//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "clang/Driver/Driver.h" #include "InputInfo.h" #include "ToolChains/AIX.h" #include "ToolChains/AMDGPU.h" #include "ToolChains/AVR.h" #include "ToolChains/Ananas.h" #include "ToolChains/BareMetal.h" #include "ToolChains/Clang.h" #include "ToolChains/CloudABI.h" #include "ToolChains/Contiki.h" #include "ToolChains/CrossWindows.h" #include "ToolChains/Cuda.h" #include "ToolChains/Darwin.h" #include "ToolChains/DragonFly.h" #include "ToolChains/FreeBSD.h" #include "ToolChains/Fuchsia.h" #include "ToolChains/Gnu.h" #include "ToolChains/HIP.h" #include "ToolChains/Haiku.h" #include "ToolChains/Hexagon.h" #include "ToolChains/Hurd.h" #include "ToolChains/Lanai.h" #include "ToolChains/Linux.h" #include "ToolChains/MSP430.h" #include "ToolChains/MSVC.h" #include "ToolChains/MinGW.h" #include "ToolChains/Minix.h" #include "ToolChains/MipsLinux.h" #include "ToolChains/Myriad.h" #include "ToolChains/NaCl.h" #include "ToolChains/NetBSD.h" #include "ToolChains/OpenBSD.h" #include "ToolChains/PPCLinux.h" #include "ToolChains/PS4CPU.h" #include "ToolChains/RISCVToolchain.h" #include "ToolChains/Solaris.h" #include "ToolChains/TCE.h" #include "ToolChains/VEToolchain.h" #include "ToolChains/WebAssembly.h" #include "ToolChains/XCore.h" #include "ToolChains/ZOS.h" #include "clang/Basic/TargetID.h" #include "clang/Basic/Version.h" #include "clang/Config/config.h" #include "clang/Driver/Action.h" #include "clang/Driver/Compilation.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/Job.h" #include "clang/Driver/Options.h" #include "clang/Driver/SanitizerArgs.h" #include "clang/Driver/Tool.h" #include "clang/Driver/ToolChain.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Config/llvm-config.h" #include "llvm/Option/Arg.h" #include "llvm/Option/ArgList.h" #include "llvm/Option/OptSpecifier.h" #include "llvm/Option/OptTable.h" #include "llvm/Option/Option.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ExitCodes.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/Host.h" #include "llvm/Support/Path.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Process.h" #include "llvm/Support/Program.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/Support/raw_ostream.h" #include #include #include #if LLVM_ON_UNIX #include // getpid #endif using namespace clang::driver; using namespace clang; using namespace llvm::opt; static llvm::Triple getHIPOffloadTargetTriple() { static const llvm::Triple T("amdgcn-amd-amdhsa"); return T; } // static std::string Driver::GetResourcesPath(StringRef BinaryPath, StringRef CustomResourceDir) { // Since the resource directory is embedded in the module hash, it's important // that all places that need it call this function, so that they get the // exact same string ("a/../b/" and "b/" get different hashes, for example). // Dir is bin/ or lib/, depending on where BinaryPath is. std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath)); SmallString<128> P(Dir); if (CustomResourceDir != "") { llvm::sys::path::append(P, CustomResourceDir); } else { // On Windows, libclang.dll is in bin/. // On non-Windows, libclang.so/.dylib is in lib/. // With a static-library build of libclang, LibClangPath will contain the // path of the embedding binary, which for LLVM binaries will be in bin/. // ../lib gets us to lib/ in both cases. P = llvm::sys::path::parent_path(Dir); llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang", CLANG_VERSION_STRING); } return std::string(P.str()); } Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, DiagnosticsEngine &Diags, std::string Title, IntrusiveRefCntPtr VFS) : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None), ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT), DriverTitle(Title), CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false), CCGenDiagnostics(false), TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true), GenReproducer(false), SuppressMissingInputWarning(false) { // Provide a sane fallback if no VFS is specified. if (!this->VFS) this->VFS = llvm::vfs::getRealFileSystem(); Name = std::string(llvm::sys::path::filename(ClangExecutable)); Dir = std::string(llvm::sys::path::parent_path(ClangExecutable)); InstalledDir = Dir; // Provide a sensible default installed dir. if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) { // Prepend InstalledDir if SysRoot is relative SmallString<128> P(InstalledDir); llvm::sys::path::append(P, SysRoot); SysRoot = std::string(P); } #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; #endif #if defined(CLANG_CONFIG_FILE_USER_DIR) UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; #endif // Compute the path to the resource directory. ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR); } void Driver::ParseDriverMode(StringRef ProgramName, ArrayRef Args) { if (ClangNameParts.isEmpty()) ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); setDriverModeFromOption(ClangNameParts.DriverMode); for (const char *ArgPtr : Args) { // Ignore nullptrs, they are the response file's EOL markers. if (ArgPtr == nullptr) continue; const StringRef Arg = ArgPtr; setDriverModeFromOption(Arg); } } void Driver::setDriverModeFromOption(StringRef Opt) { const std::string OptName = getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); if (!Opt.startswith(OptName)) return; StringRef Value = Opt.drop_front(OptName.size()); if (auto M = llvm::StringSwitch>(Value) .Case("gcc", GCCMode) .Case("g++", GXXMode) .Case("cpp", CPPMode) .Case("cl", CLMode) .Case("flang", FlangMode) .Default(None)) Mode = *M; else Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; } InputArgList Driver::ParseArgStrings(ArrayRef ArgStrings, bool IsClCompatMode, bool &ContainsError) { llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); ContainsError = false; unsigned IncludedFlagsBitmask; unsigned ExcludedFlagsBitmask; std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = getIncludeExcludeOptionFlagMasks(IsClCompatMode); // Make sure that Flang-only options don't pollute the Clang output // TODO: Make sure that Clang-only options don't pollute Flang output if (!IsFlangMode()) ExcludedFlagsBitmask |= options::FlangOnlyOption; unsigned MissingArgIndex, MissingArgCount; InputArgList Args = getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, IncludedFlagsBitmask, ExcludedFlagsBitmask); // Check for missing argument error. if (MissingArgCount) { Diag(diag::err_drv_missing_argument) << Args.getArgString(MissingArgIndex) << MissingArgCount; ContainsError |= Diags.getDiagnosticLevel(diag::err_drv_missing_argument, SourceLocation()) > DiagnosticsEngine::Warning; } // Check for unsupported options. for (const Arg *A : Args) { if (A->getOption().hasFlag(options::Unsupported)) { unsigned DiagID; auto ArgString = A->getAsString(Args); std::string Nearest; if (getOpts().findNearest( ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask | options::Unsupported) > 1) { DiagID = diag::err_drv_unsupported_opt; Diag(DiagID) << ArgString; } else { DiagID = diag::err_drv_unsupported_opt_with_suggestion; Diag(DiagID) << ArgString << Nearest; } ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > DiagnosticsEngine::Warning; continue; } // Warn about -mcpu= without an argument. if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); ContainsError |= Diags.getDiagnosticLevel( diag::warn_drv_empty_joined_argument, SourceLocation()) > DiagnosticsEngine::Warning; } } for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { unsigned DiagID; auto ArgString = A->getAsString(Args); std::string Nearest; if (getOpts().findNearest( ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl : diag::err_drv_unknown_argument; Diags.Report(DiagID) << ArgString; } else { DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion : diag::err_drv_unknown_argument_with_suggestion; Diags.Report(DiagID) << ArgString << Nearest; } ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > DiagnosticsEngine::Warning; } return Args; } // Determine which compilation mode we are in. We look for options which // affect the phase, starting with the earliest phases, and record which // option we used to determine the final phase. phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, Arg **FinalPhaseArg) const { Arg *PhaseArg = nullptr; phases::ID FinalPhase; // -{E,EP,P,M,MM} only run the preprocessor. if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { FinalPhase = phases::Preprocess; // --precompile only runs up to precompilation. } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { FinalPhase = phases::Precompile; // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || (PhaseArg = DAL.getLastArg(options::OPT__analyze)) || (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { FinalPhase = phases::Compile; // -S only runs up to the backend. } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { FinalPhase = phases::Backend; // -c compilation only runs up to the assembler. } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { FinalPhase = phases::Assemble; // Otherwise do everything. } else FinalPhase = phases::Link; if (FinalPhaseArg) *FinalPhaseArg = PhaseArg; return FinalPhase; } static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts, StringRef Value, bool Claim = true) { Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, Args.getBaseArgs().MakeIndex(Value), Value.data()); Args.AddSynthesizedArg(A); if (Claim) A->claim(); return A; } DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { const llvm::opt::OptTable &Opts = getOpts(); DerivedArgList *DAL = new DerivedArgList(Args); bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); for (Arg *A : Args) { // Unfortunately, we have to parse some forwarding options (-Xassembler, // -Xlinker, -Xpreprocessor) because we either integrate their functionality // (assembler and preprocessor), or bypass a previous driver ('collect2'). // Rewrite linker options, to replace --no-demangle with a custom internal // option. if ((A->getOption().matches(options::OPT_Wl_COMMA) || A->getOption().matches(options::OPT_Xlinker)) && A->containsValue("--no-demangle")) { // Add the rewritten no-demangle argument. DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle)); // Add the remaining values as Xlinker arguments. for (StringRef Val : A->getValues()) if (Val != "--no-demangle") DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val); continue; } // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by // some build systems. We don't try to be complete here because we don't // care to encourage this usage model. if (A->getOption().matches(options::OPT_Wp_COMMA) && (A->getValue(0) == StringRef("-MD") || A->getValue(0) == StringRef("-MMD"))) { // Rewrite to -MD/-MMD along with -MF. if (A->getValue(0) == StringRef("-MD")) DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD)); else DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD)); if (A->getNumValues() == 2) DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1)); continue; } // Rewrite reserved library names. if (A->getOption().matches(options::OPT_l)) { StringRef Value = A->getValue(); // Rewrite unless -nostdlib is present. if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && Value == "stdc++") { DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx)); continue; } // Rewrite unconditionally. if (Value == "cc_kext") { DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext)); continue; } } // Pick up inputs via the -- option. if (A->getOption().matches(options::OPT__DASH_DASH)) { A->claim(); for (StringRef Val : A->getValues()) DAL->append(MakeInputArg(*DAL, Opts, Val, false)); continue; } DAL->append(A); } // Enforce -static if -miamcu is present. if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) DAL->AddFlagArg(0, Opts.getOption(options::OPT_static)); // Add a default value of -mlinker-version=, if one was given and the user // didn't specify one. #if defined(HOST_LINK_VERSION) if (!Args.hasArg(options::OPT_mlinker_version_EQ) && strlen(HOST_LINK_VERSION) > 0) { DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ), HOST_LINK_VERSION); DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); } #endif return DAL; } /// Compute target triple from args. /// /// This routine provides the logic to compute a target triple from various /// args passed to the driver and the default triple string. static llvm::Triple computeTargetTriple(const Driver &D, StringRef TargetTriple, const ArgList &Args, StringRef DarwinArchName = "") { // FIXME: Already done in Compilation *Driver::BuildCompilation if (const Arg *A = Args.getLastArg(options::OPT_target)) TargetTriple = A->getValue(); llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made // -gnu* only, and we can not change this, so we have to detect that case as // being the Hurd OS. if (TargetTriple.find("-unknown-gnu") != StringRef::npos || TargetTriple.find("-pc-gnu") != StringRef::npos) Target.setOSName("hurd"); // Handle Apple-specific options available here. if (Target.isOSBinFormatMachO()) { // If an explicit Darwin arch name is given, that trumps all. if (!DarwinArchName.empty()) { tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); return Target; } // Handle the Darwin '-arch' flag. if (Arg *A = Args.getLastArg(options::OPT_arch)) { StringRef ArchName = A->getValue(); tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); } } // Handle pseudo-target flags '-mlittle-endian'/'-EL' and // '-mbig-endian'/'-EB'. if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, options::OPT_mbig_endian)) { if (A->getOption().matches(options::OPT_mlittle_endian)) { llvm::Triple LE = Target.getLittleEndianArchVariant(); if (LE.getArch() != llvm::Triple::UnknownArch) Target = std::move(LE); } else { llvm::Triple BE = Target.getBigEndianArchVariant(); if (BE.getArch() != llvm::Triple::UnknownArch) Target = std::move(BE); } } // Skip further flag support on OSes which don't support '-m32' or '-m64'. if (Target.getArch() == llvm::Triple::tce || Target.getOS() == llvm::Triple::Minix) return Target; // On AIX, the env OBJECT_MODE may affect the resulting arch variant. if (Target.isOSAIX()) { if (Optional ObjectModeValue = llvm::sys::Process::GetEnv("OBJECT_MODE")) { StringRef ObjectMode = *ObjectModeValue; llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; if (ObjectMode.equals("64")) { AT = Target.get64BitArchVariant().getArch(); } else if (ObjectMode.equals("32")) { AT = Target.get32BitArchVariant().getArch(); } else { D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode; } if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) Target.setArch(AT); } } // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, options::OPT_m32, options::OPT_m16); if (A) { llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; if (A->getOption().matches(options::OPT_m64)) { AT = Target.get64BitArchVariant().getArch(); if (Target.getEnvironment() == llvm::Triple::GNUX32) Target.setEnvironment(llvm::Triple::GNU); } else if (A->getOption().matches(options::OPT_mx32) && Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { AT = llvm::Triple::x86_64; Target.setEnvironment(llvm::Triple::GNUX32); } else if (A->getOption().matches(options::OPT_m32)) { AT = Target.get32BitArchVariant().getArch(); if (Target.getEnvironment() == llvm::Triple::GNUX32) Target.setEnvironment(llvm::Triple::GNU); } else if (A->getOption().matches(options::OPT_m16) && Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { AT = llvm::Triple::x86; Target.setEnvironment(llvm::Triple::CODE16); } if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) Target.setArch(AT); } // Handle -miamcu flag. if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" << Target.str(); if (A && !A->getOption().matches(options::OPT_m32)) D.Diag(diag::err_drv_argument_not_allowed_with) << "-miamcu" << A->getBaseArg().getAsString(Args); Target.setArch(llvm::Triple::x86); Target.setArchName("i586"); Target.setEnvironment(llvm::Triple::UnknownEnvironment); Target.setEnvironmentName(""); Target.setOS(llvm::Triple::ELFIAMCU); Target.setVendor(llvm::Triple::UnknownVendor); Target.setVendorName("intel"); } // If target is MIPS adjust the target triple // accordingly to provided ABI name. A = Args.getLastArg(options::OPT_mabi_EQ); if (A && Target.isMIPS()) { StringRef ABIName = A->getValue(); if (ABIName == "32") { Target = Target.get32BitArchVariant(); if (Target.getEnvironment() == llvm::Triple::GNUABI64 || Target.getEnvironment() == llvm::Triple::GNUABIN32) Target.setEnvironment(llvm::Triple::GNU); } else if (ABIName == "n32") { Target = Target.get64BitArchVariant(); if (Target.getEnvironment() == llvm::Triple::GNU || Target.getEnvironment() == llvm::Triple::GNUABI64) Target.setEnvironment(llvm::Triple::GNUABIN32); } else if (ABIName == "64") { Target = Target.get64BitArchVariant(); if (Target.getEnvironment() == llvm::Triple::GNU || Target.getEnvironment() == llvm::Triple::GNUABIN32) Target.setEnvironment(llvm::Triple::GNUABI64); } } // If target is RISC-V adjust the target triple according to // provided architecture name A = Args.getLastArg(options::OPT_march_EQ); if (A && Target.isRISCV()) { StringRef ArchName = A->getValue(); if (ArchName.startswith_lower("rv32")) Target.setArch(llvm::Triple::riscv32); else if (ArchName.startswith_lower("rv64")) Target.setArch(llvm::Triple::riscv64); } return Target; } // Parse the LTO options and record the type of LTO compilation // based on which -f(no-)?lto(=.*)? option occurs last. void Driver::setLTOMode(const llvm::opt::ArgList &Args) { LTOMode = LTOK_None; if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, options::OPT_fno_lto, false)) return; StringRef LTOName("full"); const Arg *A = Args.getLastArg(options::OPT_flto_EQ); if (A) LTOName = A->getValue(); LTOMode = llvm::StringSwitch(LTOName) .Case("full", LTOK_Full) .Case("thin", LTOK_Thin) .Default(LTOK_Unknown); if (LTOMode == LTOK_Unknown) { assert(A); Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() << A->getValue(); } } /// Compute the desired OpenMP runtime from the flags provided. Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); if (A) RuntimeName = A->getValue(); auto RT = llvm::StringSwitch(RuntimeName) .Case("libomp", OMPRT_OMP) .Case("libgomp", OMPRT_GOMP) .Case("libiomp5", OMPRT_IOMP5) .Default(OMPRT_Unknown); if (RT == OMPRT_Unknown) { if (A) Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() << A->getValue(); else // FIXME: We could use a nicer diagnostic here. Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; } return RT; } void Driver::CreateOffloadingDeviceToolChains(Compilation &C, InputList &Inputs) { // // CUDA/HIP // // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA // or HIP type. However, mixed CUDA/HIP compilation is not supported. bool IsCuda = llvm::any_of(Inputs, [](std::pair &I) { return types::isCuda(I.first); }); bool IsHIP = llvm::any_of(Inputs, [](std::pair &I) { return types::isHIP(I.first); }) || C.getInputArgs().hasArg(options::OPT_hip_link); if (IsCuda && IsHIP) { Diag(clang::diag::err_drv_mix_cuda_hip); return; } if (IsCuda) { const ToolChain *HostTC = C.getSingleOffloadToolChain(); const llvm::Triple &HostTriple = HostTC->getTriple(); StringRef DeviceTripleStr; auto OFK = Action::OFK_Cuda; DeviceTripleStr = HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"; llvm::Triple CudaTriple(DeviceTripleStr); // Use the CUDA and host triples as the key into the ToolChains map, // because the device toolchain we create depends on both. auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; if (!CudaTC) { CudaTC = std::make_unique( *this, CudaTriple, *HostTC, C.getInputArgs(), OFK); } C.addOffloadDeviceToolChain(CudaTC.get(), OFK); } else if (IsHIP) { const ToolChain *HostTC = C.getSingleOffloadToolChain(); const llvm::Triple &HostTriple = HostTC->getTriple(); auto OFK = Action::OFK_HIP; llvm::Triple HIPTriple = getHIPOffloadTargetTriple(); // Use the HIP and host triples as the key into the ToolChains map, // because the device toolchain we create depends on both. auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()]; if (!HIPTC) { HIPTC = std::make_unique( *this, HIPTriple, *HostTC, C.getInputArgs()); } C.addOffloadDeviceToolChain(HIPTC.get(), OFK); } // // OpenMP // // We need to generate an OpenMP toolchain if the user specified targets with // the -fopenmp-targets option. if (Arg *OpenMPTargets = C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { if (OpenMPTargets->getNumValues()) { // We expect that -fopenmp-targets is always used in conjunction with the // option -fopenmp specifying a valid runtime with offloading support, // i.e. libomp or libiomp. bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( options::OPT_fopenmp, options::OPT_fopenmp_EQ, options::OPT_fno_openmp, false); if (HasValidOpenMPRuntime) { OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); HasValidOpenMPRuntime = OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; } if (HasValidOpenMPRuntime) { llvm::StringMap FoundNormalizedTriples; for (const char *Val : OpenMPTargets->getValues()) { llvm::Triple TT(Val); std::string NormalizedName = TT.normalize(); // Make sure we don't have a duplicate triple. auto Duplicate = FoundNormalizedTriples.find(NormalizedName); if (Duplicate != FoundNormalizedTriples.end()) { Diag(clang::diag::warn_drv_omp_offload_target_duplicate) << Val << Duplicate->second; continue; } // Store the current triple so that we can check for duplicates in the // following iterations. FoundNormalizedTriples[NormalizedName] = Val; // If the specified target is invalid, emit a diagnostic. if (TT.getArch() == llvm::Triple::UnknownArch) Diag(clang::diag::err_drv_invalid_omp_target) << Val; else { const ToolChain *TC; // CUDA toolchains have to be selected differently. They pair host // and device in their implementation. if (TT.isNVPTX()) { const ToolChain *HostTC = C.getSingleOffloadToolChain(); assert(HostTC && "Host toolchain should be always