// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d -emit-llvm %s -o - \ // RUN: | FileCheck %s #include // Verify that the tracking of used GPRs and FPRs works correctly by checking // that small integers are sign/zero extended when passed in registers. // Doubles are passed in FPRs, so argument 'i' will be passed zero-extended // because it will be passed in a GPR. // CHECK: define{{.*}} void @f_fpr_tracking(double %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, i8 zeroext %i) void f_fpr_tracking(double a, double b, double c, double d, double e, double f, double g, double h, uint8_t i) {} // Check that fp, fp+fp, and int+fp structs are lowered correctly. These will // be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are // available the widths are <= XLEN and FLEN, and should be expanded to // separate arguments in IR. They are passed by the same rules for returns, // but will be lowered to simple two-element structs if necessary (as LLVM IR // functions cannot return multiple values). // A struct containing just one floating-point real is passed as though it // were a standalone floating-point real. struct double_s { double f; }; // CHECK: define{{.*}} void @f_double_s_arg(double %0) void f_double_s_arg(struct double_s a) {} // CHECK: define{{.*}} double @f_ret_double_s() struct double_s f_ret_double_s() { return (struct double_s){1.0}; } // A struct containing a double and any number of zero-width bitfields is // passed as though it were a standalone floating-point real. struct zbf_double_s { int : 0; double f; }; struct zbf_double_zbf_s { int : 0; double f; int : 0; }; // CHECK: define{{.*}} void @f_zbf_double_s_arg(double %0) void f_zbf_double_s_arg(struct zbf_double_s a) {} // CHECK: define{{.*}} double @f_ret_zbf_double_s() struct zbf_double_s f_ret_zbf_double_s() { return (struct zbf_double_s){1.0}; } // CHECK: define{{.*}} void @f_zbf_double_zbf_s_arg(double %0) void f_zbf_double_zbf_s_arg(struct zbf_double_zbf_s a) {} // CHECK: define{{.*}} double @f_ret_zbf_double_zbf_s() struct zbf_double_zbf_s f_ret_zbf_double_zbf_s() { return (struct zbf_double_zbf_s){1.0}; } // Check that structs containing two floating point values (FLEN <= width) are // expanded provided sufficient FPRs are available. struct double_double_s { double f; double g; }; struct double_float_s { double f; float g; }; // CHECK: define{{.*}} void @f_double_double_s_arg(double %0, double %1) void f_double_double_s_arg(struct double_double_s a) {} // CHECK: define{{.*}} { double, double } @f_ret_double_double_s() struct double_double_s f_ret_double_double_s() { return (struct double_double_s){1.0, 2.0}; } // CHECK: define{{.*}} void @f_double_float_s_arg(double %0, float %1) void f_double_float_s_arg(struct double_float_s a) {} // CHECK: define{{.*}} { double, float } @f_ret_double_float_s() struct double_float_s f_ret_double_float_s() { return (struct double_float_s){1.0, 2.0}; } // CHECK: define{{.*}} void @f_double_double_s_arg_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, %struct.double_double_s* %h) void f_double_double_s_arg_insufficient_fprs(float a, double b, double c, double d, double e, double f, double g, struct double_double_s h) {} // Check that structs containing int+double values are expanded, provided // sufficient FPRs and GPRs are available. The integer components are neither // sign or zero-extended. struct double_int8_s { double f; int8_t i; }; struct double_uint8_s { double f; uint8_t i; }; struct double_int32_s { double f; int32_t i; }; struct double_int64_s { double f; int64_t i; }; struct double_int64bf_s { double f; int64_t i : 32; }; struct double_int8_zbf_s { double f; int8_t i; int : 0; }; // CHECK: define{{.*}} void @f_double_int8_s_arg(double %0, i8 %1) void f_double_int8_s_arg(struct double_int8_s a) {} // CHECK: define{{.*}} { double, i8 } @f_ret_double_int8_s() struct double_int8_s f_ret_double_int8_s() { return (struct double_int8_s){1.0, 2}; } // CHECK: define{{.*}} void @f_double_uint8_s_arg(double %0, i8 %1) void f_double_uint8_s_arg(struct double_uint8_s a) {} // CHECK: define{{.