// RUN: %clang_cc1 -std=c++2a -verify %s -DNEW=__builtin_operator_new -DDELETE=__builtin_operator_delete // RUN: %clang_cc1 -std=c++2a -verify %s "-DNEW=operator new" "-DDELETE=operator delete" // RUN: %clang_cc1 -std=c++2a -verify %s "-DNEW=::operator new" "-DDELETE=::operator delete" constexpr bool alloc_from_user_code() { void *p = NEW(sizeof(int)); // expected-note {{cannot allocate untyped memory in a constant expression; use 'std::allocator::allocate'}} DELETE(p); return true; } static_assert(alloc_from_user_code()); // expected-error {{constant expression}} expected-note {{in call}} namespace std { using size_t = decltype(sizeof(0)); // FIXME: It would be preferable to point these notes at the location of the call to allocator<...>::[de]allocate instead template struct allocator { constexpr T *allocate(size_t N) { return (T*)NEW(sizeof(T) * N); // expected-note 3{{heap allocation}} expected-note {{not deallocated}} } constexpr void deallocate(void *p) { DELETE(p); // expected-note 2{{'std::allocator<...>::deallocate' used to delete pointer to object allocated with 'new'}} } }; } constexpr bool alloc_via_std_allocator() { std::allocator alloc; int *p = alloc.allocate(1); alloc.deallocate(p); return true; } static_assert(alloc_via_std_allocator()); template<> struct std::allocator { constexpr void *allocate() { return NEW(8); } // expected-note {{cannot allocate memory of function type 'void ()'}} }; constexpr void *fn = std::allocator().allocate(); // expected-error {{constant expression}} expected-note {{in call}} struct Incomplete; template<> struct std::allocator { constexpr void *allocate() { return NEW(8); } // expected-note {{cannot allocate memory of incomplete type 'Incomplete'}} }; constexpr void *incomplete = std::allocator().allocate(); // expected-error {{constant expression}} expected-note {{in call}} struct WrongSize { char x[5]; }; static_assert(sizeof(WrongSize) == 5); template<> struct std::allocator { constexpr void *allocate() { return NEW(7); } // expected-note {{allocated size 7 is not a multiple of size 5 of element type 'WrongSize'}} }; constexpr void *wrong_size = std::allocator().allocate(); // expected-error {{constant expression}} expected-note {{in call}} constexpr bool mismatched(int alloc_kind, int dealloc_kind) { int *p; switch (alloc_kind) { case 0: p = new int; // expected-note {{heap allocation}} break; case 1: p = new int[1]; // expected-note {{heap allocation}} break; case 2: p = std::allocator().allocate(1); break; } switch (dealloc_kind) { case 0: delete p; // expected-note {{'delete' used to delete pointer to object allocated with 'std::allocator<...>::allocate'}} break; case 1: delete[] p; // expected-note {{'delete' used to delete pointer to object allocated with 'std::allocator<...>::allocate'}} break; case 2: std::allocator().deallocate(p); // expected-note 2{{in call}} break; } return true; } static_assert(mismatched(0, 2)); // expected-error {{constant expression}} expected-note {{in call}} static_assert(mismatched(1, 2)); // expected-error {{constant expression}} expected-note {{in call}} static_assert(mismatched(2, 0)); // expected-error {{constant expression}} expected-note {{in call}} static_assert(mismatched(2, 1)); // expected-error {{constant expression}} expected-note {{in call}} static_assert(mismatched(2, 2)); constexpr int *escape = std::allocator().allocate(3); // expected-error {{constant expression}} expected-note {{pointer to subobject of heap-allocated}} constexpr int leak = (std::allocator().allocate(3), 0); // expected-error {{constant expression}} constexpr int no_lifetime_start = (*std::allocator().allocate(1) = 1); // expected-error {{constant expression}} expected-note {{assignment to object outside its lifetime}} void *operator new(std::size_t, void *p) { return p; } constexpr bool no_placement_new_in_user_code() { // expected-error {{never produces a constant expression}} int a; new (&a) int(42); // expected-note {{call to placement 'operator new'}} return a == 42; } namespace std { constexpr bool placement_new_in_stdlib() { int a; new (&a) int(42); return a == 42; } } static_assert(std::placement_new_in_stdlib()); namespace std { template constexpr void construct_at(void *p, Args &&...args) { new (p) T((Args&&)args...); // #new } } constexpr bool call_std_construct_at() { int *p = std::allocator().allocate(3); std::construct_at(p, 1); std::construct_at(p + 1, 2); std::construct_at(p + 2, 3); bool good = p[0] + p[1] + p[2] == 6; std::allocator().deallocate(p); return good; } static_assert(call_std_construct_at()); constexpr bool bad_construct_at_type() { int a; // expected-note@#new {{placement new would change type of storage from 'int' to 'float'}} std::construct_at(&a, 1.0f); // expected-note {{in call}} return true; } static_assert(bad_construct_at_type()); // expected-error{{}} expected-note {{in call}} constexpr bool bad_construct_at_subobject() { struct X { int a, b; }; union A { int a; X x; }; A a = {1}; // expected-note@#new {{construction of subobject of member 'x' of union with active member 'a' is not allowed in a constant expression}} std::construct_at(&a.x.a, 1); // expected-note {{in call}} return true; } static_assert(bad_construct_at_subobject()); // expected-error{{}} expected-note {{in call}} constexpr bool change_union_member() { union U { int a; int b; }; U u = {.a = 1}; std::construct_at(&u.b, 2); return u.b == 2; } static_assert(change_union_member()); int external; // expected-note@#new {{visible outside}} static_assert((std::construct_at(&external, 1), true)); // expected-error{{}} expected-note {{in call}} constexpr int &&temporary = 0; // expected-note {{created here}} // expected-note@#new {{construction of temporary is not allowed in a constant expression outside the expression that created the temporary}} static_assert((std::construct_at(&temporary, 1), true)); // expected-error{{}} expected-note {{in call}} constexpr bool construct_after_lifetime() { int *p = new int; delete p; // expected-note@#new {{construction of heap allocated object that has been deleted}} std::construct_at(p); // expected-note {{in call}} return true; } static_assert(construct_after_lifetime()); // expected-error {{}} expected-note {{in call}} constexpr bool construct_after_lifetime_2() { struct A { struct B {} b; }; A a; a.~A(); std::construct_at(&a.b); // expected-note {{in call}} // expected-note@#new {{construction of subobject of object outside its lifetime is not allowed in a constant expression}} return true; } static_assert(construct_after_lifetime_2()); // expected-error {{}} expected-note {{in call}} namespace PR48606 { struct A { mutable int n = 0; }; constexpr bool f() { A a; A *p = &a; p->~A(); std::construct_at(p); return true; } static_assert(f()); constexpr bool g() { A *p = new A; p->~A(); std::construct_at(p); delete p; return true; } static_assert(g()); constexpr bool h() { std::allocator alloc; A *p = alloc.allocate(1); std::construct_at(p); p->~A(); std::construct_at(p); p->~A(); alloc.deallocate(p); return true; } static_assert(h()); }