//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file implements semantic analysis for CUDA constructs. /// //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/ExprCXX.h" #include "clang/Basic/Cuda.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/Sema.h" #include "clang/Sema/SemaDiagnostic.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Template.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" using namespace clang; void Sema::PushForceCUDAHostDevice() { assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); ForceCUDAHostDeviceDepth++; } bool Sema::PopForceCUDAHostDevice() { assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); if (ForceCUDAHostDeviceDepth == 0) return false; ForceCUDAHostDeviceDepth--; return true; } ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, MultiExprArg ExecConfig, SourceLocation GGGLoc) { FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl(); if (!ConfigDecl) return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use) << getCudaConfigureFuncName()); QualType ConfigQTy = ConfigDecl->getType(); DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc); MarkFunctionReferenced(LLLLoc, ConfigDecl); return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr, /*IsExecConfig=*/true); } Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) { bool HasHostAttr = false; bool HasDeviceAttr = false; bool HasGlobalAttr = false; bool HasInvalidTargetAttr = false; for (const ParsedAttr &AL : Attrs) { switch (AL.getKind()) { case ParsedAttr::AT_CUDAGlobal: HasGlobalAttr = true; break; case ParsedAttr::AT_CUDAHost: HasHostAttr = true; break; case ParsedAttr::AT_CUDADevice: HasDeviceAttr = true; break; case ParsedAttr::AT_CUDAInvalidTarget: HasInvalidTargetAttr = true; break; default: break; } } if (HasInvalidTargetAttr) return CFT_InvalidTarget; if (HasGlobalAttr) return CFT_Global; if (HasHostAttr && HasDeviceAttr) return CFT_HostDevice; if (HasDeviceAttr) return CFT_Device; return CFT_Host; } template static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) { return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) { return isa(Attribute) && !(IgnoreImplicitAttr && Attribute->isImplicit()); }); } /// IdentifyCUDATarget - Determine the CUDA compilation target for this function Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D, bool IgnoreImplicitHDAttr) { // Code that lives outside a function is run on the host. if (D == nullptr) return CFT_Host; if (D->hasAttr()) return CFT_InvalidTarget; if (D->hasAttr()) return CFT_Global; if (hasAttr(D, IgnoreImplicitHDAttr)) { if (hasAttr(D, IgnoreImplicitHDAttr)) return CFT_HostDevice; return CFT_Device; } else if (hasAttr(D, IgnoreImplicitHDAttr)) { return CFT_Host; } else if ((D->isImplicit() || !D->isUserProvided()) && !IgnoreImplicitHDAttr) { // Some implicit declarations (like intrinsic functions) are not marked. // Set the most lenient target on them for maximal flexibility. return CFT_HostDevice; } return CFT_Host; } // * CUDA Call preference table // // F - from, // T - to // Ph - preference in host mode // Pd - preference in device mode // H - handled in (x) // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never. // // | F | T | Ph | Pd | H | // |----+----+-----+-----+-----+ // | d | d | N | N | (c) | // | d | g | -- | -- | (a) | // | d | h | -- | -- | (e) | // | d | hd | HD | HD | (b) | // | g | d | N | N | (c) | // | g | g | -- | -- | (a) | // | g | h | -- | -- | (e) | // | g | hd | HD | HD | (b) | // | h | d | -- | -- | (e) | // | h | g | N | N | (c) | // | h | h | N | N | (c) | // | h | hd | HD | HD | (b) | // | hd | d | WS | SS | (d) | // | hd | g | SS | -- |(d/a)| // | hd | h | SS | WS | (d) | // | hd | hd | HD | HD | (b) | Sema::CUDAFunctionPreference Sema::IdentifyCUDAPreference(const FunctionDecl *Caller, const FunctionDecl *Callee) { assert(Callee && "Callee must be valid."); CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller); CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee); // If one of the targets is invalid, the check always fails, no matter what // the other target is. if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget) return CFP_Never; // (a) Can't call global from some contexts until we support CUDA's // dynamic parallelism. if (CalleeTarget == CFT_Global && (CallerTarget == CFT_Global || CallerTarget == CFT_Device)) return CFP_Never; // (b) Calling HostDevice is OK for everyone. if (CalleeTarget == CFT_HostDevice) return CFP_HostDevice; // (c) Best case scenarios if (CalleeTarget == CallerTarget || (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) || (CallerTarget == CFT_Global && CalleeTarget == CFT_Device)) return CFP_Native; // (d) HostDevice behavior depends on compilation mode. if (CallerTarget == CFT_HostDevice) { // It's OK to call a compilation-mode matching function from an HD one. if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) || (!getLangOpts().CUDAIsDevice && (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))) return CFP_SameSide; // Calls from HD to non-mode-matching functions (i.e., to host functions // when compiling in device mode or to device functions when compiling in // host mode) are allowed at the sema level, but eventually rejected if // they're ever codegened. TODO: Reject said calls earlier. return CFP_WrongSide; } // (e) Calling across device/host boundary is not something you should do. if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) || (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) || (CallerTarget == CFT_Global && CalleeTarget == CFT_Host)) return CFP_Never; llvm_unreachable("All cases should've been handled by now."); } template static bool hasImplicitAttr(const FunctionDecl *D) { if (!D) return false; if (auto *A = D->getAttr()) return A->isImplicit(); return D->isImplicit(); } bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl *D) { bool IsImplicitDevAttr = hasImplicitAttr(D); bool IsImplicitHostAttr = hasImplicitAttr(D); return IsImplicitDevAttr && IsImplicitHostAttr; } void Sema::EraseUnwantedCUDAMatches( const FunctionDecl *Caller, SmallVectorImpl> &Matches) { if (Matches.size() <= 1) return; using Pair = std::pair; // Gets the CUDA function preference for a call from Caller to Match. auto GetCFP = [&](const Pair &Match) { return IdentifyCUDAPreference(Caller, Match.second); }; // Find the best call preference among the functions in Matches. CUDAFunctionPreference BestCFP = GetCFP(*std::max_element( Matches.begin(), Matches.end(), [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); })); // Erase all functions with lower priority. llvm::erase_if(Matches, [&](const Pair &Match) { return GetCFP(Match) < BestCFP; }); } /// When an implicitly-declared special member has to invoke more than one /// base/field special member, conflicts may occur in the targets of these /// members. For example, if one base's member __host__ and another's is /// __device__, it's a conflict. /// This function figures out if the given targets \param Target1 and /// \param Target2 conflict, and if they do not it fills in /// \param ResolvedTarget with a target that resolves for both calls. /// \return true if there's a conflict, false otherwise. static bool resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1, Sema::CUDAFunctionTarget Target2, Sema::CUDAFunctionTarget *ResolvedTarget) { // Only free functions and static member functions may be global. assert(Target1 != Sema::CFT_Global); assert(Target2 != Sema::CFT_Global); if (Target1 == Sema::CFT_HostDevice) { *ResolvedTarget = Target2; } else if (Target2 == Sema::CFT_HostDevice) { *ResolvedTarget = Target1; } else if (Target1 != Target2) { return true; } else { *ResolvedTarget = Target1; } return false; } bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl, CXXSpecialMember CSM, CXXMethodDecl *MemberDecl, bool ConstRHS, bool Diagnose) { // If the defaulted special member is defined lexically outside of its // owning class, or the special member already has explicit device or host // attributes, do not infer. bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent(); bool HasH = MemberDecl->hasAttr(); bool HasD = MemberDecl->hasAttr(); bool HasExplicitAttr = (HasD && !MemberDecl->getAttr()->isImplicit()) || (HasH && !MemberDecl->getAttr()->isImplicit()); if (!InClass || HasExplicitAttr) return false; llvm::Optional InferredTarget; // We're going to invoke special member lookup; mark that these special // members are called from this one, and not from its caller. ContextRAII MethodContext(*this, MemberDecl); // Look for special members in base classes that should be invoked from here. // Infer the target of this member base on the ones it should call. // Skip direct and indirect virtual bases for abstract classes. llvm::SmallVector Bases; for (const auto &B : ClassDecl->bases()) { if (!B.isVirtual()) { Bases.push_back(&B); } } if (!ClassDecl->isAbstract()) { for (const auto &VB : ClassDecl->vbases()) { Bases.push_back(&VB); } } for (const auto *B : Bases) { const RecordType *BaseType = B->getType()->getAs(); if (!BaseType) { continue; } CXXRecordDecl *BaseClassDecl = cast(BaseType->getDecl()); Sema::SpecialMemberOverloadResult SMOR = LookupSpecialMember(BaseClassDecl, CSM, /* ConstArg */ ConstRHS, /* VolatileArg */ false, /* RValueThis */ false, /* ConstThis */ false, /* VolatileThis */ false); if (!SMOR.getMethod()) continue; CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod()); if (!InferredTarget.hasValue()) { InferredTarget = BaseMethodTarget; } else { bool ResolutionError = resolveCalleeCUDATargetConflict( InferredTarget.getValue(), BaseMethodTarget, InferredTarget.getPointer()); if (ResolutionError) { if (Diagnose) { Diag(ClassDecl->getLocation(), diag::note_implicit_member_target_infer_collision) << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget; } MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); return true; } } } // Same as for bases, but now for special members of fields. for (const auto *F : ClassDecl->fields()) { if (F->isInvalidDecl()) { continue; } const RecordType *FieldType = Context.getBaseElementType(F->getType())->getAs(); if (!FieldType) { continue; } CXXRecordDecl *FieldRecDecl = cast(FieldType->getDecl()); Sema::SpecialMemberOverloadResult SMOR = LookupSpecialMember(FieldRecDecl, CSM, /* ConstArg */ ConstRHS && !F->isMutable(), /* VolatileArg */ false, /* RValueThis */ false, /* ConstThis */ false, /* VolatileThis */ false); if (!SMOR.getMethod()) continue; CUDAFunctionTarget FieldMethodTarget = IdentifyCUDATarget(SMOR.getMethod()); if (!InferredTarget.hasValue()) { InferredTarget = FieldMethodTarget; } else { bool ResolutionError = resolveCalleeCUDATargetConflict( InferredTarget.getValue(), FieldMethodTarget, InferredTarget.getPointer()); if (ResolutionError) { if (Diagnose) { Diag(ClassDecl->getLocation(), diag::note_implicit_member_target_infer_collision) << (unsigned)CSM << InferredTarget.getValue() << FieldMethodTarget; } MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context)); return true; } } } // If no target was inferred, mark this member as __host__ __device__; // it's the least restrictive option that can be invoked from any target. bool NeedsH = true, NeedsD = true; if (InferredTarget.hasValue()) { if (InferredTarget.getValue() == CFT_Device) NeedsH = false; else if (InferredTarget.getValue() == CFT_Host) NeedsD = false; } // We either setting attributes first time, or the inferred ones must match // previously set ones. if (NeedsD && !HasD) MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context)); if (NeedsH && !HasH) MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context)); return false; } bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) { if (!CD->isDefined() && CD->isTemplateInstantiation()) InstantiateFunctionDefinition(Loc, CD->getFirstDecl()); // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered // empty at a point in the translation unit, if it is either a // trivial constructor if (CD->isTrivial()) return true; // ... or it satisfies all of the following conditions: // The constructor function has been defined. // The constructor function has no parameters, // and the function body is an empty compound statement. if (!(CD->hasTrivialBody() && CD->getNumParams() == 0)) return false; // Its class has no virtual functions and no virtual base classes. if (CD->getParent()->isDynamicClass()) return false; // Union ctor does not call ctors of its data members. if (CD->getParent()->isUnion()) return true; // The only form of initializer allowed is an empty constructor. // This will recursively check all base classes and member initializers if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) { if (const CXXConstructExpr *CE = dyn_cast(CI->getInit())) return isEmptyCudaConstructor(Loc, CE->getConstructor()); return false; })) return false; return true; } bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) { // No destructor -> no problem. if (!DD) return true; if (!DD->isDefined() && DD->isTemplateInstantiation()) InstantiateFunctionDefinition(Loc, DD->getFirstDecl()); // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered // empty at a point in the translation unit, if it is either a // trivial constructor if (DD->isTrivial()) return true; // ... or it satisfies all of the following conditions: // The destructor function has been defined. // and the function body is an empty compound statement. if (!DD->hasTrivialBody()) return false; const CXXRecordDecl *ClassDecl = DD->getParent(); // Its class has no virtual functions and no virtual base classes. if (ClassDecl->isDynamicClass()) return false; // Union does not have base class and union dtor