defined."); auto &CudaTC = ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; if (!CudaTC) CudaTC = std::make_unique( *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); TC = CudaTC.get(); } else TC = &getToolChain(C.getInputArgs(), TT); C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); } } } else Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); } else Diag(clang::diag::warn_drv_empty_joined_argument) << OpenMPTargets->getAsString(C.getInputArgs()); } // // TODO: Add support for other offloading programming models here. // } /// Looks the given directories for the specified file. /// /// \param[out] FilePath File path, if the file was found. /// \param[in] Dirs Directories used for the search. /// \param[in] FileName Name of the file to search for. /// \return True if file was found. /// /// Looks for file specified by FileName sequentially in directories specified /// by Dirs. /// static bool searchForFile(SmallVectorImpl &FilePath, ArrayRef Dirs, StringRef FileName) { SmallString<128> WPath; for (const StringRef &Dir : Dirs) { if (Dir.empty()) continue; WPath.clear(); llvm::sys::path::append(WPath, Dir, FileName); llvm::sys::path::native(WPath); if (llvm::sys::fs::is_regular_file(WPath)) { FilePath = std::move(WPath); return true; } } return false; } bool Driver::readConfigFile(StringRef FileName) { // Try reading the given file. SmallVector NewCfgArgs; if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { Diag(diag::err_drv_cannot_read_config_file) << FileName; return true; } // Read options from config file. llvm::SmallString<128> CfgFileName(FileName); llvm::sys::path::native(CfgFileName); ConfigFile = std::string(CfgFileName); bool ContainErrors; CfgOptions = std::make_unique( ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors)); if (ContainErrors) { CfgOptions.reset(); return true; } if (CfgOptions->hasArg(options::OPT_config)) { CfgOptions.reset(); Diag(diag::err_drv_nested_config_file); return true; } // Claim all arguments that come from a configuration file so that the driver // does not warn on any that is unused. for (Arg *A : *CfgOptions) A->claim(); return false; } bool Driver::loadConfigFile() { std::string CfgFileName; bool FileSpecifiedExplicitly = false; // Process options that change search path for config files. if (CLOptions) { if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { SmallString<128> CfgDir; CfgDir.append( CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); if (!CfgDir.empty()) { if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) SystemConfigDir.clear(); else SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); } } if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { SmallString<128> CfgDir; CfgDir.append( CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); if (!CfgDir.empty()) { if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) UserConfigDir.clear(); else UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); } } } // First try to find config file specified in command line. if (CLOptions) { std::vector ConfigFiles = CLOptions->getAllArgValues(options::OPT_config); if (ConfigFiles.size() > 1) { if (!std::all_of(ConfigFiles.begin(), ConfigFiles.end(), [ConfigFiles](const std::string &s) { return s == ConfigFiles[0]; })) { Diag(diag::err_drv_duplicate_config); return true; } } if (!ConfigFiles.empty()) { CfgFileName = ConfigFiles.front(); assert(!CfgFileName.empty()); // If argument contains directory separator, treat it as a path to // configuration file. if (llvm::sys::path::has_parent_path(CfgFileName)) { SmallString<128> CfgFilePath; if (llvm::sys::path::is_relative(CfgFileName)) llvm::sys::fs::current_path(CfgFilePath); llvm::sys::path::append(CfgFilePath, CfgFileName); if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; return true; } return readConfigFile(CfgFilePath); } FileSpecifiedExplicitly = true; } } // If config file is not specified explicitly, try to deduce configuration // from executable name. For instance, an executable 'armv7l-clang' will // search for config file 'armv7l-clang.cfg'. if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; if (CfgFileName.empty()) return false; // Determine architecture part of the file name, if it is present. StringRef CfgFileArch = CfgFileName; size_t ArchPrefixLen = CfgFileArch.find('-'); if (ArchPrefixLen == StringRef::npos) ArchPrefixLen = CfgFileArch.size(); llvm::Triple CfgTriple; CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) ArchPrefixLen = 0; if (!StringRef(CfgFileName).endswith(".cfg")) CfgFileName += ".cfg"; // If config file starts with architecture name and command line options // redefine architecture (with options like -m32 -LE etc), try finding new // config file with that architecture. SmallString<128> FixedConfigFile; size_t FixedArchPrefixLen = 0; if (ArchPrefixLen) { // Get architecture name from config file name like 'i386.cfg' or // 'armv7l-clang.cfg'. // Check if command line options changes effective triple. llvm::Triple EffectiveTriple = computeTargetTriple(*this, CfgTriple.getTriple(), *CLOptions); if (CfgTriple.getArch() != EffectiveTriple.getArch()) { FixedConfigFile = EffectiveTriple.getArchName(); FixedArchPrefixLen = FixedConfigFile.size(); // Append the rest of original file name so that file name transforms // like: i386-clang.cfg -> x86_64-clang.cfg. if (ArchPrefixLen < CfgFileName.size()) FixedConfigFile += CfgFileName.substr(ArchPrefixLen); } } // Prepare list of directories where config file is searched for. StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir}; // Try to find config file. First try file with corrected architecture. llvm::SmallString<128> CfgFilePath; if (!FixedConfigFile.empty()) { if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) return readConfigFile(CfgFilePath); // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. FixedConfigFile.resize(FixedArchPrefixLen); FixedConfigFile.append(".cfg"); if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) return readConfigFile(CfgFilePath); } // Then try original file name. if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) return readConfigFile(CfgFilePath); // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. if (!ClangNameParts.ModeSuffix.empty() && !ClangNameParts.TargetPrefix.empty()) { CfgFileName.assign(ClangNameParts.TargetPrefix); CfgFileName.append(".cfg"); if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) return readConfigFile(CfgFilePath); } // Report error but only if config file was specified explicitly, by option // --config. If it was deduced from executable name, it is not an error. if (FileSpecifiedExplicitly) { Diag(diag::err_drv_config_file_not_found) << CfgFileName; for (const StringRef &SearchDir : CfgFileSearchDirs) if (!SearchDir.empty()) Diag(diag::note_drv_config_file_searched_in) << SearchDir; return true; } return false; } Compilation *Driver::BuildCompilation(ArrayRef ArgList) { llvm::PrettyStackTraceString CrashInfo("Compilation construction"); // FIXME: Handle environment options which affect driver behavior, somewhere // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. // We look for the driver mode option early, because the mode can affect // how other options are parsed. ParseDriverMode(ClangExecutable, ArgList.slice(1)); // FIXME: What are we going to do with -V and -b? // Arguments specified in command line. bool ContainsError; CLOptions = std::make_unique( ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError)); // Try parsing configuration file. if (!ContainsError) ContainsError = loadConfigFile(); bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); // All arguments, from both config file and command line. InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) : std::move(*CLOptions)); // The args for config files or /clang: flags belong to different InputArgList // objects than Args. This copies an Arg from one of those other InputArgLists // to the ownership of Args. auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) { unsigned Index = Args.MakeIndex(Opt->getSpelling()); Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index), Index, BaseArg); Copy->getValues() = Opt->getValues(); if (Opt->isClaimed()) Copy->claim(); Copy->setOwnsValues(Opt->getOwnsValues()); Opt->setOwnsValues(false); Args.append(Copy); }; if (HasConfigFile) for (auto *Opt : *CLOptions) { if (Opt->getOption().matches(options::OPT_config)) continue; const Arg *BaseArg = &Opt->getBaseArg(); if (BaseArg == Opt) BaseArg = nullptr; appendOneArg(Opt, BaseArg); } // In CL mode, look for any pass-through arguments if (IsCLMode() && !ContainsError) { SmallVector CLModePassThroughArgList; for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { A->claim(); CLModePassThroughArgList.push_back(A->getValue()); } if (!CLModePassThroughArgList.empty()) { // Parse any pass through args using default clang processing rather // than clang-cl processing. auto CLModePassThroughOptions = std::make_unique( ParseArgStrings(CLModePassThroughArgList, false, ContainsError)); if (!ContainsError) for (auto *Opt : *CLModePassThroughOptions) { appendOneArg(Opt, nullptr); } } } // Check for working directory option before accessing any files if (Arg *WD = Args.getLastArg(options::OPT_working_directory)) if (VFS->setCurrentWorkingDirectory(WD->getValue())) Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue(); // FIXME: This stuff needs to go into the Compilation, not the driver. bool CCCPrintPhases; // Silence driver warnings if requested Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); // -no-canonical-prefixes is used very early in main. Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); // f(no-)integated-cc1 is also used very early in main. Args.ClaimAllArgs(options::OPT_fintegrated_cc1); Args.ClaimAllArgs(options::OPT_fno_integrated_cc1); // Ignore -pipe. Args.ClaimAllArgs(options::OPT_pipe); // Extract -ccc args. // // FIXME: We need to figure out where this behavior should live. Most of it // should be outside in the client; the parts that aren't should have proper // options, either by introducing new ones or by overloading gcc ones like -V // or -b. CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) CCCGenericGCCName = A->getValue(); GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, options::OPT_fno_crash_diagnostics, !