their address taken, keep looking for a tighter ModRefInfo. if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage) if (const Function *F = Call->getCalledFunction()) if (NonAddressTakenGlobals.count(GV)) if (const FunctionInfo *FI = getFunctionInfo(F)) Known = unionModRef(FI->getModRefInfoForGlobal(*GV), getModRefInfoForArgument(Call, GV, AAQI)); if (!isModOrRefSet(Known)) return ModRefInfo::NoModRef; // No need to query other mod/ref analyses return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc, AAQI)); } GlobalsAAResult::GlobalsAAResult( const DataLayout &DL, std::function GetTLI) : AAResultBase(), DL(DL), GetTLI(std::move(GetTLI)) {} GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)), NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), IndirectGlobals(std::move(Arg.IndirectGlobals)), AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), FunctionInfos(std::move(Arg.FunctionInfos)), Handles(std::move(Arg.Handles)) { // Update the parent for each DeletionCallbackHandle. for (auto &H : Handles) { assert(H.GAR == &Arg); H.GAR = this; } } GlobalsAAResult::~GlobalsAAResult() {} /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule( Module &M, std::function GetTLI, CallGraph &CG) { GlobalsAAResult Result(M.getDataLayout(), GetTLI); // Discover which functions aren't recursive, to feed into AnalyzeGlobals. Result.CollectSCCMembership(CG); // Find non-addr taken globals. Result.AnalyzeGlobals(M); // Propagate on CG. Result.AnalyzeCallGraph(CG, M); return Result; } AnalysisKey GlobalsAA::Key; GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { FunctionAnalysisManager &FAM = AM.getResult(M).getManager(); auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { return FAM.getResult(F); }; return GlobalsAAResult::analyzeModule(M, GetTLI, AM.getResult(M)); } char GlobalsAAWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", "Globals Alias Analysis", false, true) INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", "Globals Alias Analysis", false, true) ModulePass *llvm::createGlobalsAAWrapperPass() { return new GlobalsAAWrapperPass(); } GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); } bool GlobalsAAWrapperPass::runOnModule(Module &M) { auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { return this->getAnalysis().getTLI(F); }; Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( M, GetTLI, getAnalysis().getCallGraph()))); return false; } bool GlobalsAAWrapperPass::doFinalization(Module &M) { Result.reset(); return false; } void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); }