//===- llvm/Bitcode/BitcodeWriter.h - Bitcode writers -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This header defines interfaces to write LLVM bitcode files/streams. // //===----------------------------------------------------------------------===// #ifndef LLVM_BITCODE_BITCODEWRITER_H #define LLVM_BITCODE_BITCODEWRITER_H #include "llvm/ADT/StringRef.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/MemoryBuffer.h" #include #include #include #include namespace llvm { class BitstreamWriter; class Module; class raw_ostream; class BitcodeWriter { SmallVectorImpl &Buffer; std::unique_ptr Stream; StringTableBuilder StrtabBuilder{StringTableBuilder::RAW}; // Owns any strings created by the irsymtab writer until we create the // string table. BumpPtrAllocator Alloc; bool WroteStrtab = false, WroteSymtab = false; void writeBlob(unsigned Block, unsigned Record, StringRef Blob); std::vector Mods; public: /// Create a BitcodeWriter that writes to Buffer. BitcodeWriter(SmallVectorImpl &Buffer, raw_fd_stream *FS = nullptr); ~BitcodeWriter(); /// Attempt to write a symbol table to the bitcode file. This must be called /// at most once after all modules have been written. /// /// A reader does not require a symbol table to interpret a bitcode file; /// the symbol table is needed only to improve link-time performance. So /// this function may decide not to write a symbol table. It may so decide /// if, for example, the target is unregistered or the IR is malformed. void writeSymtab(); /// Write the bitcode file's string table. This must be called exactly once /// after all modules and the optional symbol table have been written. void writeStrtab(); /// Copy the string table for another module into this bitcode file. This /// should be called after copying the module itself into the bitcode file. void copyStrtab(StringRef Strtab); /// Write the specified module to the buffer specified at construction time. /// /// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a /// Value in \c M. These will be reconstructed exactly when \a M is /// deserialized. /// /// If \c Index is supplied, the bitcode will contain the summary index /// (currently for use in ThinLTO optimization). /// /// \p GenerateHash enables hashing the Module and including the hash in the /// bitcode (currently for use in ThinLTO incremental build). /// /// If \p ModHash is non-null, when GenerateHash is true, the resulting /// hash is written into ModHash. When GenerateHash is false, that value /// is used as the hash instead of computing from the generated bitcode. /// Can be used to produce the same module hash for a minimized bitcode /// used just for the thin link as in the regular full bitcode that will /// be used in the backend. void writeModule(const Module &M, bool ShouldPreserveUseListOrder = false, const ModuleSummaryIndex *Index = nullptr, bool GenerateHash = false, ModuleHash *ModHash = nullptr); /// Write the specified thin link bitcode file (i.e., the minimized bitcode /// file) to the buffer specified at construction time. The thin link /// bitcode file is used for thin link, and it only contains the necessary /// information for thin link. /// /// ModHash is for use in ThinLTO incremental build, generated while the /// IR bitcode file writing. void writeThinLinkBitcode(const Module &M, const ModuleSummaryIndex &Index, const ModuleHash &ModHash); void writeIndex( const ModuleSummaryIndex *Index, const std::map *ModuleToSummariesForIndex); }; /// Write the specified module to the specified raw output stream. /// /// For streams where it matters, the given stream should be in "binary" /// mode. /// /// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a /// Value in \c M. These will be reconstructed exactly when \a M is /// deserialized. /// /// If \c Index is supplied, the bitcode will contain the summary index /// (currently for use in ThinLTO optimization). /// /// \p GenerateHash enables hashing the Module and including the hash in the /// bitcode (currently for use in ThinLTO incremental build). /// /// If \p ModHash is non-null, when GenerateHash is true, the resulting /// hash is written into ModHash. When GenerateHash is false, that value /// is used as the hash instead of computing from the generated bitcode. /// Can be used to produce the same module hash for a minimized bitcode /// used just for the thin link as in the regular full bitcode that will /// be used in the backend. void WriteBitcodeToFile(const Module &M, raw_ostream &Out, bool ShouldPreserveUseListOrder = false, const ModuleSummaryIndex *Index = nullptr, bool GenerateHash = false, ModuleHash *ModHash = nullptr); /// Write the specified thin link bitcode file (i.e., the minimized bitcode /// file) to the given raw output stream, where it will be written in a new /// bitcode block. The thin link bitcode file is used for thin link, and it /// only contains the necessary information for thin link. /// /// ModHash is for use in ThinLTO incremental build, generated while the IR /// bitcode file writing. void WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, const ModuleSummaryIndex &Index, const ModuleHash &ModHash); /// Write the specified module summary index to the given raw output stream, /// where it will be written in a new bitcode block. This is used when /// writing the combined index file for ThinLTO. When writing a subset of the /// index for a distributed backend, provide the \p ModuleToSummariesForIndex /// map. void WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out, const std::map *ModuleToSummariesForIndex = nullptr); /// If EmbedBitcode is set, save a copy of the llvm IR as data in the /// __LLVM,__bitcode section (.llvmbc on non-MacOS). /// If available, pass the serialized module via the Buf parameter. If not, /// pass an empty (default-initialized) MemoryBufferRef, and the serialization /// will be handled by this API. The same behavior happens if the provided Buf /// is not bitcode (i.e. if it's invalid data or even textual LLVM assembly). /// If EmbedCmdline is set, the command line is also exported in /// the corresponding section (__LLVM,_cmdline / .llvmcmd) - even if CmdArgs /// were empty. void EmbedBitcodeInModule(Module &M, MemoryBufferRef Buf, bool EmbedBitcode, bool EmbedCmdline, const std::vector &CmdArgs); } // end namespace llvm #endif // LLVM_BITCODE_BITCODEWRITER_H