// RUN: %clang_cc1 -std=c++11 -verify %s // RUN: %clang_cc1 -std=c++2a -verify %s struct Q { typedef int type; }; // "The substitution occurs in all types and expressions that are used in [...] // template parameter declarations." In particular, we must substitute into the // type of a parameter pack that is not a pack expansion, even if we know the // corresponding argument pack is empty. template void a(T); int &a(...); int &a_disabled = a(0); int &a_enabled = a(Q()); // expected-error {{cannot bind to a temporary of type 'void'}} template class ...X> void b(T); int &b(...); int &b_disabled = b(0); int &b_enabled = b(Q()); // expected-error {{cannot bind to a temporary of type 'void'}} template class ...X> void c(T); int &c(...); int &c_disabled = c(0); int &c_enabled = c(Q()); // expected-error {{cannot bind to a temporary of type 'void'}} // The substitution proceeds in lexical order and stops when a condition that // causes deduction to fail is encountered. #if __cplusplus > 201702L namespace reversed_operator_substitution_order { struct X { X(int); }; struct Y { Y(int); }; struct Cat {}; namespace no_adl { Cat operator<=>(Y, X); bool operator<(int, Cat); template struct indirect_sizeof { static_assert(sizeof(T) != 0); static const auto value = sizeof(T); }; // We should substitute into the construction of the X object before the // construction of the Y object, so this is a SFINAE case rather than a // hard error. This requires substitution to proceed in lexical order // despite the prior rewrite to // 0 < (Y(...) <=> X(...)) template float &f( decltype( X(sizeof(T)) < Y(indirect_sizeof::value) ) ); template int &f(...); } int &r = no_adl::f(true); float &s = no_adl::f(true); } #endif