// RUN: %clang_cc1 -triple x86_64-apple-darwin -emit-llvm %s -o - 2>&1 | FileCheck %s // RUN: %clang_cc1 -DDYNAMIC -triple x86_64-apple-darwin -emit-llvm %s -o - 2>&1 | FileCheck %s #ifdef DYNAMIC #define OBJECT_SIZE_BUILTIN __builtin_dynamic_object_size #else #define OBJECT_SIZE_BUILTIN __builtin_object_size #endif #define NULL ((void *)0) int gi; typedef unsigned long size_t; // CHECK-DAG-RE: define void @my_malloc({{.*}}) #[[MALLOC_ATTR_NUMBER:[0-9]+]] // N.B. LLVM's allocsize arguments are base-0, whereas ours are base-1 (for // compat with GCC) // CHECK-DAG-RE: attributes #[[MALLOC_ATTR_NUMBER]] = {.*allocsize(0).*} void *my_malloc(size_t) __attribute__((alloc_size(1))); // CHECK-DAG-RE: define void @my_calloc({{.*}}) #[[CALLOC_ATTR_NUMBER:[0-9]+]] // CHECK-DAG-RE: attributes #[[CALLOC_ATTR_NUMBER]] = {.*allocsize(0, 1).*} void *my_calloc(size_t, size_t) __attribute__((alloc_size(1, 2))); // CHECK-LABEL: @test1 void test1() { void *const vp = my_malloc(100); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(vp, 0); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(vp, 1); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(vp, 2); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(vp, 3); void *const arr = my_calloc(100, 5); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(arr, 0); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(arr, 1); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(arr, 2); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(arr, 3); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 0); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 1); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 2); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 3); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 0); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 1); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 2); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 3); void *const zeroPtr = my_malloc(0); // CHECK: store i32 0 gi = OBJECT_SIZE_BUILTIN(zeroPtr, 0); // CHECK: store i32 0 gi = OBJECT_SIZE_BUILTIN(my_malloc(0), 0); void *const zeroArr1 = my_calloc(0, 1); void *const zeroArr2 = my_calloc(1, 0); // CHECK: store i32 0 gi = OBJECT_SIZE_BUILTIN(zeroArr1, 0); // CHECK: store i32 0 gi = OBJECT_SIZE_BUILTIN(zeroArr2, 0); // CHECK: store i32 0 gi = OBJECT_SIZE_BUILTIN(my_calloc(1, 0), 0); // CHECK: store i32 0 gi = OBJECT_SIZE_BUILTIN(my_calloc(0, 1), 0); } // CHECK-LABEL: @test2 void test2() { void *const vp = my_malloc(gi); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(vp, 0); void *const arr1 = my_calloc(gi, 1); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(arr1, 0); void *const arr2 = my_calloc(1, gi); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(arr2, 0); } // CHECK-LABEL: @test3 void test3() { char *const buf = (char *)my_calloc(100, 5); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(buf, 0); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(buf, 1); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(buf, 2); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(buf, 3); } struct Data { int a; int t[10]; char pad[3]; char end[1]; }; // CHECK-LABEL: @test5 void test5() { struct Data *const data = my_malloc(sizeof(*data)); // CHECK: store i32 48 gi = OBJECT_SIZE_BUILTIN(data, 0); // CHECK: store i32 48 gi = OBJECT_SIZE_BUILTIN(data, 1); // CHECK: store i32 48 gi = OBJECT_SIZE_BUILTIN(data, 2); // CHECK: store i32 48 gi = OBJECT_SIZE_BUILTIN(data, 3); // CHECK: store i32 40 gi = OBJECT_SIZE_BUILTIN(&data->t[1], 0); // CHECK: store i32 36 gi = OBJECT_SIZE_BUILTIN(&data->t[1], 1); // CHECK: store i32 40 gi = OBJECT_SIZE_BUILTIN(&data->t[1], 2); // CHECK: store i32 36 gi = OBJECT_SIZE_BUILTIN(&data->t[1], 3); struct Data *const arr = my_calloc(sizeof(*data), 2); // CHECK: store i32 96 gi = OBJECT_SIZE_BUILTIN(arr, 0); // CHECK: store i32 96 gi = OBJECT_SIZE_BUILTIN(arr, 1); // CHECK: store i32 96 gi = OBJECT_SIZE_BUILTIN(arr, 2); // CHECK: store i32 96 gi = OBJECT_SIZE_BUILTIN(arr, 3); // CHECK: store i32 88 gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 0); // CHECK: store i32 36 gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 1); // CHECK: store i32 88 gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 2); // CHECK: store i32 36 gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 3); } // CHECK-LABEL: @test6 void test6() { // Things that would normally trigger conservative estimates don't need to do // so when we know the source of the allocation. struct Data *const data = my_malloc(sizeof(*data) + 10); // CHECK: store i32 11 gi = OBJECT_SIZE_BUILTIN(data->end, 0); // CHECK: store i32 11 gi = OBJECT_SIZE_BUILTIN(data->end, 1); // CHECK: store i32 11 gi = OBJECT_SIZE_BUILTIN(data->end, 2); // CHECK: store i32 11 gi = OBJECT_SIZE_BUILTIN(data->end, 3); struct Data *const arr = my_calloc(sizeof(*arr) + 5, 3); // AFAICT, GCC treats malloc and calloc identically. So, we should do the // same. // // Additionally, GCC ignores the initial array index when determining whether // we're writing off the end of an alloc_size base. e.g. // arr[0].end // arr[1].end // arr[2].end // ...Are all considered "writing off the end", because there's no way to tell // with high accuracy if the user meant "allocate a single N-byte `Data`", // or "allocate M smaller `Data`s with extra padding". // CHECK: store i32 112 gi = OBJECT_SIZE_BUILTIN(arr->end, 0); // CHECK: store i32 112 gi = OBJECT_SIZE_BUILTIN(arr->end, 1); // CHECK: store i32 112 gi = OBJECT_SIZE_BUILTIN(arr->end, 2); // CHECK: store i32 112 gi = OBJECT_SIZE_BUILTIN(arr->end, 3); // CHECK: store i32 112 gi = OBJECT_SIZE_BUILTIN(arr[0].end, 0); // CHECK: store i32 112 gi = OBJECT_SIZE_BUILTIN(arr[0].end, 1); // CHECK: store i32 112 gi = OBJECT_SIZE_BUILTIN(arr[0].end, 2); // CHECK: store i32 112 gi = OBJECT_SIZE_BUILTIN(arr[0].end, 3); // CHECK: store i32 64 gi = OBJECT_SIZE_BUILTIN(arr[1].end, 0); // CHECK: store i32 64 gi = OBJECT_SIZE_BUILTIN(arr[1].end, 1); // CHECK: store i32 64 gi = OBJECT_SIZE_BUILTIN(arr[1].end, 2); // CHECK: store i32 64 gi = OBJECT_SIZE_BUILTIN(arr[1].end, 3); // CHECK: store i32 16 gi = OBJECT_SIZE_BUILTIN(arr[2].end, 0); // CHECK: store i32 16 gi = OBJECT_SIZE_BUILTIN(arr[2].end, 1); // CHECK: store i32 16 gi = OBJECT_SIZE_BUILTIN(arr[2].end, 2); // CHECK: store i32 16 gi = OBJECT_SIZE_BUILTIN(arr[2].end, 3); } // CHECK-LABEL: @test7 void test7() { struct Data *const data = my_malloc(sizeof(*data) + 5); // CHECK: store i32 9 gi = OBJECT_SIZE_BUILTIN(data->pad, 0); // CHECK: store i32 3 gi = OBJECT_SIZE_BUILTIN(data->pad, 1); // CHECK: store i32 9 gi = OBJECT_SIZE_BUILTIN(data->pad, 2); // CHECK: store i32 3 gi = OBJECT_SIZE_BUILTIN(data->pad, 3); } // CHECK-LABEL: @test8 void test8() { // Non-const pointers aren't currently supported. void *buf = my_calloc(100, 5); // CHECK: @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false, i1 true, i1 gi = OBJECT_SIZE_BUILTIN(buf, 0); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(buf, 1); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(buf, 2); // CHECK: store i32 0 gi = OBJECT_SIZE_BUILTIN(buf, 3); } // CHECK-LABEL: @test9 void test9() { // Check