//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the classes used to generate code from scalar expressions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ScalarEvolutionNormalization.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/CommandLine.h" namespace llvm { extern cl::opt SCEVCheapExpansionBudget; /// Return true if the given expression is safe to expand in the sense that /// all materialized values are safe to speculate anywhere their operands are /// defined. bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE); /// Return true if the given expression is safe to expand in the sense that /// all materialized values are defined and safe to speculate at the specified /// location and their operands are defined at this location. bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, ScalarEvolution &SE); /// struct for holding enough information to help calculate the cost of the /// given SCEV when expanded into IR. struct SCEVOperand { explicit SCEVOperand(unsigned Opc, int Idx, const SCEV *S) : ParentOpcode(Opc), OperandIdx(Idx), S(S) { } /// LLVM instruction opcode that uses the operand. unsigned ParentOpcode; /// The use index of an expanded instruction. int OperandIdx; /// The SCEV operand to be costed. const SCEV* S; }; /// This class uses information about analyze scalars to rewrite expressions /// in canonical form. /// /// Clients should create an instance of this class when rewriting is needed, /// and destroy it when finished to allow the release of the associated /// memory. class SCEVExpander : public SCEVVisitor { ScalarEvolution &SE; const DataLayout &DL; // New instructions receive a name to identify them with the current pass. const char *IVName; /// Indicates whether LCSSA phis should be created for inserted values. bool PreserveLCSSA; // InsertedExpressions caches Values for reuse, so must track RAUW. DenseMap, TrackingVH> InsertedExpressions; // InsertedValues only flags inserted instructions so needs no RAUW. DenseSet> InsertedValues; DenseSet> InsertedPostIncValues; /// Keep track of the existing IR values re-used during expansion. /// FIXME: Ideally re-used instructions would not be added to /// InsertedValues/InsertedPostIncValues. SmallPtrSet ReusedValues; /// A memoization of the "relevant" loop for a given SCEV. DenseMap RelevantLoops; /// Addrecs referring to any of the given loops are expanded in post-inc /// mode. For example, expanding {1,+,1} in post-inc mode returns the add /// instruction that adds one to the phi for {0,+,1}, as opposed to a new /// phi starting at 1. This is only supported in non-canonical mode. PostIncLoopSet PostIncLoops; /// When this is non-null, addrecs expanded in the loop it indicates should /// be inserted with increments at IVIncInsertPos. const Loop *IVIncInsertLoop; /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV /// increment at this position. Instruction *IVIncInsertPos; /// Phis that complete an IV chain. Reuse DenseSet> ChainedPhis; /// When true, SCEVExpander tries to expand expressions in "canonical" form. /// When false, expressions are expanded in a more literal form. /// /// In "canonical" form addrecs are expanded as arithmetic based on a /// canonical induction variable. Note that CanonicalMode doesn't guarantee /// that all expressions are expanded in "canonical" form. For some /// expressions literal mode can be preferred. bool CanonicalMode; /// When invoked from LSR, the expander is in "strength reduction" mode. The /// only difference is that phi's are only reused if they are already in /// "expanded" form. bool LSRMode; typedef IRBuilder BuilderType; BuilderType Builder; // RAII object that stores the current insertion point and restores it when // the object is destroyed. This includes the debug location. Duplicated // from InsertPointGuard to add SetInsertPoint() which is used to updated // InsertPointGuards stack when insert points are moved during SCEV // expansion. class SCEVInsertPointGuard { IRBuilderBase &Builder; AssertingVH Block; BasicBlock::iterator Point; DebugLoc DbgLoc; SCEVExpander *SE; SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete; SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete; public: SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE) : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()), DbgLoc(B.getCurrentDebugLocation()), SE(SE) { SE->InsertPointGuards.push_back(this); } ~SCEVInsertPointGuard() { // These