does not call dtors of its // data members. if (DD->getParent()->isUnion()) return true; // Only empty destructors are allowed. This will recursively check // destructors for all base classes... if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) { if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl()) return isEmptyCudaDestructor(Loc, RD->getDestructor()); return true; })) return false; // ... and member fields. if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) { if (CXXRecordDecl *RD = Field->getType() ->getBaseElementTypeUnsafe() ->getAsCXXRecordDecl()) return isEmptyCudaDestructor(Loc, RD->getDestructor()); return true; })) return false; return true; } void Sema::checkAllowedCUDAInitializer(VarDecl *VD) { if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage()) return; const Expr *Init = VD->getInit(); if (VD->hasAttr() || VD->hasAttr() || VD->hasAttr()) { if (LangOpts.GPUAllowDeviceInit) return; bool AllowedInit = false; if (const CXXConstructExpr *CE = dyn_cast(Init)) AllowedInit = isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor()); // We'll allow constant initializers even if it's a non-empty // constructor according to CUDA rules. This deviates from NVCC, // but allows us to handle things like constexpr constructors. if (!AllowedInit && (VD->hasAttr() || VD->hasAttr())) { auto *Init = VD->getInit(); AllowedInit = ((VD->getType()->isDependentType() || Init->isValueDependent()) && VD->isConstexpr()) || Init->isConstantInitializer(Context, VD->getType()->isReferenceType()); } // Also make sure that destructor, if there is one, is empty. if (AllowedInit) if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl()) AllowedInit = isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor()); if (!AllowedInit) { Diag(VD->getLocation(), VD->hasAttr() ? diag::err_shared_var_init : diag::err_dynamic_var_init) << Init->getSourceRange(); VD->setInvalidDecl(); } } else { // This is a host-side global variable. Check that the initializer is // callable from the host side. const FunctionDecl *InitFn = nullptr; if (const CXXConstructExpr *CE = dyn_cast(Init)) { InitFn = CE->getConstructor(); } else if (const CallExpr *CE = dyn_cast(Init)) { InitFn = CE->getDirectCallee(); } if (InitFn) { CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn); if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) { Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer) << InitFnTarget << InitFn; Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn; VD->setInvalidDecl(); } } } } // With -fcuda-host-device-constexpr, an unattributed constexpr function is // treated as implicitly __host__ __device__, unless: // * it is a variadic function (device-side variadic functions are not // allowed), or // * a __device__ function with this signature was already declared, in which // case in which case we output an error, unless the __device__ decl is in a // system header, in which case we leave the constexpr function unattributed. // // In addition, all function decls are treated as __host__ __device__ when // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a // #pragma clang force_cuda_host_device_begin/end // pair). void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD, const LookupResult &Previous) { assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); if (ForceCUDAHostDeviceDepth > 0) { if (!NewD->hasAttr()) NewD->addAttr(CUDAHostAttr::CreateImplicit(Context)); if (!NewD->hasAttr()) NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context)); return; } if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() || NewD->isVariadic() || NewD->hasAttr() || NewD->hasAttr() || NewD->hasAttr()) return; // Is D a __device__ function with the same signature as NewD, ignoring CUDA // attributes? auto IsMatchingDeviceFn = [&](NamedDecl *D) { if (UsingShadowDecl *Using = dyn_cast(D)) D = Using->getTargetDecl(); FunctionDecl *OldD = D->getAsFunction(); return OldD && OldD->hasAttr() && !OldD->hasAttr() && !