to be sure that we unwrap things correctly. short *const buf0 = (my_malloc(100)); short *const buf1 = (short*)(my_malloc(100)); short *const buf2 = ((short*)(my_malloc(100))); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(buf0, 0); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(buf1, 0); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(buf2, 0); } // CHECK-LABEL: @test10 void test10() { // Yay overflow short *const arr = my_calloc((size_t)-1 / 2 + 1, 2); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(arr, 0); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(arr, 1); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(arr, 2); // CHECK: store i32 0 gi = OBJECT_SIZE_BUILTIN(arr, 3); // As an implementation detail, CharUnits can't handle numbers greater than or // equal to 2**63. Realistically, this shouldn't be a problem, but we should // be sure we don't emit crazy results for this case. short *const buf = my_malloc((size_t)-1); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(buf, 0); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(buf, 1); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(buf, 2); // CHECK: store i32 0 gi = OBJECT_SIZE_BUILTIN(buf, 3); short *const arr_big = my_calloc((size_t)-1 / 2 - 1, 2); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(arr_big, 0); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(arr_big, 1); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(arr_big, 2); // CHECK: store i32 0 gi = OBJECT_SIZE_BUILTIN(arr_big, 3); } void *my_tiny_malloc(char) __attribute__((alloc_size(1))); void *my_tiny_calloc(char, char) __attribute__((alloc_size(1, 2))); // CHECK-LABEL: @test11 void test11() { void *const vp = my_tiny_malloc(100); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(vp, 0); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(vp, 1); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(vp, 2); // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(vp, 3); // N.B. This causes char overflow, but not size_t overflow, so it should be // supported. void *const arr = my_tiny_calloc(100, 5); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(arr, 0); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(arr, 1); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(arr, 2); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(arr, 3); } void *my_signed_malloc(long) __attribute__((alloc_size(1))); void *my_signed_calloc(long, long) __attribute__((alloc_size(1, 2))); // CHECK-LABEL: @test12 void test12() { // CHECK: store i32 100 gi = OBJECT_SIZE_BUILTIN(my_signed_malloc(100), 0); // CHECK: store i32 500 gi = OBJECT_SIZE_BUILTIN(my_signed_calloc(100, 5), 0); void *const vp = my_signed_malloc(-2); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(vp, 0); // N.B. These get lowered to -1 because the function calls may have // side-effects, and we can't determine the objectsize. // CHECK: store i32 -1 gi = OBJECT_SIZE_BUILTIN(my_signed_malloc(-2), 0); void *const arr1 = my_signed_calloc(-2, 1); void *const arr2 = my_signed_calloc(1, -2); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(arr1, 0); // CHECK: @llvm.objectsize gi = OBJECT_SIZE_BUILTIN(arr2, 0); // CHECK: store i32 -1 gi = OBJECT_SIZE_BUILTIN(my_signed_calloc(1, -2), 0); // CHECK: store i32 -1 gi = OBJECT_SIZE_BUILTIN(my_signed_calloc(-2, 1), 0); } void *alloc_uchar(unsigned char) __attribute__((alloc_size(1))); // CHECK-LABEL: @test13 void test13() { // If 128 were incorrectly seen as negative, the result would become -1. // CHECK: store i32 128, gi = OBJECT_SIZE_BUILTIN(alloc_uchar(128), 0); }