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); // FIXME: TargetTriple is used by the target-prefixed calls to as/ld // and getToolChain is const. if (IsCLMode()) { // clang-cl targets MSVC-style Win32. llvm::Triple T(TargetTriple); T.setOS(llvm::Triple::Win32); T.setVendor(llvm::Triple::PC); T.setEnvironment(llvm::Triple::MSVC); T.setObjectFormat(llvm::Triple::COFF); TargetTriple = T.str(); } if (const Arg *A = Args.getLastArg(options::OPT_target)) TargetTriple = A->getValue(); if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) Dir = InstalledDir = A->getValue(); for (const Arg *A : Args.filtered(options::OPT_B)) { A->claim(); PrefixDirs.push_back(A->getValue(0)); } if (Optional CompilerPathValue = llvm::sys::Process::GetEnv("COMPILER_PATH")) { StringRef CompilerPath = *CompilerPathValue; while (!CompilerPath.empty()) { std::pair Split = CompilerPath.split(llvm::sys::EnvPathSeparator); PrefixDirs.push_back(std::string(Split.first)); CompilerPath = Split.second; } } if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) SysRoot = A->getValue(); if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) DyldPrefix = A->getValue(); if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) ResourceDir = A->getValue(); if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { SaveTemps = llvm::StringSwitch(A->getValue()) .Case("cwd", SaveTempsCwd) .Case("obj", SaveTempsObj) .Default(SaveTempsCwd); } setLTOMode(Args); // Process -fembed-bitcode= flags. if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { StringRef Name = A->getValue(); unsigned Model = llvm::StringSwitch(Name) .Case("off", EmbedNone) .Case("all", EmbedBitcode) .Case("bitcode", EmbedBitcode) .Case("marker", EmbedMarker) .Default(~0U); if (Model == ~0U) { Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Name; } else BitcodeEmbed = static_cast(Model); } std::unique_ptr UArgs = std::make_unique(std::move(Args)); // Perform the default argument translations. DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); // Owned by the host. const ToolChain &TC = getToolChain( *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); // The compilation takes ownership of Args. Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, ContainsError); if (!HandleImmediateArgs(*C)) return C; // Construct the list of inputs. InputList Inputs; BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); // Populate the tool chains for the offloading devices, if any. CreateOffloadingDeviceToolChains(*C, Inputs); // Construct the list of abstract actions to perform for this compilation. On // MachO targets this uses the driver-driver and universal actions. if (TC.getTriple().isOSBinFormatMachO()) BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); else BuildActions(*C, C->getArgs(), Inputs, C->getActions()); if (CCCPrintPhases) { PrintActions(*C); return C; } BuildJobs(*C); return C; } static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { llvm::opt::ArgStringList ASL; for (const auto *A : Args) A->render(Args, ASL); for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { if (I != ASL.begin()) OS << ' '; llvm::sys::printArg(OS, *I, true); } OS << '\n'; } bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, SmallString<128> &CrashDiagDir) { using namespace llvm::sys; assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && "Only knows about .crash files on Darwin"); // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern // clang-__.crash. path::home_directory(CrashDiagDir); if (CrashDiagDir.startswith("/var/root")) CrashDiagDir = "/"; path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); int PID = #if LLVM_ON_UNIX getpid(); #else 0; #endif std::error_code EC; fs::file_status FileStatus; TimePoint<> LastAccessTime; SmallString<128> CrashFilePath; // Lookup the .crash files and get the one generated by a subprocess spawned // by this driver invocation. for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; File != FileEnd && !EC; File.increment(EC)) { StringRef FileName = path::filename(File->path()); if (!FileName.startswith(Name)) continue; if (fs::status(File->path(), FileStatus)) continue; llvm::ErrorOr> CrashFile = llvm::MemoryBuffer::getFile(File->path()); if (!CrashFile) continue; // The first line should start with "Process:", otherwise this isn't a real // .crash file. StringRef Data = CrashFile.get()->getBuffer(); if (!Data.startswith("Process:")) continue; // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" size_t ParentProcPos = Data.find("Parent Process:"); if (ParentProcPos == StringRef::npos) continue; size_t LineEnd = Data.find_first_of("\n", ParentProcPos); if (LineEnd == StringRef::npos) continue; StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); int OpenBracket = -1, CloseBracket = -1; for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { if (ParentProcess[i] == '[') OpenBracket = i; if (ParentProcess[i] == ']') CloseBracket = i; } // Extract the parent process PID from the .crash file and check whether // it matches this driver invocation pid. int CrashPID; if (OpenBracket < 0 || CloseBracket < 0 || ParentProcess.slice(OpenBracket + 1, CloseBracket) .getAsInteger(10, CrashPID) || CrashPID != PID) { continue; } // Found a .crash file matching the driver pid. To avoid getting an older // and misleading crash file, continue looking for the most recent. // FIXME: the driver can dispatch multiple cc1 invocations, leading to // multiple crashes poiting to the same parent process. Since the driver // does not collect pid information for the dispatched invocation there's // currently no way to distinguish among them. const auto FileAccessTime = FileStatus.getLastModificationTime(); if (FileAccessTime > LastAccessTime) { CrashFilePath.assign(File->path()); LastAccessTime = FileAccessTime; } } // If found, copy it over to the location of other reproducer files. if (!CrashFilePath.empty()) { EC = fs::copy_file(CrashFilePath, ReproCrashFilename); if (EC) return false; return true; } return false; } // When clang crashes, produce diagnostic information including the fully // preprocessed source file(s). Request that the developer attach the // diagnostic information to a bug report. void Driver::generateCompilationDiagnostics( Compilation &C, const Command &FailingCommand, StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) return; // Don't try to generate diagnostics for link or dsymutil jobs. if (FailingCommand.getCreator().isLinkJob() || FailingCommand.getCreator().isDsymutilJob()) return; // Print the version of the compiler. PrintVersion(C, llvm::errs()); // Suppress driver output and emit preprocessor output to temp file. Mode = CPPMode; CCGenDiagnostics = true; // Save the original job command(s). Command Cmd = FailingCommand; // Keep track of whether we produce any errors while trying to produce // preprocessed sources. DiagnosticErrorTrap Trap(Diags); // Suppress tool output. C.initCompilationForDiagnostics(); // Construct the list of inputs. InputList Inputs; BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { bool IgnoreInput = false; // Ignore input from stdin or any inputs that cannot be preprocessed. // Check type first as not all linker inputs have a value. if (types::getPreprocessedType(it->first) == types::TY_INVALID) { IgnoreInput = true; } else if (!strcmp(it->second->getValue(), "-")) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s) - " "ignoring input from stdin."; IgnoreInput = true; } if (IgnoreInput) { it = Inputs.erase(it); ie = Inputs.end(); } else { ++it; } } if (Inputs.empty()) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s) - " "no preprocessable inputs."; return; } // Don't attempt to generate preprocessed files if multiple -arch options are // used, unless they're all duplicates. llvm::StringSet<> ArchNames; for (const Arg *A : C.getArgs()) { if (A->getOption().matches(options::OPT_arch)) { StringRef ArchName = A->getValue(); ArchNames.insert(ArchName); } } if (ArchNames.size() > 1) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s) - cannot generate " "preprocessed source with multiple -arch options."; return; } // Construct the list of abstract actions to perform for this compilation. On // Darwin OSes this uses the driver-driver and builds universal actions. const ToolChain &TC = C.getDefaultToolChain(); if (TC.getTriple().isOSBinFormatMachO()) BuildUniversalActions(C, TC, Inputs); else BuildActions(C, C.getArgs(), Inputs, C.getActions()); BuildJobs(C); // If there were errors building the compilation, quit now. if (Trap.hasErrorOccurred()) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s)."; return; } // Generate preprocessed output. SmallVector, 4> FailingCommands; C.ExecuteJobs(C.getJobs(), FailingCommands); // If any of the preprocessing commands failed, clean up and exit. if (!FailingCommands.empty()) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s)."; return; } const ArgStringList &TempFiles = C.getTempFiles(); if (TempFiles.empty()) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating preprocessed source(s)."; return; } Diag(clang::diag::note_drv_command_failed_diag_msg) << "\n********************\n\n" "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" "Preprocessed source(s) and associated run script(s) are located at:"; SmallString<128> VFS; SmallString<128> ReproCrashFilename; for (const char *TempFile : TempFiles) { Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; if (Report) Report->TemporaryFiles.push_back(TempFile); if (ReproCrashFilename.empty()) { ReproCrashFilename = TempFile; llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); } if (StringRef(TempFile).endswith(".cache")) { // In some cases (modules) we'll dump extra data to help with reproducing // the crash into a directory next to the output. VFS = llvm::sys::path::filename(TempFile); llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); } } // Assume associated files are based off of the first temporary file. CrashReportInfo CrashInfo(TempFiles[0], VFS); llvm::SmallString<128> Script(CrashInfo.Filename); llvm::sys::path::replace_extension(Script, "sh"); std::error_code EC; llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew); if (EC) { Diag(clang::diag::note_drv_command_failed_diag_msg) << "Error generating run script: " << Script << " " << EC.message(); } else { ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" << "# Driver args: "; printArgList(ScriptOS, C.getInputArgs()); ScriptOS << "# Original command: "; Cmd.Print(ScriptOS, "\n", /*Quote=*/true); Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); if (!AdditionalInformation.empty()) ScriptOS << "\n# Additional information: " << AdditionalInformation << "\n"; if (Report) Report->TemporaryFiles.push_back(std::string(Script.str())); Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; } // On darwin, provide information about the .crash diagnostic report. if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { SmallString<128> CrashDiagDir; if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { Diag(clang::diag::note_drv_command_failed_diag_msg) << ReproCrashFilename.str(); } else { // Suggest a directory for the user to look for .crash files. llvm::sys::path::append(CrashDiagDir, Name); CrashDiagDir += "__.crash"; Diag(clang::diag::note_drv_command_failed_diag_msg) << "Crash backtrace is located in"; Diag(clang::diag::note_drv_command_failed_diag_msg) << CrashDiagDir.str(); Diag(clang::diag::note_drv_command_failed_diag_msg) << "(choose the .crash file that corresponds to your