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false, /* ConsiderCudaAttrs = */ false); }; auto It = llvm::find_if(Previous, IsMatchingDeviceFn); if (It != Previous.end()) { // We found a __device__ function with the same name and signature as NewD // (ignoring CUDA attrs). This is an error unless that function is defined // in a system header, in which case we simply return without making NewD // host+device. NamedDecl *Match = *It; if (!getSourceManager().isInSystemHeader(Match->getLocation())) { Diag(NewD->getLocation(), diag::err_cuda_unattributed_constexpr_cannot_overload_device) << NewD; Diag(Match->getLocation(), diag::note_cuda_conflicting_device_function_declared_here); } return; } NewD->addAttr(CUDAHostAttr::CreateImplicit(Context)); NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context)); } void Sema::MaybeAddCUDAConstantAttr(VarDecl *VD) { if (getLangOpts().CUDAIsDevice && VD->isConstexpr() && (VD->isFileVarDecl() || VD->isStaticDataMember())) { VD->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext())); } } Sema::SemaDiagnosticBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc, unsigned DiagID) { assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); SemaDiagnosticBuilder::Kind DiagKind = [&] { if (!isa(CurContext)) return SemaDiagnosticBuilder::K_Nop; switch (CurrentCUDATarget()) { case CFT_Global: case CFT_Device: return SemaDiagnosticBuilder::K_Immediate; case CFT_HostDevice: // An HD function counts as host code if we're compiling for host, and // device code if we're compiling for device. Defer any errors in device // mode until the function is known-emitted. if (!getLangOpts().CUDAIsDevice) return SemaDiagnosticBuilder::K_Nop; if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID)) return SemaDiagnosticBuilder::K_Immediate; return (getEmissionStatus(cast(CurContext)) == FunctionEmissionStatus::Emitted) ? SemaDiagnosticBuilder::K_ImmediateWithCallStack : SemaDiagnosticBuilder::K_Deferred; default: return SemaDiagnosticBuilder::K_Nop; } }(); return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, dyn_cast(CurContext), *this); } Sema::SemaDiagnosticBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID) { assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); SemaDiagnosticBuilder::Kind DiagKind = [&] { if (!isa(CurContext)) return SemaDiagnosticBuilder::K_Nop; switch (CurrentCUDATarget()) { case CFT_Host: return SemaDiagnosticBuilder::K_Immediate; case CFT_HostDevice: // An HD function counts as host code if we're compiling for host, and // device code if we're compiling for device. Defer any errors in device // mode until the function is known-emitted. if (getLangOpts().CUDAIsDevice) return SemaDiagnosticBuilder::K_Nop; if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID)) return SemaDiagnosticBuilder::K_Immediate; return (getEmissionStatus(cast(CurContext)) == FunctionEmissionStatus::Emitted) ? SemaDiagnosticBuilder::K_ImmediateWithCallStack : SemaDiagnosticBuilder::K_Deferred; default: return SemaDiagnosticBuilder::K_Nop; } }(); return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, dyn_cast(CurContext), *this); } bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) { assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); assert(Callee && "Callee may not be null."); auto &ExprEvalCtx = ExprEvalContexts.back(); if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated()) return true; // FIXME: Is bailing out early correct here? Should we instead assume that // the caller is a global initializer? FunctionDecl *Caller = dyn_cast(CurContext); if (!Caller) return true; // If the caller is known-emitted, mark the callee as known-emitted. // Otherwise, mark the call in our call graph so we can traverse it later. bool CallerKnownEmitted = getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted; SemaDiagnosticBuilder::Kind DiagKind = [this, Caller, Callee, CallerKnownEmitted] { switch (IdentifyCUDAPreference(Caller, Callee)) { case CFP_Never: case CFP_WrongSide: assert(Caller && "Never/wrongSide calls require a non-null caller"); // If we know the caller will be emitted, we know this wrong-side call // will be emitted, so it's an immediate error. Otherwise, defer the // error until we know the caller is emitted. return CallerKnownEmitted ? SemaDiagnosticBuilder::K_ImmediateWithCallStack : SemaDiagnosticBuilder::K_Deferred; default: return SemaDiagnosticBuilder::K_Nop; } }(); if (DiagKind == SemaDiagnosticBuilder::K_Nop) return true; // Avoid emitting this error twice for the same location. Using a hashtable // like this is unfortunate, but because we must continue parsing as normal // after encountering a deferred error, it's otherwise very tricky for us to // ensure that we only emit this deferred error once. if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second) return true; SemaDiagnosticBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this) << IdentifyCUDATarget(Callee) << /*function*/ 0 << Callee << IdentifyCUDATarget(Caller); if (!Callee->getBuiltinID()) SemaDiagnosticBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl, Caller, *this) << Callee; return