//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares the SDNode class and derived classes, which are used to // represent the nodes and operations present in a SelectionDAG. These nodes // and operations are machine code level operations, with some similarities to // the GCC RTL representation. // // Clients should include the SelectionDAG.h file instead of this file directly. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H #define LLVM_CODEGEN_SELECTIONDAGNODES_H #include "llvm/ADT/APFloat.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/ilist_node.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/Register.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Operator.h" #include "llvm/Support/AlignOf.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/TypeSize.h" #include #include #include #include #include #include #include #include #include namespace llvm { class APInt; class Constant; template struct DenseMapInfo; class GlobalValue; class MachineBasicBlock; class MachineConstantPoolValue; class MCSymbol; class raw_ostream; class SDNode; class SelectionDAG; class Type; class Value; void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr, bool force = false); /// This represents a list of ValueType's that has been intern'd by /// a SelectionDAG. Instances of this simple value class are returned by /// SelectionDAG::getVTList(...). /// struct SDVTList { const EVT *VTs; unsigned int NumVTs; }; namespace ISD { /// Node predicates /// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the /// same constant or undefined, return true and return the constant value in /// \p SplatValue. bool isConstantSplatVector(const SDNode *N, APInt &SplatValue); /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where /// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to /// true, it only checks BUILD_VECTOR. bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly = false); /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where /// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it /// only checks BUILD_VECTOR. bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly = false); /// Return true if the specified node is a BUILD_VECTOR where all of the /// elements are ~0 or undef. bool isBuildVectorAllOnes(const SDNode *N); /// Return true if the specified node is a BUILD_VECTOR where all of the /// elements are 0 or undef. bool isBuildVectorAllZeros(const SDNode *N); /// Return true if the specified node is a BUILD_VECTOR node of all /// ConstantSDNode or undef. bool isBuildVectorOfConstantSDNodes(const SDNode *N); /// Return true if the specified node is a BUILD_VECTOR node of all /// ConstantFPSDNode or undef. bool isBuildVectorOfConstantFPSDNodes(const SDNode *N); /// Return true if the node has at least one operand and all operands of the /// specified node are ISD::UNDEF. bool allOperandsUndef(const SDNode *N); } // end namespace ISD //===----------------------------------------------------------------------===// /// Unlike LLVM values, Selection DAG nodes may return multiple /// values as the result of a computation. Many nodes return multiple values, /// from loads (which define a token and a return value) to ADDC (which returns /// a result and a carry value), to calls (which may return an arbitrary number /// of values). /// /// As such, each use of a SelectionDAG computation must indicate the node that /// computes it as well as which return value to use from that node. This pair /// of information is represented with the SDValue value type. /// class SDValue { friend struct DenseMapInfo; SDNode *Node = nullptr; // The node defining the value we are using. unsigned ResNo = 0; // Which return value of the node we are using. public: SDValue() = default; SDValue(SDNode *node, unsigned resno); /// get the index which selects a specific result in the SDNode unsigned getResNo() const { return ResNo; } /// get the SDNode which holds the desired result SDNode *getNode() const { return Node; } /// set the SDNode void setNode(SDNode *N) { Node = N; } inline SDNode *operator->() const { return Node; } bool operator==(const SDValue &O) const { return Node == O.Node && ResNo == O.ResNo; } bool operator!=(const SDValue &O) const { return !operator==(O); } bool operator<(const SDValue &O) const { return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo); } explicit operator bool() const { return Node != nullptr; } SDValue getValue(unsigned R) const { return SDValue(Node, R); } /// Return true if this node is an operand of N. bool isOperandOf(const SDNode *N) const; /// Return the ValueType of the referenced return value. inline EVT getValueType() const; /// Return the simple ValueType of the referenced return value. MVT getSimpleValueType() const { return getValueType().getSimpleVT(); } /// Returns the size of the value in bits. /// /// If the value type is a scalable vector type, the scalable property will /// be set and the runtime size will be a positive integer multiple of the /// base size. TypeSize getValueSizeInBits() const { return getValueType().getSizeInBits(); } uint64_t getScalarValueSizeInBits() const { return getValueType().getScalarType().getFixedSizeInBits(); } // Forwarding methods - These forward to the corresponding methods in SDNode. inline unsigned getOpcode() const; inline unsigned getNumOperands() const; inline const SDValue &getOperand(unsigned i) const; inline uint64_t getConstantOperandVal(unsigned i) const; inline const APInt &getConstantOperandAPInt(unsigned i) const; inline bool isTargetMemoryOpcode() const; inline bool isTargetOpcode() const; inline bool isMachineOpcode() const; inline bool isUndef() const; inline unsigned getMachineOpcode() const; inline const DebugLoc &getDebugLoc() const; inline void dump() const; inline void dump(const SelectionDAG *G) const; inline void dumpr() const; inline void dumpr(const SelectionDAG *G) const; /// Return true if this operand (which must be a chain) reaches the /// specified operand without crossing any side-effecting instructions. /// In practice, this looks through token factors and non-volatile loads. /// In order to remain efficient, this only /// looks a couple of nodes in, it does not do an exhaustive search. bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth = 2) const; /// Return true if there are no nodes using value ResNo of Node. inline bool use_empty() const; /// Return true if there is exactly one node using value ResNo of Node. inline bool hasOneUse() const; }; template<> struct DenseMapInfo { static inline SDValue getEmptyKey() { SDValue V; V.ResNo = -1U; return V; } static inline SDValue getTombstoneKey() { SDValue V; V.ResNo = -2U; return V; } static unsigned getHashValue(const SDValue &Val) { return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^ (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo(); } static bool isEqual(const SDValue &LHS, const SDValue &RHS) { return LHS == RHS; } }; /// Allow casting operators to work directly on /// SDValues as if they were SDNode*'s. template<> struct simplify_type { using SimpleType = SDNode *; static SimpleType getSimplifiedValue(SDValue &Val) { return Val.getNode(); } }; template<> struct simplify_type { using SimpleType = /*const*/ SDNode *; static SimpleType getSimplifiedValue(const SDValue &Val) { return Val.getNode(); } }; /// Represents a use of a SDNode. This class holds an SDValue, /// which records the SDNode being used and the result number, a /// pointer to the SDNode using the value, and Next and Prev pointers, /// which link together all the uses of an SDNode. /// class SDUse { /// Val - The value being used. SDValue Val; /// User - The user of this value. SDNode *User = nullptr; /// Prev, Next - Pointers to the uses list of the SDNode referred by /// this operand. SDUse **Prev = nullptr; SDUse *Next = nullptr; public: SDUse() = default; SDUse(const SDUse &U) = delete; SDUse &operator=(const SDUse &) = delete; /// Normally SDUse will just implicitly convert to an SDValue that it holds. operator const SDValue&() const { return Val; } /// If implicit conversion to SDValue doesn't work, the get() method returns /// the SDValue. const SDValue &get() const { return Val; } /// This returns the SDNode that contains this Use. SDNode *getUser() { return User; } /// Get the next SDUse in the use list. SDUse *getNext() const { return Next; } /// Convenience function for get().getNode(). SDNode *getNode() const { return Val.getNode(); } /// Convenience function for get().getResNo(). unsigned getResNo() const { return Val.getResNo(); } /// Convenience function for get().getValueType(). EVT getValueType() const { return Val.getValueType(); } /// Convenience function for get().operator== bool operator==(const SDValue &V) const { return Val == V; } /// Convenience function for get().operator!= bool operator!=(const SDValue &V) const { return Val != V; } /// Convenience function for get().operator< bool operator<(const SDValue &V) const { return Val < V; } private: friend class SelectionDAG; friend class SDNode; // TODO: unfriend HandleSDNode once we fix its operand handling. friend class HandleSDNode; void setUser(SDNode *p) { User = p; } /// Remove this use from its existing use list, assign it the /// given value, and add it to the new value's node's use list. inline void set(const SDValue &V); /// Like set, but only supports initializing a newly-allocated /// SDUse with a non-null value. inline void setInitial(const SDValue &V); /// Like set, but only sets the Node portion of the value, /// leaving the ResNo portion unmodified. inline void setNode(SDNode *N); void addToList(SDUse **List) { Next = *List; if (Next) Next->Prev = &Next; Prev = List; *List = this; } void removeFromList() { *Prev = Next; if (Next) Next->Prev = Prev; } }; /// simplify_type specializations - Allow casting operators to work directly on /// SDValues as if they were SDNode*'s. template<> struct simplify_type { using SimpleType = SDNode *; static SimpleType getSimplifiedValue(SDUse &Val) { return Val.getNode(); } }; /// These are IR-level optimization flags that may be propagated to SDNodes. /// TODO: This data structure should be shared by the IR optimizer and the /// the backend. struct SDNodeFlags { private: bool NoUnsignedWrap : 1; bool NoSignedWrap : 1; bool Exact : 1; bool NoNaNs : 1; bool NoInfs : 1; bool NoSignedZeros : 1; bool AllowReciprocal : 1; bool AllowContract : 1; bool ApproximateFuncs : 1; bool AllowReassociation : 1; // We assume instructions do not raise floating-point exceptions by default, // and only those marked explicitly may do so. We could choose to represent // this via a positive "FPExcept" flags like on the MI level, but having a // negative "NoFPExcept" flag here (that defaults to true) makes the flag // intersection logic more straightforward. bool NoFPExcept : 1; public: /// Default constructor turns off all optimization flags. SDNodeFlags() : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false), NoInfs(false), NoSignedZeros(false), AllowReciprocal(false), AllowContract(false), ApproximateFuncs(false), AllowReassociation(false), NoFPExcept(false) {} /// Propagate the fast-math-flags from an IR FPMathOperator. void copyFMF(const FPMathOperator &FPMO) { setNoNaNs(FPMO.hasNoNaNs()); setNoInfs(FPMO.hasNoInfs()); setNoSignedZeros(FPMO.hasNoSignedZeros()); setAllowReciprocal(FPMO.hasAllowReciprocal()); setAllowContract(FPMO.hasAllowContract()); setApproximateFuncs(FPMO.hasApproxFunc()); setAllowReassociation(FPMO.hasAllowReassoc()); } // These are mutators for each flag. void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; } void setNoSignedWrap(bool b) { NoSignedWrap = b; } void setExact(bool b) { Exact = b; } void setNoNaNs(bool b) { NoNaNs = b; } void setNoInfs(bool b) { NoInfs = b; } void setNoSignedZeros(bool b) { NoSignedZeros = b; } void setAllowReciprocal(bool b) { AllowReciprocal = b; } void setAllowContract(bool b) { AllowContract = b; } void setApproximateFuncs(bool b) { ApproximateFuncs = b; } void setAllowReassociation(bool b) { AllowReassociation = b; } void setNoFPExcept(bool b) { NoFPExcept = b; } // These are accessors for each flag. bool hasNoUnsignedWrap() const { return NoUnsignedWrap; } bool hasNoSignedWrap() const { return NoSignedWrap; } bool hasExact() const { return Exact; } bool hasNoNaNs() const { return NoNaNs; } bool hasNoInfs() const { return NoInfs; } bool hasNoSignedZeros() const { return NoSignedZeros; } bool hasAllowReciprocal() const { return AllowReciprocal; } bool hasAllowContract() const { return AllowContract; } bool hasApproximateFuncs() const { return ApproximateFuncs; } bool hasAllowReassociation() const { return AllowReassociation; } bool hasNoFPExcept() const { return NoFPExcept; } /// Clear any flags in this flag set that aren't also set in Flags. All /// flags will be cleared if Flags are undefined. void intersectWith(const SDNodeFlags Flags) { NoUnsignedWrap &= Flags.NoUnsignedWrap; NoSignedWrap &= Flags.NoSignedWrap; Exact &= Flags.Exact; NoNaNs &= Flags.NoNaNs; NoInfs &= Flags.NoInfs; NoSignedZeros &= Flags.NoSignedZeros; AllowReciprocal &= Flags.AllowReciprocal; AllowContract &= Flags.AllowContract; ApproximateFuncs &= Flags.ApproximateFuncs; AllowReassociation &= Flags.AllowReassociation; NoFPExcept &= Flags.NoFPExcept; } }; /// Represents one node in the SelectionDAG. /// class SDNode : public FoldingSetNode, public ilist_node { private: /// The operation that this node performs. int16_t NodeType; protected: // We define a set of mini-helper classes to help us interpret the bits in our // SubclassData. These are designed to fit within a uint16_t so they pack // with NodeType. #if defined(_AIX) && (!defined(__GNUC__) || defined(__ibmxl__)) // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words // and give the `pack` pragma push semantics. #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)") #define END_TWO_BYTE_PACK() _Pragma("pack(pop)") #else #define BEGIN_TWO_BYTE_PACK() #define END_TWO_BYTE_PACK() #endif BEGIN_TWO_BYTE_PACK() class SDNodeBitfields { friend class SDNode; friend class MemIntrinsicSDNode; friend class MemSDNode; friend class SelectionDAG; uint16_t HasDebugValue : 1; uint16_t IsMemIntrinsic : 1; uint16_t IsDivergent : 1; }; enum { NumSDNodeBits = 3 }; class ConstantSDNodeBitfields { friend class ConstantSDNode; uint16_t : NumSDNodeBits; uint16_t IsOpaque : 1; }; class MemSDNodeBitfields { friend class MemSDNode; friend class MemIntrinsicSDNode; friend class AtomicSDNode; uint16_t : NumSDNodeBits; uint16_t IsVolatile : 1; uint16_t IsNonTemporal : 1; uint16_t IsDereferenceable : 1; uint16_t IsInvariant : 1; }; enum { NumMemSDNodeBits = NumSDNodeBits + 4 }; class LSBaseSDNodeBitfields { friend class LSBaseSDNode; friend class MaskedLoadStoreSDNode; friend class MaskedGatherScatterSDNode; uint16_t : NumMemSDNodeBits; // This storage is shared between disparate class hierarchies to hold an // enumeration specific to the class hierarchy in use. // LSBaseSDNode => enum ISD::MemIndexedMode // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode // MaskedGatherScatterSDNode => enum ISD::MemIndexType uint16_t AddressingMode : 3; }; enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 }; class LoadSDNodeBitfields { friend class LoadSDNode; friend class MaskedLoadSDNode; friend class MaskedGatherSDNode; uint16_t : NumLSBaseSDNodeBits; uint16_t ExtTy : 2; // enum ISD::LoadExtType uint16_t IsExpanding : 1; }; class StoreSDNodeBitfields { friend class StoreSDNode; friend class MaskedStoreSDNode; friend class MaskedScatterSDNode; uint16_t : NumLSBaseSDNodeBits; uint16_t IsTruncating : 1; uint16_t IsCompressing : 1; }; union { char RawSDNodeBits[sizeof(uint16_t)]; SDNodeBitfields SDNodeBits; ConstantSDNodeBitfields ConstantSDNodeBits; MemSDNodeBitfields MemSDNodeBits; LSBaseSDNodeBitfields LSBaseSDNodeBits; LoadSDNodeBitfields LoadSDNodeBits; StoreSDNodeBitfields StoreSDNodeBits; }; END_TWO_BYTE_PACK() #undef BEGIN_TWO_BYTE_PACK #undef END_TWO_BYTE_PACK // RawSDNodeBits must cover the entirety of the union. This means that all of // the union's members must have size <= RawSDNodeBits. We write the RHS as // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter. static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide"); static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide"); static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide"); static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide"); static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide"); static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide"); private: friend class SelectionDAG; // TODO: unfriend HandleSDNode once we fix its operand handling. friend class HandleSDNode; /// Unique id per SDNode in the DAG. int NodeId = -1; /// The values that are used by this operation. SDUse *OperandList = nullptr; /// The types of the values this node defines. SDNode's may /// define multiple values simultaneously. const EVT *ValueList; /// List of uses for this SDNode. SDUse *UseList = nullptr; /// The number of entries in the Operand/Value list. unsigned short NumOperands = 0; unsigned short NumValues; // The ordering of the SDNodes. It roughly corresponds to the ordering of the // original LLVM instructions. // This is used for turning off scheduling, because we'll forgo // the normal scheduling algorithms and output the instructions according to // this ordering. unsigned IROrder; /// Source line information. DebugLoc debugLoc; /// Return a pointer to the specified value type. static const EVT *getValueTypeList(EVT VT); SDNodeFlags Flags; public: /// Unique and persistent id per SDNode in the DAG. /// Used for debug printing. uint16_t PersistentId; //===--------------------------------------------------------------------===// // Accessors // /// Return the SelectionDAG opcode value for this node. For /// pre-isel nodes (those for which isMachineOpcode returns false), these /// are the opcode values in the ISD and ISD namespaces. For /// post-isel opcodes, see getMachineOpcode. unsigned getOpcode() const { return (unsigned short)NodeType; } /// Test if this node has a target-specific opcode (in the /// \ISD namespace). bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; } /// Test if this node has a target-specific opcode that may raise /// FP exceptions (in the \ISD namespace and greater than /// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory /// opcode are currently automatically considered to possibly raise /// FP exceptions as well. bool isTargetStrictFPOpcode() const { return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE; } /// Test if this node has a target-specific /// memory-referencing opcode (in the \ISD namespace and /// greater than FIRST_TARGET_MEMORY_OPCODE). bool isTargetMemoryOpcode() const { return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE; } /// Return true if the type of the node type undefined. bool isUndef() const { return NodeType == ISD::UNDEF; } /// Test if this node is a memory intrinsic (with valid pointer information). /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for /// non-memory intrinsics (with chains) that are not really instances of /// MemSDNode. For such nodes, we need some extra state to determine the /// proper classof relationship. bool isMemIntrinsic() const { return (NodeType == ISD::INTRINSIC_W_CHAIN || NodeType == ISD::INTRINSIC_VOID) && SDNodeBits.IsMemIntrinsic; } /// Test if this node is a strict floating point pseudo-op. bool isStrictFPOpcode() { switch (NodeType) { default: return false; case ISD::STRICT_FP16_TO_FP: case ISD::STRICT_FP_TO_FP16: #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ case ISD::STRICT_##DAGN: #include "llvm/IR/ConstrainedOps.def" return true; } } /// Test if this node has a post-isel opcode, directly /// corresponding to a MachineInstr opcode. bool isMachineOpcode() const { return NodeType < 0; } /// This may only be called if isMachineOpcode returns /// true. It returns the MachineInstr opcode value that the node's opcode /// corresponds to. unsigned getMachineOpcode() const { assert(isMachineOpcode() && "Not a MachineInstr opcode!"); return ~NodeType; } bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; } void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; } bool isDivergent() const { return SDNodeBits.IsDivergent; } /// Return true if there are no uses of this node. bool use_empty() const { return UseList == nullptr; } /// Return true if there is exactly one use of this node. bool hasOneUse() const { return hasSingleElement(uses()); } /// Return the number of uses of this node. This method takes /// time proportional to the number of uses. size_t use_size() const { return std::distance(use_begin(), use_end()); } /// Return the unique node id. int getNodeId() const { return NodeId; } /// Set unique node id. void setNodeId(int Id) { NodeId = Id; } /// Return the node ordering. unsigned getIROrder() const { return IROrder; } /// Set the node ordering. void setIROrder(unsigned Order) { IROrder = Order; } /// Return the source location info. const DebugLoc &getDebugLoc() const { return debugLoc; } /// Set source location info. Try to avoid this, putting /// it in the constructor is preferable. void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); } /// This class provides iterator support for SDUse /// operands that use a specific SDNode. class use_iterator : public std::iterator { friend class SDNode; SDUse *Op = nullptr; explicit use_iterator(SDUse *op) : Op(op) {} public: using reference = std::iterator::reference; using pointer = std::iterator::pointer; use_iterator() = default; use_iterator(const use_iterator &I) : Op(I.Op) {} bool operator==(const use_iterator &x) const { return Op == x.Op; } bool operator!