// RUN: %clang_cc1 -triple x86_64-apple-darwin -fsyntax-only -Wconversion -std=c++11 -verify %s // RUN: not %clang_cc1 -triple x86_64-apple-darwin -fsyntax-only -Wconversion -std=c++11 %s 2>&1 | FileCheck %s #include typedef signed char int8_t; typedef signed short int16_t; typedef signed int int32_t; typedef signed long int64_t; typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; typedef unsigned long uint64_t; // namespace test0 { int32_t test1_positive(char *I, char *E) { return (E - I); // expected-warning {{implicit conversion loses integer precision}} } int32_t test1_negative(char *I, char *E) { return static_cast(E - I); } uint32_t test2_positive(uint64_t x) { return x; // expected-warning {{implicit conversion loses integer precision}} } uint32_t test2_negative(uint64_t x) { return (uint32_t) x; } } namespace test1 { uint64_t test1(int x, unsigned y) { return sizeof(x == y); } uint64_t test2(int x, unsigned y) { return __alignof(x == y); } void * const foo(); bool test2(void *p) { return p == foo(); } } namespace test2 { struct A { unsigned int x : 2; A() : x(10) {} // expected-warning {{implicit truncation from 'int' to bit-field changes value from 10 to 2}} }; } // This file tests -Wnull-conversion, a subcategory of -Wconversion // which is on by default. void test3() { int a = NULL; // expected-warning {{implicit conversion of NULL constant to 'int'}} int b; b = NULL; // expected-warning {{implicit conversion of NULL constant to 'int'}} long l = NULL; // FIXME: this should also warn, but currently does not if sizeof(NULL)==sizeof(inttype) int c = ((((NULL)))); // expected-warning {{implicit conversion of NULL constant to 'int'}} int d; d = ((((NULL)))); // expected-warning {{implicit conversion of NULL constant to 'int'}} bool bl = NULL; // expected-warning {{implicit conversion of NULL constant to 'bool'}} char ch = NULL; // expected-warning {{implicit conversion of NULL constant to 'char'}} unsigned char uch = NULL; // expected-warning {{implicit conversion of NULL constant to 'unsigned char'}} short sh = NULL; // expected-warning {{implicit conversion of NULL constant to 'short'}} double dbl = NULL; // expected-warning {{implicit conversion of NULL constant to 'double'}} // Use FileCheck to ensure we don't get any unnecessary macro-expansion notes // (that don't appear as 'real' notes & can't be seen/tested by -verify) // CHECK-NOT: note: // CHECK: note: expanded from macro 'FINIT' #define FINIT int a3 = NULL; FINIT // expected-warning {{implicit conversion of NULL constant to 'int'}} // we don't catch the case of #define FOO NULL ... int i = FOO; but that // seems a bit narrow anyway and avoiding that helps us skip other cases. int *ip = NULL; int (*fp)() = NULL; struct foo { int n; void func(); }; int foo::*datamem = NULL; int (foo::*funmem)() = NULL; } namespace test4 { // FIXME: We should warn for non-dependent args (only when the param type is also non-dependent) only once // not once for the template + once for every instantiation template void tmpl(char c = NULL, // expected-warning 3 {{implicit conversion of NULL constant to 'char'}} T a = NULL, // expected-warning {{implicit conversion of NULL constant to 'char'}} \ expected-warning {{implicit conversion of NULL constant to 'int'}} T b = 1024) { // expected-warning {{implicit conversion from 'int' to 'char' changes value from 1024 to 0}} } template void tmpl2(T t = NULL) { } void func() { tmpl(); // expected-note 2 {{in instantiation of default function argument expression for 'tmpl' required here}} tmpl(); // expected-note 2 {{in instantiation of default function argument expression for 'tmpl' required here}} tmpl(); tmpl2(); } } namespace test5 { template void func() { bool b = I; } template void func<3>(); } namespace test6 { decltype(nullptr) func() { return NULL; } } namespace test7 { bool fun() { bool x = nullptr; // expected-error {{cannot initialize}} if (nullptr) {} // expected-warning {{implicit conversion of nullptr constant to 'bool'}} return nullptr; // expected-error {{cannot initialize}} } } namespace test8 { #define NULL_COND(cond) ((cond) ? &num : NULL) #define NULL_WRAPPER NULL_COND(false) // don't warn on NULL conversion through the conditional operator across a // macro boundary void macro() { int num; bool b = NULL_COND(true); if (NULL_COND(true)) {} while (NULL_COND(true)) {} for (;NULL_COND(true);) {} do {} while (NULL_COND(true)); if (NULL_WRAPPER) {} while (NULL_WRAPPER) {} for (;NULL_WRAPPER;) {} do {} while (NULL_WRAPPER); } // Identical to the previous function except with a template argument. // This ensures that template instantiation does not introduce any new // warnings. template void template_and_macro() { int num; bool b = NULL_COND(true); if (NULL_COND(true)) {} while (NULL_COND(true)) {} for (;NULL_COND(true);) {} do {} while (NULL_COND(true)); if (NULL_WRAPPER) {} while (NULL_WRAPPER) {} for (;NULL_WRAPPER;) {} do {} while (NULL_WRAPPER); } // Identical to the previous function except the template argument affects // the conditional statement. template void template_and_macro2() { X num; bool b = NULL_COND(true); if (NULL_COND(true)) {} while (NULL_COND(true)) {} for (;NULL_COND(true);) {} do {} while (NULL_COND(true)); if (NULL_WRAPPER) {} while (NULL_WRAPPER) {} for (;NULL_WRAPPER;) {} do {} while (NULL_WRAPPER); } void run() { template_and_macro(); template_and_macro(); template_and_macro2(); template_and_macro2(); } } namespace test9 { typedef decltype(nullptr) nullptr_t; nullptr_t EXIT(); bool test() { return EXIT(); // expected-error {{cannot initialize}} } } // Test NULL macro inside a macro has same warnings nullptr inside a macro. namespace test10 { #define test1(cond) \ ((cond) ? nullptr : NULL) #define test2(cond) \ ((cond) ? NULL : nullptr) #define assert(cond) \ ((cond) ? foo() : bar()) void foo(); void bar(); void run(int x) { if (test1(x)) {} if (test2(x)) {} assert(test1(x)); assert(test2(x)); } } namespace test11 { #define assert11(expr) ((expr) ? 0 : 0) // The whitespace in macro run1 are important to trigger the macro being split // over multiple SLocEntry's. #define run1() (dostuff() ? \ NULL : NULL) #define run2() (dostuff() ? NULL : NULL) int dostuff (); void test(const char * content_type) { assert11(run1()); assert11(run2()); } } namespace test12 { #define x return NULL; bool run() { x // expected-warning{{}} } } // More tests with macros. Specficially, test function-like macros that either // have a pointer return type or take pointer arguments. Basically, if the // macro was changed into a function and Clang doesn't warn, then it shouldn't // warn for the macro either. namespace test13 { #define check_str_nullptr_13(str) ((str) ? str : nullptr) #define check_str_null_13(str) ((str) ? str : NULL) #define test13(condition) if (condition) return; #define identity13(arg) arg #define CHECK13(condition) test13(identity13(!(condition))) void function1(const char* str) { CHECK13(check_str_nullptr_13(str)); CHECK13(check_str_null_13(str)); } bool some_bool_function(bool); // expected-note {{no known conversion}} void function2() { CHECK13(some_bool_function(nullptr)); // expected-error {{no matching function}} CHECK13(some_bool_function(NULL)); // expected-warning {{implicit conversion of NULL constant to 'bool'}} } #define run_check_nullptr_13(str) \ if (check_str_nullptr_13(str)) return; #define run_check_null_13(str) \ if (check_str_null_13(str)) return; void function3(const char* str) { run_check_nullptr_13(str) run_check_null_13(str) if (check_str_nullptr_13(str)) return; if (check_str_null_13(str)) return; } void run(int* ptr); #define conditional_run_13(ptr) \ if (ptr) run(ptr); void function4() { conditional_run_13(nullptr); conditional_run_13(NULL); } }