DiagKind != SemaDiagnosticBuilder::K_Immediate && DiagKind != SemaDiagnosticBuilder::K_ImmediateWithCallStack; } // Check the wrong-sided reference capture of lambda for CUDA/HIP. // A lambda function may capture a stack variable by reference when it is // defined and uses the capture by reference when the lambda is called. When // the capture and use happen on different sides, the capture is invalid and // should be diagnosed. void Sema::CUDACheckLambdaCapture(CXXMethodDecl *Callee, const sema::Capture &Capture) { // In host compilation we only need to check lambda functions emitted on host // side. In such lambda functions, a reference capture is invalid only // if the lambda structure is populated by a device function or kernel then // is passed to and called by a host function. However that is impossible, // since a device function or kernel can only call a device function, also a // kernel cannot pass a lambda back to a host function since we cannot // define a kernel argument type which can hold the lambda before the lambda // itself is defined. if (!LangOpts.CUDAIsDevice) return; // File-scope lambda can only do init captures for global variables, which // results in passing by value for these global variables. FunctionDecl *Caller = dyn_cast(CurContext); if (!Caller) return; // In device compilation, we only need to check lambda functions which are // emitted on device side. For such lambdas, a reference capture is invalid // only if the lambda structure is populated by a host function then passed // to and called in a device function or kernel. bool CalleeIsDevice = Callee->hasAttr(); bool CallerIsHost = !Caller->hasAttr() && !Caller->hasAttr(); bool ShouldCheck = CalleeIsDevice && CallerIsHost; if (!ShouldCheck || !Capture.isReferenceCapture()) return; auto DiagKind = SemaDiagnosticBuilder::K_Deferred; if (Capture.isVariableCapture()) { SemaDiagnosticBuilder(DiagKind, Capture.getLocation(), diag::err_capture_bad_target, Callee, *this) << Capture.getVariable(); } else if (Capture.isThisCapture()) { SemaDiagnosticBuilder(DiagKind, Capture.getLocation(), diag::err_capture_bad_target_this_ptr, Callee, *this); } return; } void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) { assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); if (Method->hasAttr() || Method->hasAttr()) return; Method->addAttr(CUDADeviceAttr::CreateImplicit(Context)); Method->addAttr(CUDAHostAttr::CreateImplicit(Context)); } void Sema::checkCUDATargetOverload(FunctionDecl *NewFD, const LookupResult &Previous) { assert(getLangOpts().CUDA && "Should only be called during CUDA compilation"); CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD); for (NamedDecl *OldND : Previous) { FunctionDecl *OldFD = OldND->getAsFunction(); if (!OldFD) continue; CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD); // Don't allow HD and global functions to overload other functions with the // same signature. We allow overloading based on CUDA attributes so that // functions can have different implementations on the host and device, but // HD/global functions "exist" in some sense on both the host and device, so // should have the same implementation on both sides. if (NewTarget != OldTarget && ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) || (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) && !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false, /* ConsiderCudaAttrs = */ false)) { Diag(NewFD->getLocation(), diag::err_cuda_ovl_target) << NewTarget << NewFD->getDeclName() << OldTarget << OldFD; Diag(OldFD->getLocation(), diag::note_previous_declaration); NewFD->setInvalidDecl(); break; } } } template static void copyAttrIfPresent(Sema &S, FunctionDecl *FD, const FunctionDecl &TemplateFD) { if (AttrTy *Attribute = TemplateFD.getAttr()) { AttrTy *Clone = Attribute->clone(S.Context); Clone->setInherited(true); FD->addAttr(Clone); } } void Sema::inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD) { const FunctionDecl &TemplateFD = *TD.getTemplatedDecl(); copyAttrIfPresent(*this, FD, TemplateFD); copyAttrIfPresent(*this, FD, TemplateFD); copyAttrIfPresent(*this, FD, TemplateFD); } std::string Sema::getCudaConfigureFuncName() const { if (getLangOpts().HIP) return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration" : "hipConfigureCall"; // New CUDA kernel launch sequence. if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(), CudaFeature::CUDA_USES_NEW_LAUNCH)) return "__cudaPushCallConfiguration"; // Legacy CUDA kernel configuration call return "cudaConfigureCall"; }