crash)"; } } for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, options::OPT_frewrite_map_file_EQ)) Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); Diag(clang::diag::note_drv_command_failed_diag_msg) << "\n\n********************"; } void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { // Since commandLineFitsWithinSystemLimits() may underestimate system's // capacity if the tool does not support response files, there is a chance/ // that things will just work without a response file, so we silently just // skip it. if (Cmd.getResponseFileSupport().ResponseKind == ResponseFileSupport::RF_None || llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), Cmd.getArguments())) return; std::string TmpName = GetTemporaryPath("response", "txt"); Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); } int Driver::ExecuteCompilation( Compilation &C, SmallVectorImpl> &FailingCommands) { // Just print if -### was present. if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { C.getJobs().Print(llvm::errs(), "\n", true); return 0; } // If there were errors building the compilation, quit now. if (Diags.hasErrorOccurred()) return 1; // Set up response file names for each command, if necessary for (auto &Job : C.getJobs()) setUpResponseFiles(C, Job); C.ExecuteJobs(C.getJobs(), FailingCommands); // If the command succeeded, we are done. if (FailingCommands.empty()) return 0; // Otherwise, remove result files and print extra information about abnormal // failures. int Res = 0; for (const auto &CmdPair : FailingCommands) { int CommandRes = CmdPair.first; const Command *FailingCommand = CmdPair.second; // Remove result files if we're not saving temps. if (!isSaveTempsEnabled()) { const JobAction *JA = cast(&FailingCommand->getSource()); C.CleanupFileMap(C.getResultFiles(), JA, true); // Failure result files are valid unless we crashed. if (CommandRes < 0) C.CleanupFileMap(C.getFailureResultFiles(), JA, true); } #if LLVM_ON_UNIX // llvm/lib/Support/Unix/Signals.inc will exit with a special return code // for SIGPIPE. Do not print diagnostics for this case. if (CommandRes == EX_IOERR) { Res = CommandRes; continue; } #endif // Print extra information about abnormal failures, if possible. // // This is ad-hoc, but we don't want to be excessively noisy. If the result // status was 1, assume the command failed normally. In particular, if it // was the compiler then assume it gave a reasonable error code. Failures // in other tools are less common, and they generally have worse // diagnostics, so always print the diagnostic there. const Tool &FailingTool = FailingCommand->getCreator(); if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { // FIXME: See FIXME above regarding result code interpretation. if (CommandRes < 0) Diag(clang::diag::err_drv_command_signalled) << FailingTool.getShortName(); else Diag(clang::diag::err_drv_command_failed) << FailingTool.getShortName() << CommandRes; } } return Res; } void Driver::PrintHelp(bool ShowHidden) const { unsigned IncludedFlagsBitmask; unsigned ExcludedFlagsBitmask; std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = getIncludeExcludeOptionFlagMasks(IsCLMode()); ExcludedFlagsBitmask |= options::NoDriverOption; if (!ShowHidden) ExcludedFlagsBitmask |= HelpHidden; if (IsFlangMode()) IncludedFlagsBitmask |= options::FlangOption; else ExcludedFlagsBitmask |= options::FlangOnlyOption; std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), IncludedFlagsBitmask, ExcludedFlagsBitmask, /*ShowAllAliases=*/false); } void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { if (IsFlangMode()) { OS << getClangToolFullVersion("flang-new") << '\n'; } else { // FIXME: The following handlers should use a callback mechanism, we don't // know what the client would like to do. OS << getClangFullVersion() << '\n'; } const ToolChain &TC = C.getDefaultToolChain(); OS << "Target: " << TC.getTripleString() << '\n'; // Print the threading model. if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { // Don't print if the ToolChain would have barfed on it already if (TC.isThreadModelSupported(A->getValue())) OS << "Thread model: " << A->getValue(); } else OS << "Thread model: " << TC.getThreadModel(); OS << '\n'; // Print out the install directory. OS << "InstalledDir: " << InstalledDir << '\n'; // If configuration file was used, print its path. if (!ConfigFile.empty()) OS << "Configuration file: " << ConfigFile << '\n'; } /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories /// option. static void PrintDiagnosticCategories(raw_ostream &OS) { // Skip the empty category. for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; ++i) OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; } void Driver::HandleAutocompletions(StringRef PassedFlags) const { if (PassedFlags == "") return; // Print out all options that start with a given argument. This is used for // shell autocompletion. std::vector SuggestedCompletions; std::vector Flags; unsigned int DisableFlags = options::NoDriverOption | options::Unsupported | options::Ignored; // Make sure that Flang-only options don't pollute the Clang output // TODO: Make sure that Clang-only options don't pollute Flang output if (!IsFlangMode()) DisableFlags |= options::FlangOnlyOption; // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," // because the latter indicates that the user put space before pushing tab // which should end up in a file completion. const bool HasSpace = PassedFlags.endswith(","); // Parse PassedFlags by "," as all the command-line flags are passed to this // function separated by "," StringRef TargetFlags = PassedFlags; while (TargetFlags != "") { StringRef CurFlag; std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); Flags.push_back(std::string(CurFlag)); } // We want to show cc1-only options only when clang is invoked with -cc1 or // -Xclang. if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) DisableFlags &= ~options::NoDriverOption; const llvm::opt::OptTable &Opts = getOpts(); StringRef Cur; Cur = Flags.at(Flags.size() - 1); StringRef Prev; if (Flags.size() >= 2) { Prev = Flags.at(Flags.size() - 2); SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur); } if (SuggestedCompletions.empty()) SuggestedCompletions = Opts.suggestValueCompletions(Cur, ""); // If Flags were empty, it means the user typed `clang [tab]` where we should // list all possible flags. If there was no value completion and the user // pressed tab after a space, we should fall back to a file completion. // We're printing a newline to be consistent with what we print at the end of // this function. if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { llvm::outs() << '\n'; return; } // When flag ends with '=' and there was no value completion, return empty // string and fall back to the file autocompletion. if (SuggestedCompletions.empty() && !Cur.endswith("=")) { // If the flag is in the form of "--autocomplete=-foo", // we were requested to print out all option names that start with "-foo". // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags); // We have to query the -W flags manually as they're not in the OptTable. // TODO: Find a good way to add them to OptTable instead and them remove // this code. for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) if (S.startswith(Cur)) SuggestedCompletions.push_back(std::string(S)); } // Sort the autocomplete candidates so that shells print them out in a // deterministic order. We could sort in any way, but we chose // case-insensitive sorting for consistency with the -help option // which prints out options in the case-insensitive alphabetical order. llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { if (int X = A.compare_lower(B)) return X < 0; return A.compare(B) > 0; }); llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; } bool Driver::HandleImmediateArgs(const Compilation &C) { // The order these options are handled in gcc is all over the place, but we // don't expect inconsistencies w.r.t. that to matter in practice. if (C.getArgs().hasArg(options::OPT_dumpmachine)) { llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; return false; } if (C.getArgs().hasArg(options::OPT_dumpversion)) { // Since -dumpversion is only implemented for pedantic GCC compatibility, we // return an answer which matches our definition of __VERSION__. llvm::outs() << CLANG_VERSION_STRING << "\n"; return false; } if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { PrintDiagnosticCategories(llvm::outs()); return false; } if (C.getArgs().hasArg(options::OPT_help) || C.getArgs().hasArg(options::OPT__help_hidden)) { PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); return false; } if (C.getArgs().hasArg(options::OPT__version)) { // Follow gcc behavior and use stdout for --version and stderr for -v. PrintVersion(C, llvm::outs()); return false; } if (C.getArgs().hasArg(options::OPT_v) || C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || C.getArgs().hasArg(options::OPT_print_supported_cpus)) { PrintVersion(C, llvm::errs()); SuppressMissingInputWarning = true; } if (C.getArgs().hasArg(options::OPT_v)) { if (!SystemConfigDir.empty()) llvm::errs() << "System configuration file directory: " << SystemConfigDir << "\n"; if (!UserConfigDir.empty()) llvm::errs() << "User configuration file directory: " << UserConfigDir << "\n"; } const ToolChain &TC = C.getDefaultToolChain(); if (C.getArgs().hasArg(options::OPT_v)) TC.printVerboseInfo(llvm::errs()); if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { llvm::outs() << ResourceDir << '\n'; return false; } if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { llvm::outs() << "programs: ="; bool separator = false; // Print -B and COMPILER_PATH. for (const std::string &Path : PrefixDirs) { if (separator) llvm::outs() << llvm::sys::EnvPathSeparator; llvm::outs() << Path; separator = true; } for (const std::string &Path : TC.getProgramPaths()) { if (separator) llvm::outs() << llvm::sys::EnvPathSeparator; llvm::outs() << Path; separator = true; } llvm::outs() << "\n"; llvm::outs() << "libraries: =" << ResourceDir; StringRef sysroot = C.getSysRoot(); for (const std::string &Path : TC.getFilePaths()) { // Always print a separator. ResourceDir was the first item shown. llvm::outs() << llvm::sys::EnvPathSeparator; // Interpretation of leading '=' is needed only for NetBSD. if (Path[0] == '=') llvm::outs() << sysroot << Path.substr(1); else llvm::outs() << Path; } llvm::outs() << "\n"; return false; } // FIXME: The following handlers should use a callback mechanism, we don't // know what the client would like to do. if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; return false; } if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { StringRef ProgName = A->getValue(); // Null program name cannot have a path. if (! ProgName.empty()) llvm::outs() << GetProgramPath(ProgName, TC); llvm::outs() << "\n"; return false; } if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { StringRef PassedFlags = A->getValue(); HandleAutocompletions(PassedFlags); return false; } if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); RegisterEffectiveTriple TripleRAII(TC, Triple); switch (RLT) { case ToolChain::RLT_CompilerRT: llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; break; case ToolChain::RLT_Libgcc: llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; break; } return false; } if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { for (const Multilib &Multilib : TC.getMultilibs()) llvm::outs() << Multilib << "\n"; return false; } if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { const Multilib &Multilib = TC.getMultilib(); if (Multilib.gccSuffix().empty()) llvm::outs() << ".