=(const use_iterator &x) const { return !operator==(x); } /// Return true if this iterator is at the end of uses list. bool atEnd() const { return Op == nullptr; } // Iterator traversal: forward iteration only. use_iterator &operator++() { // Preincrement assert(Op && "Cannot increment end iterator!"); Op = Op->getNext(); return *this; } use_iterator operator++(int) { // Postincrement use_iterator tmp = *this; ++*this; return tmp; } /// Retrieve a pointer to the current user node. SDNode *operator*() const { assert(Op && "Cannot dereference end iterator!"); return Op->getUser(); } SDNode *operator->() const { return operator*(); } SDUse &getUse() const { return *Op; } /// Retrieve the operand # of this use in its user. unsigned getOperandNo() const { assert(Op && "Cannot dereference end iterator!"); return (unsigned)(Op - Op->getUser()->OperandList); } }; /// Provide iteration support to walk over all uses of an SDNode. use_iterator use_begin() const { return use_iterator(UseList); } static use_iterator use_end() { return use_iterator(nullptr); } inline iterator_range uses() { return make_range(use_begin(), use_end()); } inline iterator_range uses() const { return make_range(use_begin(), use_end()); } /// Return true if there are exactly NUSES uses of the indicated value. /// This method ignores uses of other values defined by this operation. bool hasNUsesOfValue(unsigned NUses, unsigned Value) const; /// Return true if there are any use of the indicated value. /// This method ignores uses of other values defined by this operation. bool hasAnyUseOfValue(unsigned Value) const; /// Return true if this node is the only use of N. bool isOnlyUserOf(const SDNode *N) const; /// Return true if this node is an operand of N. bool isOperandOf(const SDNode *N) const; /// Return true if this node is a predecessor of N. /// NOTE: Implemented on top of hasPredecessor and every bit as /// expensive. Use carefully. bool isPredecessorOf(const SDNode *N) const { return N->hasPredecessor(this); } /// Return true if N is a predecessor of this node. /// N is either an operand of this node, or can be reached by recursively /// traversing up the operands. /// NOTE: This is an expensive method. Use it carefully. bool hasPredecessor(const SDNode *N) const; /// Returns true if N is a predecessor of any node in Worklist. This /// helper keeps Visited and Worklist sets externally to allow unions /// searches to be performed in parallel, caching of results across /// queries and incremental addition to Worklist. Stops early if N is /// found but will resume. Remember to clear Visited and Worklists /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before /// giving up. The TopologicalPrune flag signals that positive NodeIds are /// topologically ordered (Operands have strictly smaller node id) and search /// can be pruned leveraging this. static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl &Visited, SmallVectorImpl &Worklist, unsigned int MaxSteps = 0, bool TopologicalPrune = false) { SmallVector DeferredNodes; if (Visited.count(N)) return true; // Node Id's are assigned in three places: As a topological // ordering (> 0), during legalization (results in values set to // 0), new nodes (set to -1). If N has a topolgical id then we // know that all nodes with ids smaller than it cannot be // successors and we need not check them. Filter out all node // that can't be matches. We add them to the worklist before exit // in case of multiple calls. Note that during selection the topological id // may be violated if a node's predecessor is selected before it. We mark // this at selection negating the id of unselected successors and // restricting topological pruning to positive ids. int NId = N->getNodeId(); // If we Invalidated the Id, reconstruct original NId. if (NId < -1) NId = -(NId + 1); bool Found = false; while (!Worklist.empty()) { const SDNode *M = Worklist.pop_back_val(); int MId = M->getNodeId(); if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) && (MId > 0) && (MId < NId)) { DeferredNodes.push_back(M); continue; } for (const SDValue &OpV : M->op_values()) { SDNode *Op = OpV.getNode(); if (Visited.insert(Op).second) Worklist.push_back(Op); if (Op == N) Found = true; } if (Found) break; if (MaxSteps != 0 && Visited.size() >= MaxSteps) break; } // Push deferred nodes back on worklist. Worklist.append(DeferredNodes.begin(), DeferredNodes.end()); // If we bailed early, conservatively return found. if (MaxSteps != 0 && Visited.size() >= MaxSteps) return true; return Found; } /// Return true if all the users of N are contained in Nodes. /// NOTE: Requires at least one match, but doesn't require them all. static bool areOnlyUsersOf(ArrayRef Nodes, const SDNode *N); /// Return the number of values used by this operation. unsigned getNumOperands() const { return NumOperands; } /// Return the maximum number of operands that a SDNode can hold. static constexpr size_t getMaxNumOperands() { return std::numeric_limits::max(); } /// Helper method returns the integer value of a ConstantSDNode operand. inline uint64_t getConstantOperandVal(unsigned Num) const; /// Helper method returns the APInt of a ConstantSDNode operand. inline const APInt &getConstantOperandAPInt(unsigned Num) const; const SDValue &getOperand(unsigned Num) const { assert(Num < NumOperands && "Invalid child # of SDNode!"); return OperandList[Num]; } using op_iterator = SDUse *; op_iterator op_begin() const { return OperandList; } op_iterator op_end() const { return OperandList+NumOperands; } ArrayRef ops() const { return makeArrayRef(op_begin(), op_end()); } /// Iterator for directly iterating over the operand SDValue's. struct value_op_iterator : iterator_adaptor_base { explicit value_op_iterator(SDUse *U = nullptr) : iterator_adaptor_base(U) {} const SDValue &operator*() const { return I->get(); } }; iterator_range op_values() const { return make_range(value_op_iterator(op_begin()), value_op_iterator(op_end())); } SDVTList getVTList() const { SDVTList X = { ValueList, NumValues }; return X; } /// If this node has a glue operand, return the node /// to which the glue operand points. Otherwise return NULL. SDNode *getGluedNode() const { if (getNumOperands() != 0 && getOperand(getNumOperands()-1).getValueType() == MVT::Glue) return getOperand(getNumOperands()-1).getNode(); return nullptr; } /// If this node has a glue value with a user, return /// the user (there is at most one). Otherwise return NULL. SDNode *getGluedUser() const { for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI) if (UI.getUse().get().getValueType() == MVT::Glue) return *UI; return nullptr; } const SDNodeFlags getFlags() const { return Flags; } void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; } /// Clear any flags in this node that aren't also set in Flags. /// If Flags is not in a defined state then this has no effect. void intersectFlagsWith(const SDNodeFlags Flags); /// Return the number of values defined/returned by this operator. unsigned getNumValues() const { return NumValues; } /// Return the type of a specified result. EVT getValueType(unsigned ResNo) const { assert(ResNo < NumValues && "Illegal result number!"); return ValueList[ResNo]; } /// Return the type of a specified result as a simple type. MVT getSimpleValueType(unsigned ResNo) const { return getValueType(ResNo).getSimpleVT(); } /// Returns MVT::getSizeInBits(getValueType(ResNo)). /// /// If the value type is a scalable vector type, the scalable property will /// be set and the runtime size will be a positive integer multiple of the /// base size. TypeSize getValueSizeInBits(unsigned ResNo) const { return getValueType(ResNo).getSizeInBits(); } using value_iterator = const EVT *; value_iterator value_begin() const { return ValueList; } value_iterator value_end() const { return ValueList+NumValues; } iterator_range values() const { return llvm::make_range(value_begin(), value_end()); } /// Return the opcode of this operation for printing. std::string getOperationName(const SelectionDAG *G = nullptr) const; static const char* getIndexedModeName(ISD::MemIndexedMode AM); void print_types(raw_ostream &OS, const SelectionDAG *G) const; void print_details(raw_ostream &OS, const SelectionDAG *G) const; void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const; void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const; /// Print a SelectionDAG node and all children down to /// the leaves. The given SelectionDAG allows target-specific nodes /// to be printed in human-readable form. Unlike printr, this will /// print the whole DAG, including children that appear multiple /// times. /// void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const; /// Print a SelectionDAG node and children up to /// depth "depth." The given SelectionDAG allows target-specific /// nodes to be printed in human-readable form. Unlike printr, this /// will print children that appear multiple times wherever they are /// used. /// void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr, unsigned depth = 100) const; /// Dump this node, for debugging. void dump() const; /// Dump (recursively) this node and its use-def subgraph. void dumpr() const; /// Dump this node, for debugging. /// The given SelectionDAG allows target-specific nodes to be printed /// in human-readable form. void dump(const SelectionDAG *G) const; /// Dump (recursively) this node and its use-def subgraph. /// The