*}} { double, i8 } @f_ret_double_uint8_s() struct double_uint8_s f_ret_double_uint8_s() { return (struct double_uint8_s){1.0, 2}; } // CHECK: define{{.*}} void @f_double_int32_s_arg(double %0, i32 %1) void f_double_int32_s_arg(struct double_int32_s a) {} // CHECK: define{{.*}} { double, i32 } @f_ret_double_int32_s() struct double_int32_s f_ret_double_int32_s() { return (struct double_int32_s){1.0, 2}; } // CHECK: define{{.*}} void @f_double_int64_s_arg(%struct.double_int64_s* %a) void f_double_int64_s_arg(struct double_int64_s a) {} // CHECK: define{{.*}} void @f_ret_double_int64_s(%struct.double_int64_s* noalias sret(%struct.double_int64_s) align 8 %agg.result) struct double_int64_s f_ret_double_int64_s() { return (struct double_int64_s){1.0, 2}; } // CHECK: define{{.*}} void @f_double_int64bf_s_arg(double %0, i32 %1) void f_double_int64bf_s_arg(struct double_int64bf_s a) {} // CHECK: define{{.*}} { double, i32 } @f_ret_double_int64bf_s() struct double_int64bf_s f_ret_double_int64bf_s() { return (struct double_int64bf_s){1.0, 2}; } // The zero-width bitfield means the struct can't be passed according to the // floating point calling convention. // CHECK: define{{.*}} void @f_double_int8_zbf_s(double %0, i8 %1) void f_double_int8_zbf_s(struct double_int8_zbf_s a) {} // CHECK: define{{.*}} { double, i8 } @f_ret_double_int8_zbf_s() struct double_int8_zbf_s f_ret_double_int8_zbf_s() { return (struct double_int8_zbf_s){1.0, 2}; } // CHECK: define{{.*}} void @f_double_int8_s_arg_insufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h, %struct.double_int8_s* %i) void f_double_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int e, int f, int g, int h, struct double_int8_s i) {} // CHECK: define{{.*}} void @f_struct_double_int8_insufficient_fprs(float %a, double %b, double %c, double %d, double %e, double %f, double %g, double %h, %struct.double_int8_s* %i) void f_struct_double_int8_insufficient_fprs(float a, double b, double c, double d, double e, double f, double g, double h, struct double_int8_s i) {} // Complex floating-point values or structs containing a single complex // floating-point value should be passed as if it were an fp+fp struct. // CHECK: define{{.*}} void @f_doublecomplex(double %a.coerce0, double %a.coerce1) void f_doublecomplex(double __complex__ a) {} // CHECK: define{{.*}} { double, double } @f_ret_doublecomplex() double __complex__ f_ret_doublecomplex() { return 1.0; } struct doublecomplex_s { double __complex__ c; }; // CHECK: define{{.*}} void @f_doublecomplex_s_arg(double %0, double %1) void f_doublecomplex_s_arg(struct doublecomplex_s a) {} // CHECK: define{{.*}} { double, double } @f_ret_doublecomplex_s() struct doublecomplex_s f_ret_doublecomplex_s() { return (struct doublecomplex_s){1.0}; } // Test single or two-element structs that need flattening. e.g. those // containing nested structs, doubles in small arrays, zero-length structs etc. struct doublearr1_s { double a[1]; }; // CHECK: define{{.*}} void @f_doublearr1_s_arg(double %0) void f_doublearr1_s_arg(struct doublearr1_s a) {} // CHECK: define{{.*}} double @f_ret_doublearr1_s() struct doublearr1_s f_ret_doublearr1_s() { return (struct doublearr1_s){{1.0}}; } struct doublearr2_s { double a[2]; }; // CHECK: define{{.*}} void @f_doublearr2_s_arg(double %0, double %1) void f_doublearr2_s_arg(struct doublearr2_s a) {} // CHECK: define{{.*}} { double, double } @f_ret_doublearr2_s() struct doublearr2_s f_ret_doublearr2_s() { return (struct doublearr2_s){{1.0, 2.0}}; } struct doublearr2_tricky1_s { struct { double f[1]; } g[2]; }; // CHECK: define{{.*}} void @f_doublearr2_tricky1_s_arg(double %0, double %1) void f_doublearr2_tricky1_s_arg(struct doublearr2_tricky1_s a) {} // CHECK: define{{.*}} { double, double } @f_ret_doublearr2_tricky1_s() struct doublearr2_tricky1_s f_ret_doublearr2_tricky1_s() { return (struct doublearr2_tricky1_s){{{{1.0}}, {{2.0}}}}; } struct doublearr2_tricky2_s { struct {}; struct { double f[1]; } g[2]; }; // CHECK: define{{.*}} void @f_doublearr2_tricky2_s_arg(double %0, double %1) void f_doublearr2_tricky2_s_arg(struct doublearr2_tricky2_s a) {} // CHECK: define{{.