guards should always created/destroyed in FIFO order since they // are used to guard lexically scoped blocks of code in // ScalarEvolutionExpander. assert(SE->InsertPointGuards.back() == this); SE->InsertPointGuards.pop_back(); Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point)); Builder.SetCurrentDebugLocation(DbgLoc); } BasicBlock::iterator GetInsertPoint() const { return Point; } void SetInsertPoint(BasicBlock::iterator I) { Point = I; } }; /// Stack of pointers to saved insert points, used to keep insert points /// consistent when instructions are moved. SmallVector InsertPointGuards; #ifndef NDEBUG const char *DebugType; #endif friend struct SCEVVisitor; public: /// Construct a SCEVExpander in "canonical" mode. explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL, const char *name, bool PreserveLCSSA = true) : SE(se), DL(DL), IVName(name), PreserveLCSSA(PreserveLCSSA), IVIncInsertLoop(nullptr), IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false), Builder(se.getContext(), TargetFolder(DL), IRBuilderCallbackInserter( [this](Instruction *I) { rememberInstruction(I); })) { #ifndef NDEBUG DebugType = ""; #endif } ~SCEVExpander() { // Make sure the insert point guard stack is consistent. assert(InsertPointGuards.empty()); } #ifndef NDEBUG void setDebugType(const char *s) { DebugType = s; } #endif /// Erase the contents of the InsertedExpressions map so that users trying /// to expand the same expression into multiple BasicBlocks or different /// places within the same BasicBlock can do so. void clear() { InsertedExpressions.clear(); InsertedValues.clear(); InsertedPostIncValues.clear(); ReusedValues.clear(); ChainedPhis.clear(); } /// Return a vector containing all instructions inserted during expansion. SmallVector getAllInsertedInstructions() const { SmallVector Result; for (auto &VH : InsertedValues) { Value *V = VH; if (ReusedValues.contains(V)) continue; if (auto *Inst = dyn_cast(V)) Result.push_back(Inst); } for (auto &VH : InsertedPostIncValues) { Value *V = VH; if (ReusedValues.contains(V)) continue; if (auto *Inst = dyn_cast(V)) Result.push_back(Inst); } return Result; } /// Return true for expressions that can't be evaluated at runtime /// within given \b Budget. /// /// At is a parameter which specifies point in code where user is going to /// expand this expression. Sometimes this knowledge can lead to /// a less pessimistic cost estimation. bool isHighCostExpansion(const SCEV *Expr, Loop *L, unsigned Budget, const TargetTransformInfo *TTI, const Instruction *At) { assert(TTI && "This function requires TTI to be provided."); assert(At && "This function requires At instruction to be provided."); if (!TTI) // In assert-less builds, avoid crashing return true; // by always claiming to be high-cost. SmallVector Worklist; SmallPtrSet Processed; int BudgetRemaining = Budget * TargetTransformInfo::TCC_Basic; Worklist.emplace_back(-1, -1, Expr); while (!Worklist.empty()) { const SCEVOperand WorkItem = Worklist.pop_back_val(); if (isHighCostExpansionHelper(WorkItem, L, *At, BudgetRemaining, *TTI, Processed, Worklist)) return true; } assert(BudgetRemaining >= 0 && "Should have returned from inner loop."); return false; } /// Return the induction variable increment's IV operand. Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos, bool allowScale); /// Utility for hoisting an IV increment. bool hoistIVInc(Instruction *IncV, Instruction *InsertPos); /// replace congruent phis with their most canonical representative. Return /// the number of phis eliminated. unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, SmallVectorImpl &DeadInsts, const TargetTransformInfo *TTI = nullptr); /// Insert code to directly compute the specified SCEV expression into the /// program. The code is inserted into the specified block. Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I) { return expandCodeForImpl(SH, Ty, I, true); } /// Insert code to directly compute the specified SCEV expression into the /// program. The code is inserted into the SCEVExpander's current /// insertion point. If a type is specified, the result will be expanded to /// have that type, with a cast if necessary. Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr) { return expandCodeForImpl(SH, Ty, true); } /// Generates a code sequence that evaluates this predicate. The inserted /// instructions will be at position \p Loc. The result will be of type i1 /// and will have a value of 0 when the predicate is false and 1 otherwise. Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc); /// A specialized variant of expandCodeForPredicate, handling the case when /// we are expanding code for a SCEVEqualPredicate. Value *expandEqualPredicate(const SCEVEqualPredicate *Pred, Instruction *Loc); /// Generates code that evaluates if the \p AR expression will overflow. Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc, bool Signed); /// A specialized variant of expandCodeForPredicate, handling the case when /// we are expanding code for a SCEVWrapPredicate. Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc); /// A specialized variant of expandCodeForPredicate, handling the case when /// we are expanding code for a SCEVUnionPredicate. Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc); /// Set the current IV increment loop and position. void setIVIncInsertPos(const Loop *L, Instruction *Pos) { assert(!CanonicalMode && "IV increment positions are not supported in CanonicalMode"); IVIncInsertLoop = L; IVIncInsertPos = Pos; } /// Enable post-inc expansion for addrecs referring to the given /// loops. Post-inc expansion is only supported in non-canonical mode. void setPostInc(const PostIncLoopSet &L) { assert(!CanonicalMode && "Post-inc expansion is not supported in CanonicalMode"); PostIncLoops = L; } /// Disable all post-inc expansion. void clearPostInc() { PostIncLoops.clear(); // When we change the post-inc loop set, cached expansions may no // longer be valid. InsertedPostIncValues.clear(); } /// Disable the behavior of expanding expressions in canonical form rather /// than in a more literal form. Non-canonical mode is useful for late /// optimization passes. void disableCanonicalMode() { CanonicalMode = false; } void enableLSRMode() { LSRMode = true; } /// Set the current insertion point. This is useful if multiple calls to /// expandCodeFor() are going to be made with the same insert point and the /// insert point may be moved during one of the expansions (e.g. if the /// insert point is not a block terminator). void setInsertPoint(Instruction *IP) { assert(IP); Builder.SetInsertPoint(IP); } /// Clear the current insertion point. This is useful if the instruction /// that had been serving as the insertion point may have been deleted. void clearInsertPoint() { Builder.ClearInsertionPoint(); } /// Set location information used by debugging information. void SetCurrentDebugLocation(DebugLoc L) { Builder.SetCurrentDebugLocation(std::move(L)); } /// Get location information used by debugging information. DebugLoc getCurrentDebugLocation() const { return Builder.getCurrentDebugLocation(); } /// Return true if the specified instruction was inserted by the code /// rewriter. If so, the client should not modify the instruction. Note that /// this also includes instructions re-used during expansion. bool isInsertedInstruction(Instruction *I) const { return InsertedValues.count(I) || InsertedPostIncValues.count(I); } void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); } /// Try to find the ValueOffsetPair for S. The function is mainly used to /// check whether S can be expanded cheaply. If this returns a non-None /// value, we know we can codegen the `ValueOffsetPair` into a suitable /// expansion identical with S so that S can be expanded cheaply. /// /// L is a hint which tells in which loop to look for the suitable value. /// On success return value which is equivalent to the expanded S at point /// At. Return nullptr if value was not found. /// /// Note that this function does not perform an exhaustive search. I.e if it /// didn't find any value it does not mean that there is no such value. /// Optional getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L); /// Returns a suitable insert point after \p I, that dominates \p /// MustDominate. Skips instructions inserted by the expander. BasicBlock::iterator findInsertPointAfter(Instruction *I, Instruction *MustDominate); private: LLVMContext &getContext() const { return SE.getContext(); } /// Insert code to directly compute the specified SCEV expression into the /// program. The code is inserted into the SCEVExpander's current /// insertion point. If a type is specified, the result will be expanded to /// have that type, with a cast if necessary. If \p Root is true, this /// indicates that \p SH is the top-level expression to expand passed from /// an external client call. Value *expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root); /// Insert code to directly compute the specified SCEV expression into the /// program. The code is inserted into the specified block. If \p /// Root is true, this indicates that \p SH is the top-level expression to /// expand passed from an external client call. Value *expandCodeForImpl(const SCEV *SH, Type *Ty, Instruction *I, bool Root); /// Recursive helper function for isHighCostExpansion. bool isHighCostExpansionHelper( const SCEVOperand &WorkItem, Loop *L, const Instruction &At, int &BudgetRemaining, const TargetTransformInfo &TTI, SmallPtrSetImpl &Processed, SmallVectorImpl &Worklist); /// Insert the specified binary operator, doing a small amount of work to /// avoid inserting an obviously redundant operation, and hoisting to an /// outer loop when the opportunity is there and it is safe. Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, SCEV::NoWrapFlags Flags, bool IsSafeToHoist); /// Arrange for there to be a cast of V to Ty at IP, reusing an existing /// cast if a suitable one exists, moving an existing cast if a suitable one /// exists but isn't in the right place, or creating a new one. Value *ReuseOrCreateCast(Value *V, Type *Ty, Instruction::CastOps Op, BasicBlock::iterator IP); /// Insert a cast of V to the specified type, which must be possible with a /// noop cast, doing what we can to share the casts. Value *InsertNoopCastOfTo(Value *V, Type *Ty); /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using /// ptrtoint+arithmetic+inttoptr. Value *expandAddToGEP(const SCEV *const *op_begin, const SCEV *const *op_end, PointerType *PTy, Type *Ty, Value *V); Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V); /// Find a previous Value in ExprValueMap for expand. ScalarEvolution::ValueOffsetPair FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt); Value *expand(const SCEV *S); /// Determine the most "relevant" loop for the given SCEV. const Loop *getRelevantLoop(const SCEV *); Value *visitConstant(const SCEVConstant *S) { return S->getValue(); } Value *visitPtrToIntExpr(const SCEVPtrToIntExpr *S); Value *visitTruncateExpr(const SCEVTruncateExpr *S); Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S); Value *visitSignExtendExpr(const SCEVSignExtendExpr *S); Value *visitAddExpr(const SCEVAddExpr *S); Value *visitMulExpr(const SCEVMulExpr *S); Value *visitUDivExpr(const SCEVUDivExpr *S); Value *visitAddRecExpr(const SCEVAddRecExpr *S); Value *visitSMaxExpr(const SCEVSMaxExpr *S); Value *visitUMaxExpr(const SCEVUMaxExpr *S); Value *visitSMinExpr(const SCEVSMinExpr *S); Value *visitUMinExpr(const SCEVUMinExpr *S); Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); } void rememberInstruction(Value *I); bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); Value *expandAddRecExprLiterally(const SCEVAddRecExpr *); PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, const Loop *L, Type *ExpandTy, Type *IntTy, Type *&TruncTy, bool &InvertStep); Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, Type *ExpandTy, Type *IntTy, bool useSubtract); void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, Instruction *Pos, PHINode *LoopPhi); void fixupInsertPoints(Instruction *I); /// If required, create LCSSA PHIs for \p Users' operand \p OpIdx. If new /// LCSSA PHIs have been created, return the LCSSA PHI available at \p User. /// If no PHIs have been created, return the unchanged operand \p OpIdx. Value *fixupLCSSAFormFor(Instruction *User, unsigned OpIdx); }; /// Helper to remove instructions inserted during SCEV expansion, unless they /// are marked as used. class SCEVExpanderCleaner { SCEVExpander &Expander; DominatorTree &DT; /// Indicates whether the result of the expansion is used. If false, the /// instructions added during expansion are removed. bool ResultUsed; public: SCEVExpanderCleaner(SCEVExpander &Expander, DominatorTree &DT) : Expander(Expander), DT(DT), ResultUsed(false) {} ~SCEVExpanderCleaner(); /// Indicate that the result of the expansion is used. void markResultUsed() { ResultUsed = true; } }; } // namespace llvm #endif