given SelectionDAG allows target-specific nodes to be printed /// in human-readable form. void dumpr(const SelectionDAG *G) const; /// printrFull to dbgs(). The given SelectionDAG allows /// target-specific nodes to be printed in human-readable form. /// Unlike dumpr, this will print the whole DAG, including children /// that appear multiple times. void dumprFull(const SelectionDAG *G = nullptr) const; /// printrWithDepth to dbgs(). The given /// SelectionDAG allows target-specific nodes to be printed in /// human-readable form. Unlike dumpr, this will print children /// that appear multiple times wherever they are used. /// void dumprWithDepth(const SelectionDAG *G = nullptr, unsigned depth = 100) const; /// Gather unique data for the node. void Profile(FoldingSetNodeID &ID) const; /// This method should only be used by the SDUse class. void addUse(SDUse &U) { U.addToList(&UseList); } protected: static SDVTList getSDVTList(EVT VT) { SDVTList Ret = { getValueTypeList(VT), 1 }; return Ret; } /// Create an SDNode. /// /// SDNodes are created without any operands, and never own the operand /// storage. To add operands, see SelectionDAG::createOperands. SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs) : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs), IROrder(Order), debugLoc(std::move(dl)) { memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits)); assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); assert(NumValues == VTs.NumVTs && "NumValues wasn't wide enough for its operands!"); } /// Release the operands and set this node to have zero operands. void DropOperands(); }; /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed /// into SDNode creation functions. /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted /// from the original Instruction, and IROrder is the ordinal position of /// the instruction. /// When an SDNode is created after the DAG is being built, both DebugLoc and /// the IROrder are propagated from the original SDNode. /// So SDLoc class provides two constructors besides the default one, one to /// be used by the DAGBuilder, the other to be used by others. class SDLoc { private: DebugLoc DL; int IROrder = 0; public: SDLoc() = default; SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {} SDLoc(const SDValue V) : SDLoc(V.getNode()) {} SDLoc(const Instruction *I, int Order) : IROrder(Order) { assert(Order >= 0 && "bad IROrder"); if (I) DL = I->getDebugLoc(); } unsigned getIROrder() const { return IROrder; } const DebugLoc &getDebugLoc() const { return DL; } }; // Define inline functions from the SDValue class. inline SDValue::SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) { // Explicitly check for !ResNo to avoid use-after-free, because there are // callers that use SDValue(N, 0) with a deleted N to indicate successful // combines. assert((!Node || !ResNo || ResNo < Node->getNumValues()) && "Invalid result number for the given node!"); assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps."); } inline unsigned SDValue::getOpcode() const { return Node->getOpcode(); } inline EVT SDValue::getValueType() const { return Node->getValueType(ResNo); } inline unsigned SDValue::getNumOperands() const { return Node->getNumOperands(); } inline const SDValue &SDValue::getOperand(unsigned i) const { return Node->getOperand(i); } inline uint64_t SDValue::getConstantOperandVal(unsigned i) const { return Node->getConstantOperandVal(i); } inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const { return Node->getConstantOperandAPInt(i); } inline bool SDValue::isTargetOpcode() const { return Node->isTargetOpcode(); } inline bool SDValue::isTargetMemoryOpcode() const { return Node->isTargetMemoryOpcode(); } inline bool SDValue::isMachineOpcode() const { return Node->isMachineOpcode(); } inline unsigned SDValue::getMachineOpcode() const { return Node->getMachineOpcode(); } inline bool SDValue::isUndef() const { return Node->isUndef(); } inline bool SDValue::use_empty() const { return !Node->hasAnyUseOfValue(ResNo); } inline bool SDValue::hasOneUse() const { return Node->hasNUsesOfValue(1, ResNo); } inline const DebugLoc &SDValue::getDebugLoc() const { return Node->getDebugLoc(); } inline void SDValue::dump() const { return Node->dump(); } inline void SDValue::dump(const SelectionDAG *G) const { return Node->dump(G); } inline void SDValue::dumpr() const { return Node->dumpr(); } inline void SDValue::dumpr(const SelectionDAG *G) const { return Node->dumpr(G); } // Define inline functions from the SDUse class. inline void SDUse::set(const SDValue &V) { if (Val.getNode()) removeFromList(); Val = V; if (V.getNode()) V.getNode()->addUse(*this); } inline void SDUse::setInitial(const SDValue &V) { Val = V; V.getNode()->addUse(*this); } inline void SDUse::setNode(SDNode *N) { if (Val.getNode()) removeFromList(); Val.setNode(N); if (N) N->addUse(*this); } /// This class is used to form a handle around another node that /// is persistent and is updated across invocations of replaceAllUsesWith on its /// operand. This node should be directly created by end-users and not added to /// the AllNodes list. class HandleSDNode : public SDNode { SDUse Op; public: explicit HandleSDNode(SDValue X) : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) { // HandleSDNodes are never inserted into the DAG, so they won't be // auto-numbered. Use ID 65535 as a sentinel. PersistentId = 0xffff; // Manually set up the operand list. This node type is special in that it's // always stack allocated and SelectionDAG does not manage its operands. // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not // be so special. Op.setUser(this); Op.setInitial(X); NumOperands = 1; OperandList = &Op; } ~HandleSDNode(); const SDValue &getValue() const { return Op; } }; class AddrSpaceCastSDNode : public SDNode { private: unsigned SrcAddrSpace; unsigned DestAddrSpace; public: AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT, unsigned SrcAS, unsigned DestAS); unsigned getSrcAddressSpace() const { return SrcAddrSpace; } unsigned getDestAddressSpace() const { return DestAddrSpace; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ADDRSPACECAST; } }; /// This is an abstract virtual class for memory operations. class MemSDNode : public SDNode { private: // VT of in-memory value. EVT MemoryVT; protected: /// Memory reference information. MachineMemOperand *MMO; public: MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO); bool readMem() const { return MMO->isLoad(); } bool writeMem() const { return MMO->isStore(); } /// Returns alignment and volatility of the memory access Align getOriginalAlign() const { return MMO->getBaseAlign(); } Align getAlign() const { return MMO->getAlign(); } LLVM_ATTRIBUTE_DEPRECATED(unsigned getOriginalAlignment() const, "Use getOriginalAlign() instead") { return MMO->getBaseAlign().value(); } // FIXME: Remove once transition to getAlign is over. unsigned getAlignment() const { return MMO->getAlign().value(); } /// Return the SubclassData value, without HasDebugValue. This contains an /// encoding of the volatile flag, as well as bits used by subclasses. This /// function should only be used to compute a FoldingSetNodeID value. /// The HasDebugValue bit is masked out because CSE map needs to match /// nodes with debug info with nodes without debug info. Same is about /// isDivergent bit. unsigned getRawSubclassData() const { uint16_t Data; union { char RawSDNodeBits[sizeof(uint16_t)]; SDNodeBitfields SDNodeBits; }; memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits)); SDNodeBits.HasDebugValue = 0; SDNodeBits.IsDivergent = false; memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits)); return Data; } bool isVolatile() const { return MemSDNodeBits.IsVolatile; } bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; } bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; } bool isInvariant() const { return MemSDNodeBits.IsInvariant; } // Returns the offset from the location of the access. int64_t getSrcValueOffset() const { return MMO->getOffset(); } /// Returns the AA info that describes the dereference. AAMDNodes getAAInfo() const { return MMO->getAAInfo(); } /// Returns the Ranges that describes the dereference. const MDNode *getRanges() const { return MMO->getRanges(); } /// Returns the synchronization scope ID for this memory operation. SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); } /// Return the atomic ordering requirements for this memory operation. For /// cmpxchg atomic operations, return the atomic ordering requirements when /// store occurs. AtomicOrdering getOrdering() const { return MMO->getOrdering(); } /// Return true if the memory operation ordering is Unordered or higher. bool isAtomic() const { return MMO->isAtomic(); } /// Returns true if the memory operation doesn't imply any ordering /// constraints on surrounding memory operations beyond the normal memory /// aliasing rules. bool isUnordered() const { return MMO->isUnordered(); } /// Returns true if the memory operation is neither atomic or volatile. bool isSimple() const { return !isAtomic() && !isVolatile(); } /// Return the type of the in-memory value. EVT getMemoryVT() const { return MemoryVT; } /// Return a MachineMemOperand object describing the memory /// reference performed by operation. MachineMemOperand *getMemOperand() const { return MMO; } const MachinePointerInfo &getPointerInfo() const { return MMO->getPointerInfo(); } /// Return the address space for the associated pointer unsigned getAddressSpace() const { return getPointerInfo().getAddrSpace(); } /// Update this MemSDNode's MachineMemOperand information /// to reflect the alignment of NewMMO, if it has a greater alignment. /// This must only be used when the new alignment applies to all users of /// this MachineMemOperand. void refineAlignment(const MachineMemOperand *NewMMO) { MMO->refineAlignment(NewMMO); } const SDValue &getChain() const { return getOperand(0); } const SDValue &getBasePtr() const { switch (getOpcode()) { case ISD::STORE: case ISD::MSTORE: return getOperand(2); case ISD::MGATHER: case ISD::MSCATTER: return getOperand(3); default: return getOperand(1); } } // Methods to support isa and dyn_cast static bool classof(const SDNode *N) { // For some targets, we lower some target intrinsics to a MemIntrinsicNode // with either an intrinsic or a target opcode. return N->getOpcode() == ISD::LOAD || N->getOpcode() == ISD::STORE || N->getOpcode() == ISD::PREFETCH || N->getOpcode() == ISD::ATOMIC_CMP_SWAP || N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS || N->getOpcode() == ISD::ATOMIC_SWAP || N->getOpcode() == ISD::ATOMIC_LOAD_ADD || N->getOpcode() == ISD::ATOMIC_LOAD_SUB || N->getOpcode() == ISD::ATOMIC_LOAD_AND || N->getOpcode() == ISD::ATOMIC_LOAD_CLR || N->getOpcode() == ISD::ATOMIC_LOAD_OR || N->getOpcode() == ISD::ATOMIC_LOAD_XOR || N->getOpcode() == ISD::ATOMIC_LOAD_NAND || N->getOpcode() == ISD::ATOMIC_LOAD_MIN || N->getOpcode() == ISD::ATOMIC_LOAD_MAX || N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || N->getOpcode() == ISD::ATOMIC_LOAD_UMAX || N->getOpcode() == ISD::ATOMIC_LOAD_FADD || N->getOpcode() == ISD::ATOMIC_LOAD_FSUB || N->getOpcode() == ISD::ATOMIC_LOAD || N->getOpcode() == ISD::ATOMIC_STORE || N->getOpcode() == ISD::MLOAD || N->getOpcode() == ISD::MSTORE || N->getOpcode() == ISD::MGATHER || N->getOpcode() == ISD::MSCATTER || N->isMemIntrinsic() || N->isTargetMemoryOpcode(); } }; /// This is an SDNode representing atomic operations. class AtomicSDNode : public MemSDNode { public: AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL, EVT MemVT, MachineMemOperand *MMO) : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) { assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) || MMO->isAtomic()) && "then why are we using an AtomicSDNode?"); } const SDValue &getBasePtr() const { return getOperand(1); } const SDValue &getVal() const { return getOperand(2); } /// Returns true if this SDNode represents cmpxchg atomic operation, false /// otherwise. bool isCompareAndSwap() const { unsigned Op = getOpcode(); return Op == ISD::ATOMIC_CMP_SWAP || Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS; } /// For cmpxchg atomic operations, return the atomic ordering requirements /// when store does not occur. AtomicOrdering getFailureOrdering() const { assert(isCompareAndSwap() && "Must be cmpxchg operation"); return MMO->getFailureOrdering(); } // Methods to support isa and dyn_cast static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ATOMIC_CMP_SWAP || N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS || N->getOpcode() == ISD::ATOMIC_SWAP || N->getOpcode() == ISD::ATOMIC_LOAD_ADD || N->getOpcode() == ISD::ATOMIC_LOAD_SUB || N->getOpcode() == ISD::ATOMIC_LOAD_AND || N->getOpcode() == ISD::ATOMIC_LOAD_CLR || N->getOpcode() == ISD::ATOMIC_LOAD_OR || N->getOpcode() == ISD::ATOMIC_LOAD_XOR || N->getOpcode() == ISD::ATOMIC_LOAD_NAND || N->getOpcode() == ISD::ATOMIC_LOAD_MIN || N->getOpcode() == ISD::ATOMIC_LOAD_MAX || N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || N->getOpcode() == ISD::ATOMIC_LOAD_UMAX || N->getOpcode() == ISD::ATOMIC_LOAD_FADD || N->getOpcode() == ISD::ATOMIC_LOAD_FSUB || N->getOpcode() == ISD::ATOMIC_LOAD || N->getOpcode() == ISD::ATOMIC_STORE; } }; /// This SDNode is used for target intrinsics that touch /// memory and need an associated MachineMemOperand. Its opcode may be /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode /// with a value not less than FIRST_TARGET_MEMORY_OPCODE. class MemIntrinsicSDNode : public MemSDNode { public: MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO) : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) { SDNodeBits.IsMemIntrinsic = true; } // Methods to support isa and dyn_cast static bool classof(const SDNode *N) { // We lower some target intrinsics to their target opcode // early a node with a target opcode can be of this class return N->isMemIntrinsic() || N->getOpcode() == ISD::PREFETCH || N->isTargetMemoryOpcode(); } }; /// This SDNode is used to implement the code generator /// support for the llvm IR shufflevector instruction. It combines elements /// from two input vectors into a new input vector, with the selection and /// ordering of elements determined by an array of integers, referred to as /// the shuffle mask. For input vectors of width N, mask indices of 0..N-1 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS. /// An index of -1 is treated as undef, such that the code generator may put /// any value in the corresponding element of the result. class ShuffleVectorSDNode : public SDNode { // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and // is freed when the SelectionDAG object is destroyed. const int *Mask; protected: friend class SelectionDAG; ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M) : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {} public: ArrayRef getMask() const { EVT VT = getValueType(0); return makeArrayRef(Mask, VT.getVectorNumElements()); } int getMaskElt(unsigned Idx) const { assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!"); return Mask[Idx]; } bool isSplat() const { return isSplatMask(Mask, getValueType(0)); } int getSplatIndex() const { assert(isSplat() && "Cannot get splat index for non-splat!"); EVT VT = getValueType(0); for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) if (Mask[i] >= 0) return Mask[i]; // We can choose any index value here and be correct because all elements // are undefined. Return 0 for better potential for callers to simplify. return 0; } static bool isSplatMask(const int *Mask, EVT VT); /// Change values in a shuffle permute mask assuming /// the two vector operands have swapped position. static void commuteMask(MutableArrayRef Mask) { unsigned NumElems = Mask.size(); for (unsigned i = 0; i != NumElems; ++i) { int idx = Mask[i]; if (idx < 0) continue; else if (idx < (int)NumElems) Mask[i] = idx + NumElems; else Mask[i] = idx - NumElems; } } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::VECTOR_SHUFFLE; } }; class ConstantSDNode : public SDNode { friend class SelectionDAG; const ConstantInt *Value; ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT) : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(), getSDVTList(VT)), Value(val) { ConstantSDNodeBits.IsOpaque = isOpaque; } public: const ConstantInt *getConstantIntValue() const { return Value; } const APInt &getAPIntValue() const { return Value->getValue(); } uint64_t getZExtValue() const { return Value->getZExtValue(); } int64_t getSExtValue() const { return Value->getSExtValue(); } uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) { return Value->getLimitedValue(Limit); } MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); } Align getAlignValue() const { return Value->getAlignValue(); } bool isOne() const { return Value->isOne(); } bool isNullValue() const { return Value->isZero(); } bool isAllOnesValue() const { return Value->isMinusOne(); } bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::Constant || N->getOpcode() == ISD::TargetConstant; } }; uint64_t SDNode::getConstantOperandVal(unsigned Num) const { return cast(getOperand(Num))->getZExtValue(); } const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const { return cast(getOperand(Num))->getAPIntValue(); } class ConstantFPSDNode : public SDNode { friend class SelectionDAG; const ConstantFP *Value; ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT) : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0, DebugLoc(), getSDVTList(VT)), Value(val) {} public: const APFloat& getValueAPF() const { return Value->getValueAPF(); } const ConstantFP *getConstantFPValue() const { return Value; } /// Return true if the value is positive or negative zero. bool isZero() const { return Value->isZero(); } /// Return true if the value is a NaN. bool isNaN() const { return Value->isNaN(); } /// Return true if the value is an infinity bool isInfinity() const { return Value->isInfinity(); } /// Return true if the value is negative. bool isNegative() const { return Value->isNegative(); } /// We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. /// We leave the version with the double argument here because it's just so /// convenient to write "2.0" and the like. Without this function we'd /// have to duplicate its logic everywhere it's called. bool isExactlyValue(double V) const { return Value->getValueAPF().isExactlyValue(V); } bool isExactlyValue(const APFloat& V) const; static bool isValueValidForType(EVT VT, const APFloat& Val); static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ConstantFP || N->getOpcode() == ISD::TargetConstantFP; } }; /// Returns true if \p V is a constant integer zero. bool isNullConstant(SDValue V); /// Returns true if \p V is an FP constant with a value of positive zero. bool isNullFPConstant(SDValue V); /// Returns true if \p V is an integer constant with all bits set. bool isAllOnesConstant(SDValue V); /// Returns true if \p V is a constant integer one. bool isOneConstant(SDValue V); /// Return the non-bitcasted source operand of \p V if it exists. /// If \p V is not a bitcasted value, it is returned as-is. SDValue peekThroughBitcasts(SDValue V); /// Return the non-bitcasted and one-use source operand of \p V if it exists. /// If \p V is not a bitcasted one-use value, it is returned as-is. SDValue peekThroughOneUseBitcasts(SDValue V); /// Return the non-extracted vector source operand of \p V if it exists. /// If \p V is not an extracted subvector, it is returned as-is. SDValue peekThroughExtractSubvectors(SDValue V); /// Returns true if \p V is a bitwise not operation. Assumes that an all ones /// constant is canonicalized to be operand 1. bool isBitwiseNot(SDValue V, bool AllowUndefs = false); /// Returns the SDNode if it is a constant splat BuildVector or constant int. ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false, bool AllowTruncation = false); /// Returns the SDNode if it is a demanded constant splat BuildVector or /// constant int. ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts, bool AllowUndefs = false, bool AllowTruncation = false); /// Returns the SDNode if it is a constant splat BuildVector or constant float. ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false); /// Returns the SDNode if it is a demanded constant splat BuildVector or /// constant float. ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts, bool AllowUndefs = false); /// Return true if the value is a constant 0 integer or a splatted vector of /// a constant 0 integer (with no undefs by default). /// Build vector implicit truncation is not an issue for null values. bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false); /// Return true if the value is a constant 1 integer or a splatted vector of a /// constant 1 integer (with no undefs). /// Does not permit build vector implicit truncation. bool isOneOrOneSplat(SDValue V); /// Return true if the value is a constant -1 integer or a splatted vector of a /// constant -1 integer (with no undefs). /// Does not permit build vector implicit truncation. bool isAllOnesOrAllOnesSplat(SDValue V); class GlobalAddressSDNode : public SDNode { friend class SelectionDAG; const GlobalValue *TheGlobal; int64_t Offset; unsigned TargetFlags; GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, const GlobalValue *GA, EVT VT, int64_t o, unsigned TF); public: const GlobalValue *getGlobal() const { return TheGlobal; } int64_t getOffset() const { return Offset; } unsigned getTargetFlags() const { return TargetFlags; } // Return the address space this GlobalAddress belongs to. unsigned getAddressSpace() const; static bool classof(const SDNode *N) { return N->getOpcode() == ISD::GlobalAddress || N->getOpcode() == ISD::TargetGlobalAddress || N->getOpcode() == ISD::GlobalTLSAddress || N->getOpcode() == ISD::TargetGlobalTLSAddress; } }; class FrameIndexSDNode : public SDNode { friend class SelectionDAG; int FI; FrameIndexSDNode(int fi, EVT VT, bool isTarg) : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, 0, DebugLoc(), getSDVTList(VT)), FI(fi) { } public: int getIndex() const { return FI; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::FrameIndex || N->getOpcode() == ISD::TargetFrameIndex; } }; /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate /// the offet and size that are started/ended in the underlying FrameIndex. class LifetimeSDNode : public SDNode { friend class SelectionDAG; int64_t Size; int64_t Offset; // -1 if offset is unknown. LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, SDVTList VTs, int64_t Size, int64_t Offset) : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {} public: int64_t getFrameIndex() const { return cast(getOperand(1))->getIndex(); } bool hasOffset() const { return Offset >= 0; } int64_t getOffset() const { assert(hasOffset() && "offset is unknown"); return Offset; } int64_t getSize() const { assert(hasOffset() && "offset is unknown"); return Size; } // Methods to support isa and dyn_cast static bool classof(const SDNode *N) { return N->getOpcode() == ISD::LIFETIME_START || N->getOpcode() == ISD::LIFETIME_END; } }; /// This SDNode is used for PSEUDO_PROBE values, which are the function guid and /// the index of the basic block being probed. A pseudo probe serves as a place /// holder and will be removed at the end of compilation. It does not have any /// operand because we do not want the instruction selection to deal with any. class PseudoProbeSDNode : public SDNode { friend class SelectionDAG; uint64_t Guid; uint64_t Index; uint32_t Attributes; PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl, SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr) : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index), Attributes(Attr) {} public: uint64_t getGuid() const { return Guid; } uint64_t getIndex() const { return Index; } uint32_t getAttributes() const { return Attributes; } // Methods to support isa and dyn_cast static bool classof(const SDNode *N) { return N->getOpcode() == ISD::PSEUDO_PROBE; } }; class JumpTableSDNode : public SDNode { friend class SelectionDAG; int JTI; unsigned TargetFlags; JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF) : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) { } public: int getIndex() const { return JTI; } unsigned getTargetFlags() const { return TargetFlags; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::JumpTable || N->getOpcode() == ISD::TargetJumpTable; } }; class ConstantPoolSDNode : public SDNode { friend class SelectionDAG; union { const Constant *ConstVal; MachineConstantPoolValue *MachineCPVal; } Val; int Offset; // It's a MachineConstantPoolValue if top bit is set. Align Alignment; // Minimum alignment requirement of CP. unsigned TargetFlags; ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o, Align Alignment, unsigned TF) : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0, DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Alignment), TargetFlags(TF) { assert(Offset >= 0 && "Offset is too large"); Val.ConstVal = c; } ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o, Align Alignment, unsigned TF) : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0, DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Alignment), TargetFlags(TF) { assert(Offset >= 0 && "Offset is too large"); Val.MachineCPVal = v; Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1); } public: bool isMachineConstantPoolEntry() const { return Offset < 0; } const Constant *getConstVal() const { assert(!isMachineConstantPoolEntry() && "Wrong constantpool type"); return Val.ConstVal; } MachineConstantPoolValue *getMachineCPVal() const { assert(isMachineConstantPoolEntry() && "Wrong constantpool type"); return Val.MachineCPVal; } int getOffset() const { return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1)); } // Return the alignment of this constant pool object, which is either 0 (for // default alignment) or the desired value. Align getAlign() const { return Alignment; } unsigned getTargetFlags() const { return TargetFlags; } Type *getType() const; static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ConstantPool || N->getOpcode() == ISD::TargetConstantPool; } }; /// Completely target-dependent object reference. class TargetIndexSDNode : public SDNode { friend class SelectionDAG; unsigned TargetFlags; int Index; int64_t Offset; public: TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF) : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)), TargetFlags(TF), Index(Idx), Offset(Ofs) {} unsigned getTargetFlags() const { return TargetFlags; } int getIndex() const { return Index; } int64_t getOffset() const { return Offset; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::TargetIndex; } }; class BasicBlockSDNode : public SDNode { friend class SelectionDAG; MachineBasicBlock *MBB; /// Debug info is meaningful and potentially useful here, but we create /// blocks out of order when they're jumped to, which makes it a bit /// harder. Let's see if we need it first. explicit BasicBlockSDNode(MachineBasicBlock *mbb) : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb) {} public: MachineBasicBlock *getBasicBlock() const { return MBB; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::BasicBlock; } }; /// A "pseudo-class" with methods for operating on BUILD_VECTORs. class BuildVectorSDNode : public SDNode { public: // These are constructed as SDNodes and then cast to BuildVectorSDNodes. explicit BuildVectorSDNode() = delete; /// Check if this is a constant splat, and if so, find the /// smallest element size that splats the vector. If MinSplatBits is /// nonzero, the element size must be at least that large. Note that the /// splat element may be the entire vector (i.e., a one element vector). /// Returns the splat element value in SplatValue. Any undefined bits in /// that value are zero, and the corresponding bits in the SplatUndef mask /// are set. The SplatBitSize value is set to the splat element size in /// bits. HasAnyUndefs is set to true if any bits in the vector are /// undefined. isBigEndian describes the endianness of the target. bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits = 0, bool isBigEndian = false) const; /// Returns the demanded splatted value or a null value if this is not a /// splat. /// /// The DemandedElts mask indicates the elements that must be in the splat. /// If passed a non-null UndefElements bitvector, it will resize it to match /// the vector width and set the bits where elements are undef. SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements = nullptr) const; /// Returns the splatted value or a null value if this is not a splat. /// /// If passed a non-null UndefElements bitvector, it will resize it to match /// the vector width and set the bits where elements are undef. SDValue getSplatValue(BitVector *UndefElements = nullptr) const; /// Find the shortest repeating sequence of values in the build vector. /// /// e.g. { u, X, u, X, u, u, X, u } -> { X } /// { X, Y, u, Y, u, u, X, u } -> { X, Y } /// /// Currently this must be a power-of-2 build vector. /// The DemandedElts mask indicates the elements that must be present, /// undemanded elements in Sequence may be null (SDValue()). If passed a /// non-null UndefElements bitvector, it will resize it to match the original /// vector width and set the bits where elements are undef. If result is /// false, Sequence will be empty. bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl &Sequence, BitVector *UndefElements = nullptr) const; /// Find the shortest repeating sequence of values in the build vector. /// /// e.g. { u, X, u, X, u, u, X, u } -> { X } /// { X, Y, u, Y, u, u, X, u } -> { X, Y } /// /// Currently this must be a power-of-2 build vector. /// If passed a non-null UndefElements bitvector, it will resize it to match /// the original vector width and set the bits where elements are undef. /// If result is false, Sequence will be empty. bool getRepeatedSequence(SmallVectorImpl &Sequence, BitVector *UndefElements = nullptr) const; /// Returns the demanded splatted constant or null if this is not a constant /// splat. /// /// The DemandedElts mask indicates the elements that must be in the splat. /// If passed a non-null UndefElements bitvector, it will resize it to match /// the vector width and set the bits where elements are undef. ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements = nullptr) const; /// Returns the splatted constant or null if this is not a constant /// splat. /// /// If passed a non-null UndefElements bitvector, it will resize it to match /// the vector width and set the bits where elements are undef. ConstantSDNode * getConstantSplatNode(BitVector *UndefElements = nullptr) const; /// Returns the demanded splatted constant FP or null if this is not a /// constant FP splat. /// /// The DemandedElts mask indicates the elements that must be in the splat. /// If passed a non-null UndefElements bitvector, it will resize it to match /// the vector width and set the bits where elements are undef. ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements = nullptr) const; /// Returns the splatted constant FP or null if this is not a constant /// FP splat. /// /// If passed a non-null UndefElements bitvector, it will resize it to match /// the vector width and set the bits where elements are undef. ConstantFPSDNode * getConstantFPSplatNode(BitVector *UndefElements = nullptr) const; /// If this is a constant FP splat and the splatted constant FP is an /// exact power or 2, return the log base 2 integer value. Otherwise, /// return -1. /// /// The BitWidth specifies the necessary bit precision. int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const; bool isConstant() const; static bool classof(const SDNode *N) { return N->getOpcode() == ISD::BUILD_VECTOR; } }; /// An SDNode that holds an arbitrary LLVM IR Value. This is /// used when the SelectionDAG needs to make a simple reference to something /// in the LLVM IR representation. /// class SrcValueSDNode : public SDNode { friend class SelectionDAG; const Value *V; /// Create a SrcValue for a general value. explicit SrcValueSDNode(const Value *v) : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {} public: /// Return the contained Value. const Value *getValue() const { return V; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::SRCVALUE; } }; class MDNodeSDNode : public SDNode { friend class SelectionDAG; const MDNode *MD; explicit MDNodeSDNode(const MDNode *md) : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md) {} public: const MDNode *getMD() const { return MD; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::MDNODE_SDNODE; } }; class RegisterSDNode : public SDNode { friend class SelectionDAG; Register Reg; RegisterSDNode(Register reg, EVT VT) : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {} public: Register getReg() const { return Reg; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::Register; } }; class RegisterMaskSDNode : public SDNode { friend class SelectionDAG; // The memory for RegMask is not owned by the node. const uint32_t *RegMask; RegisterMaskSDNode(const uint32_t *mask) : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)), RegMask(mask) {} public: const uint32_t *getRegMask() const { return RegMask; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::RegisterMask; } }; class BlockAddressSDNode : public SDNode { friend class SelectionDAG; const BlockAddress *BA; int64_t Offset; unsigned TargetFlags; BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba, int64_t o, unsigned Flags) : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)), BA(ba), Offset(o), TargetFlags(Flags) {} public: const BlockAddress *getBlockAddress() const { return BA; } int64_t getOffset() const { return Offset; } unsigned getTargetFlags() const { return TargetFlags; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::BlockAddress || N->getOpcode() == ISD::TargetBlockAddress; } }; class LabelSDNode : public SDNode { friend class SelectionDAG; MCSymbol *Label; LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L) : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) { assert(LabelSDNode::classof(this) && "not a label opcode"); } public: MCSymbol *getLabel() const { return Label; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::EH_LABEL || N->getOpcode() == ISD::ANNOTATION_LABEL; } }; class ExternalSymbolSDNode : public SDNode { friend class SelectionDAG; const char *Symbol; unsigned TargetFlags; ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT) : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {} public: const char *getSymbol() const { return Symbol; } unsigned getTargetFlags() const { return TargetFlags; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ExternalSymbol || N->getOpcode() == ISD::TargetExternalSymbol; } }; class MCSymbolSDNode : public SDNode { friend class SelectionDAG; MCSymbol *Symbol; MCSymbolSDNode(MCSymbol *Symbol, EVT VT) : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {} public: MCSymbol *getMCSymbol() const { return Symbol; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::MCSymbol; } }; class CondCodeSDNode : public SDNode { friend class SelectionDAG; ISD::CondCode Condition; explicit CondCodeSDNode(ISD::CondCode Cond) : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)), Condition(Cond) {} public: ISD::CondCode get() const { return Condition; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::CONDCODE; } }; /// This class is used to represent EVT's, which are used /// to parameterize some operations. class VTSDNode : public SDNode { friend class SelectionDAG; EVT ValueType; explicit VTSDNode(EVT VT) : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)), ValueType(VT) {} public: EVT getVT() const { return ValueType; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::VALUETYPE; } }; /// Base class for LoadSDNode and StoreSDNode class LSBaseSDNode : public MemSDNode { public: LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, MachineMemOperand *MMO) : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { LSBaseSDNodeBits.AddressingMode = AM; assert(getAddressingMode() == AM && "Value truncated"); } const SDValue &getOffset() const { return getOperand(getOpcode() == ISD::LOAD ? 2 : 3); } /// Return the addressing mode for this load or store: /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. ISD::MemIndexedMode getAddressingMode() const { return static_cast(LSBaseSDNodeBits.AddressingMode); } /// Return true if this is a pre/post inc/dec load/store. bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } /// Return true if this is NOT a pre/post inc/dec load/store. bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::LOAD || N->getOpcode() == ISD::STORE; } }; /// This class is used to represent ISD::LOAD nodes. class LoadSDNode : public LSBaseSDNode { friend class SelectionDAG; LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT, MachineMemOperand *MMO) : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) { LoadSDNodeBits.ExtTy = ETy; assert(readMem() && "Load MachineMemOperand is not a load!"); assert(!writeMem() && "Load MachineMemOperand is a store!"); } public: /// Return whether this is a plain node, /// or one of the varieties of value-extending loads. ISD::LoadExtType getExtensionType() const { return static_cast(LoadSDNodeBits.ExtTy); } const SDValue &getBasePtr() const { return getOperand(1); } const SDValue &getOffset() const { return getOperand(2); } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::LOAD; } }; /// This class is used to represent ISD::STORE nodes. class StoreSDNode : public LSBaseSDNode { friend class SelectionDAG; StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT, MachineMemOperand *MMO) : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) { StoreSDNodeBits.IsTruncating = isTrunc; assert(!readMem() && "Store MachineMemOperand is a load!"); assert(writeMem() && "Store MachineMemOperand is not a store!"); } public: /// Return true if the op does a truncation before store. /// For integers this is the same as doing a TRUNCATE and storing the result. /// For floats, it is the same as doing an FP_ROUND and storing the result. bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } void setTruncatingStore(bool Truncating) { StoreSDNodeBits.IsTruncating = Truncating; } const SDValue &getValue() const { return getOperand(1); } const SDValue &getBasePtr() const { return getOperand(2); } const SDValue &getOffset() const { return getOperand(3); } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::STORE; } }; /// This base class is used to represent MLOAD and MSTORE nodes class MaskedLoadStoreSDNode : public MemSDNode { public: friend class SelectionDAG; MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, MachineMemOperand *MMO) : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { LSBaseSDNodeBits.AddressingMode = AM; assert(getAddressingMode() == AM && "Value truncated"); } // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru) // MaskedStoreSDNode (Chain, data, ptr, offset, mask) // Mask is a vector of i1 elements const SDValue &getOffset() const { return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3); } const SDValue &getMask() const { return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4); } /// Return the addressing mode for this load or store: /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. ISD::MemIndexedMode getAddressingMode() const { return static_cast(LSBaseSDNodeBits.AddressingMode); } /// Return true if this is a pre/post inc/dec load/store. bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } /// Return true if this is NOT a pre/post inc/dec load/store. bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::MLOAD || N->getOpcode() == ISD::MSTORE; } }; /// This class is used to represent an MLOAD node class MaskedLoadSDNode : public MaskedLoadStoreSDNode { public: friend class SelectionDAG; MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT, MachineMemOperand *MMO) : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) { LoadSDNodeBits.ExtTy = ETy; LoadSDNodeBits.IsExpanding = IsExpanding; } ISD::LoadExtType getExtensionType() const { return static_cast(LoadSDNodeBits.ExtTy); } const SDValue &getBasePtr() const { return getOperand(1); } const SDValue &getOffset() const { return getOperand(2); } const SDValue &getMask() const { return getOperand(3); } const SDValue &getPassThru() const { return getOperand(4); } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::MLOAD; } bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; } }; /// This class is used to represent an MSTORE node class MaskedStoreSDNode : public MaskedLoadStoreSDNode { public: friend class SelectionDAG; MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing, EVT MemVT, MachineMemOperand *MMO) : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) { StoreSDNodeBits.IsTruncating = isTrunc; StoreSDNodeBits.IsCompressing = isCompressing; } /// Return true if the op does a truncation before store. /// For integers this is the same as doing a TRUNCATE and storing the result. /// For floats, it is the same as doing an FP_ROUND and storing the result. bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } /// Returns true if the op does a compression to the vector before storing. /// The node contiguously stores the active elements (integers or floats) /// in src (those with their respective bit set in writemask k) to unaligned /// memory at base_addr. bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; } const