*}} { double, double } @f_ret_doublearr2_tricky2_s() struct doublearr2_tricky2_s f_ret_doublearr2_tricky2_s() { return (struct doublearr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}}; } struct doublearr2_tricky3_s { union {}; struct { double f[1]; } g[2]; }; // CHECK: define{{.*}} void @f_doublearr2_tricky3_s_arg(double %0, double %1) void f_doublearr2_tricky3_s_arg(struct doublearr2_tricky3_s a) {} // CHECK: define{{.*}} { double, double } @f_ret_doublearr2_tricky3_s() struct doublearr2_tricky3_s f_ret_doublearr2_tricky3_s() { return (struct doublearr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}}; } struct doublearr2_tricky4_s { union {}; struct { struct {}; double f[1]; } g[2]; }; // CHECK: define{{.*}} void @f_doublearr2_tricky4_s_arg(double %0, double %1) void f_doublearr2_tricky4_s_arg(struct doublearr2_tricky4_s a) {} // CHECK: define{{.*}} { double, double } @f_ret_doublearr2_tricky4_s() struct doublearr2_tricky4_s f_ret_doublearr2_tricky4_s() { return (struct doublearr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}}; } // Test structs that should be passed according to the normal integer calling // convention. struct int_double_int_s { int a; double b; int c; }; // CHECK: define{{.*}} void @f_int_double_int_s_arg(%struct.int_double_int_s* %a) void f_int_double_int_s_arg(struct int_double_int_s a) {} // CHECK: define{{.*}} void @f_ret_int_double_int_s(%struct.int_double_int_s* noalias sret(%struct.int_double_int_s) align 8 %agg.result) struct int_double_int_s f_ret_int_double_int_s() { return (struct int_double_int_s){1, 2.0, 3}; } struct int64_double_s { int64_t a; double b; }; // CHECK: define{{.*}} void @f_int64_double_s_arg(%struct.int64_double_s* %a) void f_int64_double_s_arg(struct int64_double_s a) {} // CHECK: define{{.*}} void @f_ret_int64_double_s(%struct.int64_double_s* noalias sret(%struct.int64_double_s) align 8 %agg.result) struct int64_double_s f_ret_int64_double_s() { return (struct int64_double_s){1, 2.0}; } struct char_char_double_s { char a; char b; double c; }; // CHECK-LABEL: define{{.*}} void @f_char_char_double_s_arg(%struct.char_char_double_s* %a) void f_char_char_double_s_arg(struct char_char_double_s a) {} // CHECK: define{{.*}} void @f_ret_char_char_double_s(%struct.char_char_double_s* noalias sret(%struct.char_char_double_s) align 8 %agg.result) struct char_char_double_s f_ret_char_char_double_s() { return (struct char_char_double_s){1, 2, 3.0}; } // Unions are always passed according to the integer calling convention, even // if they can only contain a double. union double_u { double a; }; // CHECK: define{{.*}} void @f_double_u_arg(i64 %a.coerce) void f_double_u_arg(union double_u a) {} // CHECK: define{{.*}} i64 @f_ret_double_u() union double_u f_ret_double_u() { return (union double_u){1.0}; } // Test that we don't incorrectly think double+int/double+double structs will // be returned indirectly and thus have an off-by-one error for the number of // GPRs available (this is an edge case when structs > 2*XLEN are still // returned in registers). This includes complex doubles, which are treated as // double+double structs by the ABI. // CHECK: define{{.*}} { double, i32 } @f_ret_double_int32_s_double_int32_s_just_sufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, double %0, i32 %1) struct double_int32_s f_ret_double_int32_s_double_int32_s_just_sufficient_gprs( int a, int b, int c, int d, int e, int f, int g, struct double_int32_s h) { return (struct double_int32_s){1.0, 2}; } // CHECK: define{{.*}} { double, double } @f_ret_double_double_s_double_int32_s_just_sufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, double %0, i32 %1) struct double_double_s f_ret_double_double_s_double_int32_s_just_sufficient_gprs( int a, int b, int c, int d, int e, int f, int g, struct double_int32_s h) { return (struct double_double_s){1.0, 2.0}; } // CHECK: define{{.*}} { double, double } @f_ret_doublecomplex_double_int32_s_just_sufficient_gprs(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, double %0, i32 %1) double __complex__ f_ret_doublecomplex_double_int32_s_just_sufficient_gprs( int a, int b, int c, int d, int e, int f, int g, struct double_int32_s h) { return 1.0; }