// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s // rdar://13784901 struct S0 { int x; static const int test0 = __alignof__(x); // expected-error {{invalid application of 'alignof' to a field of a class still being defined}} static const int test1 = __alignof__(S0::x); // expected-error {{invalid application of 'alignof' to a field of a class still being defined}} auto test2() -> char(&)[__alignof__(x)]; // expected-error {{invalid application of 'alignof' to a field of a class still being defined}} }; struct S1; // expected-note 6 {{forward declaration}} extern S1 s1; const int test3 = __alignof__(s1); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}} struct S2 { S2(); S1 &s; int x; int test4 = __alignof__(x); // ok int test5 = __alignof__(s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}} }; const int test6 = __alignof__(S2::x); const int test7 = __alignof__(S2::s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}} // Arguably, these should fail like the S1 cases do: the alignment of // 's2.x' should depend on the alignment of both x-within-S2 and // s2-within-S3 and thus require 'S3' to be complete. If we start // doing the appropriate recursive walk to do that, we should make // sure that these cases don't explode. struct S3 { S2 s2; static const int test8 = __alignof__(s2.x); static const int test9 = __alignof__(s2.s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}} auto test10() -> char(&)[__alignof__(s2.x)]; static const int test11 = __alignof__(S3::s2.x); static const int test12 = __alignof__(S3::s2.s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}} auto test13() -> char(&)[__alignof__(s2.x)]; }; // Same reasoning as S3. struct S4 { union { int x; }; static const int test0 = __alignof__(x); static const int test1 = __alignof__(S0::x); auto test2() -> char(&)[__alignof__(x)]; }; // Regression test for asking for the alignment of a field within an invalid // record. struct S5 { S1 s; // expected-error {{incomplete type}} int x; }; const int test8 = __alignof__(S5::x); int test14[2]; static_assert(alignof(test14) == 4, "foo"); // expected-warning {{'alignof' applied to an expression is a GNU extension}} // PR19992 static_assert(alignof(int[]) == alignof(int), ""); // ok namespace alignof_array_expr { alignas(32) extern int n[]; static_assert(alignof(n) == 32, ""); // expected-warning {{GNU extension}} template struct S { static int a[]; }; template int S::a[N]; // ok, does not complete type of S<-1>::a static_assert(alignof(S<-1>::a) == alignof(int), ""); // expected-warning {{GNU extension}} } template void n(T) { alignas(T) int T1; char k[__alignof__(T1)]; static_assert(sizeof(k) == alignof(long long), ""); } template void n(long long); namespace PR22042 { template void Fun(T A) { typedef int __attribute__((__aligned__(A))) T1; // expected-error {{requested alignment is dependent but declaration is not dependent}} int k1[__alignof__(T1)]; } template struct S { typedef __attribute__((aligned(N))) int Field[sizeof(N)]; // expected-error {{requested alignment is dependent but declaration is not dependent}} }; } typedef int __attribute__((aligned(16))) aligned_int; template using template_alias = aligned_int; static_assert(alignof(template_alias) == 16, "Expected alignment of 16" ); struct PR47138 { invalid_type a; // expected-error {{unknown type}} }; static_assert(__alignof__(PR47138) == 1, ""); // Don't crash.