SDValue &getValue() const { return getOperand(1); } const SDValue &getBasePtr() const { return getOperand(2); } const SDValue &getOffset() const { return getOperand(3); } const SDValue &getMask() const { return getOperand(4); } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::MSTORE; } }; /// This is a base class used to represent /// MGATHER and MSCATTER nodes /// class MaskedGatherScatterSDNode : public MemSDNode { public: friend class SelectionDAG; MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType) : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { LSBaseSDNodeBits.AddressingMode = IndexType; assert(getIndexType() == IndexType && "Value truncated"); } /// How is Index applied to BasePtr when computing addresses. ISD::MemIndexType getIndexType() const { return static_cast(LSBaseSDNodeBits.AddressingMode); } void setIndexType(ISD::MemIndexType IndexType) { LSBaseSDNodeBits.AddressingMode = IndexType; } bool isIndexScaled() const { return (getIndexType() == ISD::SIGNED_SCALED) || (getIndexType() == ISD::UNSIGNED_SCALED); } bool isIndexSigned() const { return (getIndexType() == ISD::SIGNED_SCALED) || (getIndexType() == ISD::SIGNED_UNSCALED); } // In the both nodes address is Op1, mask is Op2: // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale) // MaskedScatterSDNode (Chain, value, mask, base, index, scale) // Mask is a vector of i1 elements const SDValue &getBasePtr() const { return getOperand(3); } const SDValue &getIndex() const { return getOperand(4); } const SDValue &getMask() const { return getOperand(2); } const SDValue &getScale() const { return getOperand(5); } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::MGATHER || N->getOpcode() == ISD::MSCATTER; } }; /// This class is used to represent an MGATHER node /// class MaskedGatherSDNode : public MaskedGatherScatterSDNode { public: friend class SelectionDAG; MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ETy) : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO, IndexType) { LoadSDNodeBits.ExtTy = ETy; } const SDValue &getPassThru() const { return getOperand(1); } ISD::LoadExtType getExtensionType() const { return ISD::LoadExtType(LoadSDNodeBits.ExtTy); } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::MGATHER; } }; /// This class is used to represent an MSCATTER node /// class MaskedScatterSDNode : public MaskedGatherScatterSDNode { public: friend class SelectionDAG; MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTrunc) : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO, IndexType) { StoreSDNodeBits.IsTruncating = IsTrunc; } /// Return true if the op does a truncation before store. /// For integers this is the same as doing a TRUNCATE and storing the result. /// For floats, it is the same as doing an FP_ROUND and storing the result. bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } const SDValue &getValue() const { return getOperand(1); } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::MSCATTER; } }; /// An SDNode that represents everything that will be needed /// to construct a MachineInstr. These nodes are created during the /// instruction selection proper phase. /// /// Note that the only supported way to set the `memoperands` is by calling the /// `SelectionDAG::setNodeMemRefs` function as the memory management happens /// inside the DAG rather than in the node. class MachineSDNode : public SDNode { private: friend class SelectionDAG; MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs) : SDNode(Opc, Order, DL, VTs) {} // We use a pointer union between a single `MachineMemOperand` pointer and // a pointer to an array of `MachineMemOperand` pointers. This is null when // the number of these is zero, the single pointer variant used when the // number is one, and the array is used for larger numbers. // // The array is allocated via the `SelectionDAG`'s allocator and so will // always live until the DAG is cleaned up and doesn't require ownership here. // // We can't use something simpler like `TinyPtrVector` here because `SDNode` // subclasses aren't managed in a conforming C++ manner. See the comments on // `SelectionDAG::MorphNodeTo` which details what all goes on, but the // constraint here is that these don't manage memory with their constructor or // destructor and can be initialized to a good state even if they start off // uninitialized. PointerUnion MemRefs = {}; // Note that this could be folded into the above `MemRefs` member if doing so // is advantageous at some point. We don't need to store this in most cases. // However, at the moment this doesn't appear to make the allocation any // smaller and makes the code somewhat simpler to read. int NumMemRefs = 0; public: using mmo_iterator = ArrayRef::const_iterator; ArrayRef memoperands() const { // Special case the common cases. if (NumMemRefs == 0) return {}; if (NumMemRefs == 1) return makeArrayRef(MemRefs.getAddrOfPtr1(), 1); // Otherwise we have an actual array. return makeArrayRef(MemRefs.get(), NumMemRefs); } mmo_iterator memoperands_begin() const { return memoperands().begin(); } mmo_iterator memoperands_end() const { return memoperands().end(); } bool memoperands_empty() const { return memoperands().empty(); } /// Clear out the memory reference descriptor list. void clearMemRefs() { MemRefs = nullptr; NumMemRefs = 0; } static bool classof(const SDNode *N) { return N->isMachineOpcode(); } }; /// An SDNode that records if a register contains a value that is guaranteed to /// be aligned accordingly. class AssertAlignSDNode : public SDNode { Align Alignment; public: AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A) : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {} Align getAlign() const { return Alignment; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::AssertAlign; } }; class SDNodeIterator : public std::iterator { const SDNode *Node; unsigned Operand; SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {} public: bool operator==(const SDNodeIterator& x) const { return Operand == x.Operand; } bool operator!=(const SDNodeIterator& x) const { return !operator==(x); } pointer operator*() const { return Node->getOperand(Operand).getNode(); } pointer operator->() const { return operator*(); } SDNodeIterator& operator++() { // Preincrement ++Operand; return *this; } SDNodeIterator operator++(int) { // Postincrement SDNodeIterator tmp = *this; ++*this; return tmp; } size_t operator-(SDNodeIterator Other) const { assert(Node == Other.Node && "Cannot compare iterators of two different nodes!"); return Operand - Other.Operand; } static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); } static SDNodeIterator end (const SDNode *N) { return SDNodeIterator(N, N->getNumOperands()); } unsigned getOperand() const { return Operand; } const SDNode *getNode() const { return Node; } }; template <> struct GraphTraits { using NodeRef = SDNode *; using ChildIteratorType = SDNodeIterator; static NodeRef getEntryNode(SDNode *N) { return N; } static ChildIteratorType child_begin(NodeRef N) { return SDNodeIterator::begin(N); } static ChildIteratorType child_end(NodeRef N) { return SDNodeIterator::end(N); } }; /// A representation of the largest SDNode, for use in sizeof(). /// /// This needs to be a union because the largest node differs on 32 bit systems /// with 4 and 8 byte pointer alignment, respectively. using LargestSDNode = AlignedCharArrayUnion; /// The SDNode class with the greatest alignment requirement. using MostAlignedSDNode = GlobalAddressSDNode; namespace ISD { /// Returns true if the specified node is a non-extending and unindexed load. inline bool isNormalLoad(const SDNode *N) { const LoadSDNode *Ld = dyn_cast(N); return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD && Ld->getAddressingMode() == ISD::UNINDEXED; } /// Returns true if the specified node is a non-extending load. inline bool isNON_EXTLoad(const SDNode *N) { return isa(N) && cast(N)->getExtensionType() == ISD::NON_EXTLOAD; } /// Returns true if the specified node is a EXTLOAD. inline bool isEXTLoad(const SDNode *N) { return isa(N) && cast(N)->getExtensionType() == ISD::EXTLOAD; } /// Returns true if the specified node is a SEXTLOAD. inline bool isSEXTLoad(const SDNode *N) { return isa(N) && cast(N)->getExtensionType() == ISD::SEXTLOAD; } /// Returns true if the specified node is a ZEXTLOAD. inline bool isZEXTLoad(const SDNode *N) { return isa(N) && cast(N)->getExtensionType() == ISD::ZEXTLOAD; } /// Returns true if the specified node is an unindexed load. inline bool isUNINDEXEDLoad(const SDNode *N) { return isa(N) && cast(N)->getAddressingMode() == ISD::UNINDEXED; } /// Returns true if the specified node is a non-truncating /// and unindexed store. inline bool isNormalStore(const SDNode *N) { const StoreSDNode *St = dyn_cast(N); return St && !St->isTruncatingStore() && St->getAddressingMode() == ISD::UNINDEXED; } /// Returns true if the specified node is a non-truncating store. inline bool isNON_TRUNCStore(const SDNode *N) { return isa(N) && !cast(N)->isTruncatingStore(); } /// Returns true if the specified node is a truncating store. inline bool isTRUNCStore(const SDNode *N) { return isa(N) && cast(N)->isTruncatingStore(); } /// Returns true if the specified node is an unindexed store. inline bool isUNINDEXEDStore(const SDNode *N) { return isa(N) && cast(N)->getAddressingMode() == ISD::UNINDEXED; } /// Attempt to match a unary predicate against a scalar/splat constant or /// every element of a constant BUILD_VECTOR. /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match. bool matchUnaryPredicate(SDValue Op, std::function Match, bool AllowUndefs = false); /// Attempt to match a binary predicate against a pair of scalar/splat /// constants or every element of a pair of constant BUILD_VECTORs. /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match. /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match. bool matchBinaryPredicate( SDValue LHS, SDValue RHS, std::function Match, bool AllowUndefs = false, bool AllowTypeMismatch = false); /// Returns true if the specified value is the overflow result from one /// of the overflow intrinsic nodes. inline bool isOverflowIntrOpRes(SDValue Op) { unsigned Opc = Op.getOpcode(); return (Op.getResNo() == 1 && (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)); } } // end namespace ISD } // end namespace llvm #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H