\n"; else { StringRef Suffix(Multilib.gccSuffix()); assert(Suffix.front() == '/'); llvm::outs() << Suffix.substr(1) << "\n"; } return false; } if (C.getArgs().hasArg(options::OPT_print_target_triple)) { llvm::outs() << TC.getTripleString() << "\n"; return false; } if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); llvm::outs() << Triple.getTriple() << "\n"; return false; } if (C.getArgs().hasArg(options::OPT_print_targets)) { llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs()); return false; } return true; } enum { TopLevelAction = 0, HeadSibAction = 1, OtherSibAction = 2, }; // Display an action graph human-readably. Action A is the "sink" node // and latest-occuring action. Traversal is in pre-order, visiting the // inputs to each action before printing the action itself. static unsigned PrintActions1(const Compilation &C, Action *A, std::map &Ids, Twine Indent = {}, int Kind = TopLevelAction) { if (Ids.count(A)) // A was already visited. return Ids[A]; std::string str; llvm::raw_string_ostream os(str); auto getSibIndent = [](int K) -> Twine { return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : ""; }; Twine SibIndent = Indent + getSibIndent(Kind); int SibKind = HeadSibAction; os << Action::getClassName(A->getKind()) << ", "; if (InputAction *IA = dyn_cast(A)) { os << "\"" << IA->getInputArg().getValue() << "\""; } else if (BindArchAction *BIA = dyn_cast(A)) { os << '"' << BIA->getArchName() << '"' << ", {" << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}"; } else if (OffloadAction *OA = dyn_cast(A)) { bool IsFirst = true; OA->doOnEachDependence( [&](Action *A, const ToolChain *TC, const char *BoundArch) { assert(TC && "Unknown host toolchain"); // E.g. for two CUDA device dependences whose bound arch is sm_20 and // sm_35 this will generate: // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" // (nvptx64-nvidia-cuda:sm_35) {#ID} if (!IsFirst) os << ", "; os << '"'; os << A->getOffloadingKindPrefix(); os << " ("; os << TC->getTriple().normalize(); if (BoundArch) os << ":" << BoundArch; os << ")"; os << '"'; os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}"; IsFirst = false; SibKind = OtherSibAction; }); } else { const ActionList *AL = &A->getInputs(); if (AL->size()) { const char *Prefix = "{"; for (Action *PreRequisite : *AL) { os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind); Prefix = ", "; SibKind = OtherSibAction; } os << "}"; } else os << "{}"; } // Append offload info for all options other than the offloading action // itself (e.g. (cuda-device, sm_20) or (cuda-host)). std::string offload_str; llvm::raw_string_ostream offload_os(offload_str); if (!isa(A)) { auto S = A->getOffloadingKindPrefix(); if (!S.empty()) { offload_os << ", (" << S; if (A->getOffloadingArch()) offload_os << ", " << A->getOffloadingArch(); offload_os << ")"; } } auto getSelfIndent = [](int K) -> Twine { return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : ""; }; unsigned Id = Ids.size(); Ids[A] = Id; llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", " << types::getTypeName(A->getType()) << offload_os.str() << "\n"; return Id; } // Print the action graphs in a compilation C. // For example "clang -c file1.c file2.c" is composed of two subgraphs. void Driver::PrintActions(const Compilation &C) const { std::map Ids; for (Action *A : C.getActions()) PrintActions1(C, A, Ids); } /// Check whether the given input tree contains any compilation or /// assembly actions. static bool ContainsCompileOrAssembleAction(const Action *A) { if (isa(A) || isa(A) || isa(A)) return true; for (const Action *Input : A->inputs()) if (ContainsCompileOrAssembleAction(Input)) return true; return false; } void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, const InputList &BAInputs) const { DerivedArgList &Args = C.getArgs(); ActionList &Actions = C.getActions(); llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); // Collect the list of architectures. Duplicates are allowed, but should only // be handled once (in the order seen). llvm::StringSet<> ArchNames; SmallVector Archs; for (Arg *A : Args) { if (A->getOption().matches(options::OPT_arch)) { // Validate the option here; we don't save the type here because its // particular spelling may participate in other driver choices. llvm::Triple::ArchType Arch = tools::darwin::getArchTypeForMachOArchName(A->getValue()); if (Arch == llvm::Triple::UnknownArch) { Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); continue; } A->claim(); if (ArchNames.insert(A->getValue()).second) Archs.push_back(A->getValue()); } } // When there is no explicit arch for this platform, make sure we still bind // the architecture (to the default) so that -Xarch_ is handled correctly. if (!Archs.size()) Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); ActionList SingleActions; BuildActions(C, Args, BAInputs, SingleActions); // Add in arch bindings for every top level action, as well as lipo and // dsymutil steps if needed. for (Action* Act : SingleActions) { // Make sure we can lipo this kind of output. If not (and it is an actual // output) then we disallow, since we can't create an output file with the // right name without overwriting it. We could remove this oddity by just // changing the output names to include the arch, which would also fix // -save-temps. Compatibility wins for now. if (Archs.size() > 1 && !types::canLipoType(Act->getType())) Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) << types::getTypeName(Act->getType()); ActionList Inputs; for (unsigned i = 0, e = Archs.size(); i != e; ++i) Inputs.push_back(C.MakeAction(Act, Archs[i])); // Lipo if necessary, we do it this way because we need to set the arch flag // so that -Xarch_ gets overwritten. if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) Actions.append(Inputs.begin(), Inputs.end()); else Actions.push_back(C.MakeAction(Inputs, Act->getType())); // Handle debug info queries. Arg *A = Args.getLastArg(options::OPT_g_Group); bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) && !A->getOption().matches(options::OPT_gstabs); if ((enablesDebugInfo || willEmitRemarks(Args)) && ContainsCompileOrAssembleAction(Actions.back())) { // Add a 'dsymutil' step if necessary, when debug info is enabled and we // have a compile input. We need to run 'dsymutil' ourselves in such cases // because the debug info will refer to a temporary object file which // will be removed at the end of the compilation process. if (Act->getType() == types::TY_Image) { ActionList Inputs; Inputs.push_back(Actions.back()); Actions.pop_back(); Actions.push_back( C.MakeAction(Inputs, types::TY_dSYM)); } // Verify the debug info output. if (Args.hasArg(options::OPT_verify_debug_info)) { Action* LastAction = Actions.back(); Actions.pop_back(); Actions.push_back(C.MakeAction( LastAction, types::TY_Nothing)); } } } } bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, types::ID Ty, bool TypoCorrect) const { if (!getCheckInputsExist()) return true; // stdin always exists. if (Value == "-") return true; if (getVFS().exists(Value)) return true; if (IsCLMode()) { if (!llvm::sys::path::is_absolute(Twine(Value)) && llvm::sys::Process::FindInEnvPath("LIB", Value, ';')) return true; if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { // Arguments to the /link flag might cause the linker to search for object // and library files in paths we don't know about. Don't error in such // cases. return true; } } if (TypoCorrect) { // Check if the filename is a typo for an option flag. OptTable thinks // that all args that are not known options and that start with / are // filenames, but e.g. `/diagnostic:caret` is more likely a typo for // the option `/diagnostics:caret` than a reference to a file in the root // directory. unsigned IncludedFlagsBitmask; unsigned ExcludedFlagsBitmask; std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = getIncludeExcludeOptionFlagMasks(IsCLMode()); std::string Nearest; if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) <= 1) { Diag(clang::diag::err_drv_no_such_file_with_suggestion) << Value << Nearest; return false; } } Diag(clang::diag::err_drv_no_such_file) << Value; return false; } // Construct a the list of inputs and their types. void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, InputList &Inputs) const { const llvm::opt::OptTable &Opts = getOpts(); // Track the current user specified (-x) input. We also explicitly track the // argument used to set the type; we only want to claim the type when we // actually use it, so we warn about unused -x arguments. types::ID InputType = types::TY_Nothing; Arg *InputTypeArg = nullptr; // The last /TC or /TP option sets the input type to C or C++ globally. if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { InputTypeArg = TCTP; InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) ? types::TY_C : types::TY_CXX; Arg *Previous = nullptr; bool ShowNote = false; for (Arg *A : Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { if (Previous) { Diag(clang::diag::warn_drv_overriding_flag_option) << Previous->getSpelling() << A->getSpelling(); ShowNote = true; } Previous = A; } if (ShowNote) Diag(clang::diag::note_drv_t_option_is_global); // No driver mode exposes -x and /TC or /TP; we don't support mixing them. assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); } for (Arg *A : Args) { if (A->getOption().getKind() == Option::InputClass) { const char *Value = A->getValue(); types::ID Ty = types::TY_INVALID; // Infer the input type if necessary. if (InputType == types::TY_Nothing) { // If there was an explicit arg for this, claim it. if (InputTypeArg) InputTypeArg->claim(); // stdin must be handled specially. if (memcmp(Value, "-", 2) == 0) { // If running with -E, treat as a C input (this changes the builtin // macros, for example). This may be overridden by -ObjC below. // // Otherwise emit an error but still use a valid type to avoid // spurious errors (e.g., no inputs). if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl : clang::diag::err_drv_unknown_stdin_type); Ty = types::TY_C; } else { // Otherwise lookup by extension. // Fallback is C if invoked as C preprocessor, C++ if invoked with // clang-cl /E, or Object otherwise. // We use a host hook here because Darwin at least has its own // idea of what .s is. if (const char *Ext = strrchr(Value, '.')) Ty = TC.LookupTypeForExtension(Ext + 1); if (Ty == types::TY_INVALID) { if (CCCIsCPP()) Ty = types::TY_C; else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E)) Ty = types::TY_CXX; else Ty = types::TY_Object; } // If the driver is invoked as C++ compiler (like clang++ or c++) it // should autodetect some input files as C++ for g++ compatibility. if (CCCIsCXX()) { types::ID OldTy = Ty; Ty = types::lookupCXXTypeForCType(Ty); if (Ty != OldTy) Diag(clang::diag::warn_drv_treating_input_as_cxx) << getTypeName(OldTy) << getTypeName(Ty); } // If running with -fthinlto-index=, extensions that normally identify // native object files actually identify LLVM bitcode files. if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) && Ty == types::TY_Object) Ty = types::TY_LLVM_BC; } // -ObjC and -ObjC++ override the default language, but only for "source // files". We just treat everything that isn't a linker input as a // source file. // // FIXME: Clean this up if we move the phase sequence into the type. if (Ty != types::TY_Object) { if (Args.hasArg(options::OPT_ObjC)) Ty = types::TY_ObjC; else if (Args.hasArg(options::OPT_ObjCXX)) Ty = types::TY_ObjCXX; } } else { assert(InputTypeArg && "InputType set w/o InputTypeArg"); if (!InputTypeArg->getOption().matches(options::OPT_x)) { // If emulating cl.exe, make sure that /TC and /TP don't affect input // object files. const char *Ext = strrchr(Value, '.'); if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) Ty = types::TY_Object; } if (Ty == types::TY_INVALID) { Ty = InputType; InputTypeArg->claim(); } } if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) Inputs.push_back(std::make_pair(Ty, A)); } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { StringRef Value = A->getValue(); if (DiagnoseInputExistence(Args, Value, types::TY_C, /*TypoCorrect=*/false)) { Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); Inputs.push_back(std::make_pair(types::TY_C, InputArg)); } A->claim(); } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { StringRef Value = A->getValue(); if (DiagnoseInputExistence(Args, Value, types::TY_CXX, /*TypoCorrect=*/false)) { Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); } A->claim(); } else if (A->getOption().hasFlag(options::LinkerInput)) { // Just treat as object type, we could make a special type for this if // necessary. Inputs.push_back(std::make_pair(types::TY_Object, A)); } else if (A->getOption().matches(options::OPT_x)) { InputTypeArg = A; InputType = types::lookupTypeForTypeSpecifier(A->getValue()); A->claim(); // Follow gcc behavior and treat as linker input for invalid -x // options. Its not clear why we shouldn't just revert to unknown; but // this isn't very important, we might as well be bug compatible. if (!InputType) { Diag(clang::diag::err_drv_unknown_language) << A->getValue(); InputType = types::TY_Object; } } else if (A->getOption().getID() == options::OPT_U) { assert(A->getNumValues() == 1 && "The /U option has one value."); StringRef Val = A->getValue(0); if (Val.find_first_of("/\\") != StringRef::npos) { // Warn about e.g. "/Users/me/myfile.c". Diag(diag::warn_slash_u_filename) << Val; Diag(diag::note_use_dashdash); } } } if (CCCIsCPP() && Inputs.empty()) { // If called as standalone preprocessor, stdin is processed // if no other input is present. Arg *A = MakeInputArg(Args, Opts, "-"); Inputs.push_back(std::make_pair(types::TY_C, A)); } } namespace { /// Provides a convenient interface for different programming models to generate /// the required device actions. class OffloadingActionBuilder final { /// Flag used to trace errors in the builder. bool IsValid = false; /// The compilation that is using this builder. Compilation &C; /// Map between an input argument and the offload kinds used to process it. std::map InputArgToOffloadKindMap; /// Builder interface. It doesn't build anything or keep any state. class DeviceActionBuilder { public: typedef const llvm::SmallVectorImpl PhasesTy; enum ActionBuilderReturnCode { // The builder acted successfully on the current action. ABRT_Success, // The builder didn't have to act on the current action. ABRT_Inactive, // The builder was successful and requested the host action to not be // generated. ABRT_Ignore_Host, }; protected: /// Compilation associated with this builder. Compilation &C; /// Tool chains associated with this builder. The same programming /// model may have associated one or more tool chains. SmallVector ToolChains; /// The derived arguments associated with this builder. DerivedArgList &Args; /// The inputs associated with this builder. const Driver::InputList &Inputs; /// The associated offload kind. Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; public: DeviceActionBuilder(Compilation &C, DerivedArgList &Args, const Driver::InputList &Inputs, Action::OffloadKind AssociatedOffloadKind) : C(C), Args(Args), Inputs(Inputs), AssociatedOffloadKind(AssociatedOffloadKind) {} virtual ~DeviceActionBuilder() {} /// Fill up the array \a DA with all the device dependences that should be /// added to the provided host action \a HostAction. By default it is /// inactive. virtual ActionBuilderReturnCode getDeviceDependences(OffloadAction::DeviceDependences &DA, phases::ID CurPhase, phases::ID FinalPhase, PhasesTy &Phases) { return ABRT_Inactive; } /// Update the state to include the provided host action \a HostAction as a /// dependency of the current device action. By default it is inactive. virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { return ABRT_Inactive; } /// Append top level actions generated by the builder. virtual void appendTopLevelActions(ActionList &AL) {} /// Append linker device actions generated by the builder. virtual void appendLinkDeviceActions(ActionList &AL) {} /// Append linker host action generated by the builder. virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; } /// Append linker actions generated by the builder. virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} /// Initialize the builder. Return true if any initialization errors are /// found. virtual bool initialize() { return false; } /// Return true if the builder can use bundling/unbundling. virtual bool canUseBundlerUnbundler() const { return false; } /// Return true if this builder is valid. We have a valid builder if we have /// associated device tool chains. bool isValid() { return !ToolChains.empty(); } /// Return the associated offload kind. Action::OffloadKind getAssociatedOffloadKind() { return AssociatedOffloadKind; } }; /// Base class for CUDA/HIP action builder. It injects device code in /// the host backend action. class CudaActionBuilderBase : public DeviceActionBuilder { protected: /// Flags to signal if the user requested host-only or device-only /// compilation. bool CompileHostOnly = false; bool CompileDeviceOnly = false; bool EmitLLVM = false; bool EmitAsm = false; /// ID to identify each device compilation. For CUDA it is simply the /// GPU arch string. For HIP it is either the GPU arch string or GPU /// arch string plus feature strings delimited by a plus sign, e.g. /// gfx906+xnack. struct TargetID { /// Target ID string which is persistent throughout the compilation. const char *ID; TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); } TargetID(const char *ID) : ID(ID) {} operator const char *() { return ID; } operator StringRef() { return StringRef(ID); } }; /// List of GPU architectures to use in this compilation. SmallVector GpuArchList; /// The CUDA actions for the current input. ActionList CudaDeviceActions; /// The CUDA fat binary if it was generated for the current input. Action *CudaFatBinary = nullptr; /// Flag that is set to true if this builder acted on the current input. bool IsActive = false; /// Flag for -fgpu-rdc. bool Relocatable = false; /// Default GPU architecture if there's no one specified. CudaArch DefaultCudaArch = CudaArch::UNKNOWN; public: CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, const Driver::InputList &Inputs, Action::OffloadKind OFKind) : DeviceActionBuilder(C, Args, Inputs, OFKind) {} ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { // While generating code for CUDA, we only depend on the host input action // to trigger the creation of all the CUDA device actions. // If we are dealing with an input action, replicate it for each GPU // architecture. If we are in host-only mode we return 'success' so that // the host uses the CUDA offload kind. if (auto *IA = dyn_cast(HostAction)) { assert(!GpuArchList.empty() && "We should have at least one GPU architecture."); // If the host input is not CUDA or HIP, we don't need to bother about // this input. if (!(IA->getType() == types::TY_CUDA || IA->getType() == types::TY_HIP || IA->getType() == types::TY_PP_HIP)) { // The builder will ignore this input. IsActive = false; return ABRT_Inactive; } // Set the flag to true, so that the builder acts on the current input. IsActive = true; if (CompileHostOnly) return ABRT_Success; // Replicate inputs for each GPU architecture. auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE : types::TY_CUDA_DEVICE; for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { CudaDeviceActions.push_back( C.MakeAction(IA->getInputArg(), Ty)); } return ABRT_Success; } // If this is an unbundling action use it as is for each CUDA toolchain. if (auto *UA = dyn_cast(HostAction)) { // If -fgpu-rdc is disabled, should not unbundle since there is no // device code to link. if (UA->getType() == types::TY_Object && !Relocatable) return ABRT_Inactive; CudaDeviceActions.clear(); auto *IA = cast(UA->getInputs().back()); std::string FileName = IA->getInputArg().getAsString(Args); // Check if the type of the file is the same as the action. Do not // unbundle it if it is not. Do not unbundle .so files, for example, // which are not object files. if (IA->getType() == types::TY_Object && (!llvm::sys::path::has_extension(FileName) || types::lookupTypeForExtension( llvm::sys::path::extension(FileName).drop_front()) != types::TY_Object)) return ABRT_Inactive; for (auto Arch : GpuArchList) { CudaDeviceActions.push_back(UA); UA->registerDependentActionInfo(ToolChains[0], Arch, AssociatedOffloadKind); } return ABRT_Success; } return IsActive ? ABRT_Success : ABRT_Inactive; } void appendTopLevelActions(ActionList &AL) override { // Utility to append actions to the top level list. auto AddTopLevel = [&](Action *A, TargetID TargetID) { OffloadAction::DeviceDependences Dep; Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind); AL.push_back(C.MakeAction(Dep, A->getType())); }; // If we have a fat binary, add it to the list. if (CudaFatBinary) { AddTopLevel(CudaFatBinary, CudaArch::UNUSED); CudaDeviceActions.clear(); CudaFatBinary = nullptr; return; } if (CudaDeviceActions.empty()) return; // If we have CUDA actions at this point, that's because we have a have // partial compilation, so we should have an action for each GPU // architecture. assert(CudaDeviceActions.size() == GpuArchList.size() && "Expecting one action per GPU architecture."); assert(ToolChains.size() == 1 && "Expecting to have a sing CUDA toolchain."); for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); CudaDeviceActions.clear(); } /// Get canonicalized offload arch option. \returns empty StringRef if the /// option is invalid. virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0; virtual llvm::Optional> getConflictOffloadArchCombination(const std::set &GpuArchs) = 0; bool initialize() override { assert(AssociatedOffloadKind == Action::OFK_Cuda || AssociatedOffloadKind == Action::OFK_HIP); // We don't need to support CUDA. if (AssociatedOffloadKind == Action::OFK_Cuda && !C.hasOffloadToolChain()) return false; // We don't need to support HIP. if (AssociatedOffloadKind == Action::OFK_HIP && !C.hasOffloadToolChain()) return false; Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, /*Default=*/false); const ToolChain *HostTC = C.getSingleOffloadToolChain(); assert(HostTC && "No toolchain for host compilation."); if (HostTC->getTriple().isNVPTX() || HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { // We do not support targeting NVPTX/AMDGCN for host compilation. Throw // an error and abort pipeline construction early so we don't trip // asserts that assume device-side compilation. C.getDriver().Diag(diag::err_drv_cuda_host_arch) << HostTC->getTriple().getArchName(); return true; } ToolChains.push_back( AssociatedOffloadKind == Action::OFK_Cuda ? C.getSingleOffloadToolChain() : C.getSingleOffloadToolChain()); Arg *PartialCompilationArg = Args.getLastArg( options::OPT_cuda_host_only, options::OPT_cuda_device_only, options::OPT_cuda_compile_host_device); CompileHostOnly = PartialCompilationArg && PartialCompilationArg->getOption().matches( options::OPT_cuda_host_only); CompileDeviceOnly = PartialCompilationArg && PartialCompilationArg->getOption().matches( options::OPT_cuda_device_only); EmitLLVM = Args.getLastArg(options::OPT_emit_llvm); EmitAsm = Args.getLastArg(options::OPT_S); // Collect all cuda_gpu_arch parameters, removing duplicates. std::set GpuArchs; bool Error = false; for (Arg *A : Args) { if (!(A->getOption().matches(options::OPT_offload_arch_EQ) || A->getOption().matches(options::OPT_no_offload_arch_EQ))) continue; A->claim(); StringRef ArchStr = A->getValue(); if (A->getOption().matches(options::OPT_no_offload_arch_EQ) && ArchStr == "all") { GpuArchs.clear(); continue; } ArchStr = getCanonicalOffloadArch(ArchStr); if (ArchStr.empty()) { Error = true; } else if (A->getOption().matches(options::OPT_offload_arch_EQ)) GpuArchs.insert(ArchStr); else if (A->getOption().matches(options::OPT_no_offload_arch_EQ)) GpuArchs.erase(ArchStr); else llvm_unreachable("Unexpected option."); } auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs); if (ConflictingArchs) { C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo) << ConflictingArchs.getValue().first << ConflictingArchs.getValue().second; C.setContainsError(); return true; } // Collect list of GPUs remaining in the set. for (auto Arch : GpuArchs) GpuArchList.push_back(Arch.data()); // Default to sm_20 which is the lowest common denominator for // supported GPUs. sm_20 code should work correctly, if // suboptimally, on all newer GPUs. if (GpuArchList.empty()) GpuArchList.push_back(DefaultCudaArch); return Error; } }; /// \brief CUDA action builder. It injects device code in the host backend /// action. class CudaActionBuilder final : public CudaActionBuilderBase { public: CudaActionBuilder(Compilation &C, DerivedArgList &Args, const Driver::InputList &Inputs) : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) { DefaultCudaArch = CudaArch::SM_20; } StringRef getCanonicalOffloadArch(StringRef ArchStr) override { CudaArch Arch = StringToCudaArch(ArchStr); if (Arch == CudaArch::UNKNOWN) { C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; return StringRef(); } return CudaArchToString(Arch); } llvm::Optional> getConflictOffloadArchCombination( const std::set &GpuArchs) override { return llvm::None; } ActionBuilderReturnCode getDeviceDependences(OffloadAction::DeviceDependences &DA, phases::ID CurPhase, phases::ID FinalPhase, PhasesTy &Phases) override { if (!IsActive) return ABRT_Inactive; // If we don't have more CUDA actions, we don't have any dependences to // create for the host. if (CudaDeviceActions.empty()) return ABRT_Success; assert(CudaDeviceActions.size() == GpuArchList.size() && "Expecting one action per GPU architecture."); assert(!CompileHostOnly && "Not expecting CUDA actions in host-only compilation."); // If we are generating code for the device or we are in a backend phase, // we attempt to generate the fat binary. We compile each arch to ptx and // assemble to cubin, then feed the cubin *and* the ptx into a device // "link" action, which uses fatbinary to combine these cubins into one // fatbin. The fatbin is then an input to the host action if not in // device-only mode. if (CompileDeviceOnly || CurPhase == phases::Backend) { ActionList DeviceActions; for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { // Produce the device action from the current phase up to the assemble // phase. for (auto Ph : Phases) { // Skip the phases that were already dealt with. if (Ph < CurPhase) continue; // We have to be consistent with the host final phase. if (Ph > FinalPhase) break; CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); if (Ph == phases::Assemble) break; } // If we didn't reach the assemble phase, we can't generate the fat // binary. We don't need to generate the fat binary if we are not in // device-only mode. if (!isa(CudaDeviceActions[I]) || CompileDeviceOnly) continue; Action *AssembleAction = CudaDeviceActions[I]; assert(AssembleAction->getType() == types::TY_Object); assert(AssembleAction->getInputs().size() == 1); Action *BackendAction = AssembleAction->getInputs()[0]; assert(BackendAction->getType() == types::TY_PP_Asm); for (auto &A : {AssembleAction, BackendAction}) { OffloadAction::DeviceDependences DDep; DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda); DeviceActions.push_back( C.MakeAction(DDep, A->getType())); } } // We generate the fat binary if we have device input actions. if (!DeviceActions.empty()) { CudaFatBinary = C.MakeAction(DeviceActions, types::TY_CUDA_FATBIN); if (!CompileDeviceOnly) { DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, Action::OFK_Cuda); // Clear the fat binary, it is already a dependence to an host // action. CudaFatBinary = nullptr; } // Remove the CUDA actions as they are already connected to an host // action or fat binary. CudaDeviceActions.clear(); } // We avoid creating host action in device-only mode. return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; } else if (CurPhase > phases::Backend) { // If we are past the backend phase and still have a device action, we // don't have to do anything as this action is already a device // top-level action. return ABRT_Success; } assert(CurPhase < phases::Backend && "Generating single CUDA " "instructions should only occur " "before the backend phase!"); // By default, we produce an action for each device arch. for (Action *&A : CudaDeviceActions) A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); return ABRT_Success; } }; /// \brief HIP action builder. It injects device code in the host backend /// action. class HIPActionBuilder final : public CudaActionBuilderBase { /// The linker inputs obtained for each device arch. SmallVector DeviceLinkerInputs; public: HIPActionBuilder(Compilation &C, DerivedArgList &Args, const Driver::InputList &Inputs) : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) { DefaultCudaArch = CudaArch::GFX803; } bool canUseBundlerUnbundler() const override { return true; } StringRef getCanonicalOffloadArch(StringRef IdStr) override { llvm::StringMap Features; auto ArchStr = parseTargetID(getHIPOffloadTargetTriple(), IdStr, &Features); if (!ArchStr) { C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr; C.setContainsError(); return StringRef(); } auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features); return Args.MakeArgStringRef(CanId); }; llvm::Optional> getConflictOffloadArchCombination( const std::set &GpuArchs) override { return getConflictTargetIDCombination(GpuArchs); } ActionBuilderReturnCode getDeviceDependences(OffloadAction::DeviceDependences &DA, phases::ID CurPhase, phases::ID FinalPhase, PhasesTy &Phases) override { // amdgcn does not support linking of object files, therefore we skip // backend and assemble phases to output LLVM IR. Except for generating // non-relocatable device coee, where we generate fat binary for device // code and pass to host in Backend phase. if (CudaDeviceActions.empty()) return ABRT_Success; assert(((CurPhase == phases::Link && Relocatable) || CudaDeviceActions.size() == GpuArchList.size()) && "Expecting one action per GPU architecture."); assert(!CompileHostOnly && "Not expecting CUDA actions in host-only compilation."); if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM && !EmitAsm) { // If we are in backend phase, we attempt to generate the fat binary. // We compile each arch to IR and use a link action to generate code // object containing ISA. Then we use a special "link" action to create // a fat binary containing all the code objects for different GPU's. // The fat binary is then an input to the host action. for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { auto BackendAction = C.getDriver().ConstructPhaseAction( C, Args, phases::Backend, CudaDeviceActions[I], AssociatedOffloadKind); auto AssembleAction = C.getDriver().ConstructPhaseAction( C, Args, phases::Assemble, BackendAction, AssociatedOffloadKind); // Create a link action to link device IR with device library // and generate ISA. ActionList AL; AL.push_back(AssembleAction); CudaDeviceActions[I] = C.MakeAction(AL, types::TY_Image); // OffloadingActionBuilder propagates device arch until an offload // action. Since the next action for creating fatbin does // not have device arch, whereas the above link action and its input // have device arch, an offload action is needed to stop the null // device arch of the next action being propagated to the above link // action. OffloadAction::DeviceDependences DDep; DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I], AssociatedOffloadKind); CudaDeviceActions[I] = C.MakeAction( DDep, CudaDeviceActions[I]->getType()); } // Create HIP fat binary with a special "link" action. CudaFatBinary = C.MakeAction(CudaDeviceActions, types::TY_HIP_FATBIN); if (!CompileDeviceOnly) { DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, AssociatedOffloadKind); // Clear the fat binary, it is already a dependence to an host // action. CudaFatBinary = nullptr; } // Remove the CUDA actions as they are already connected to an host // action or fat binary. CudaDeviceActions.clear(); return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; } else if (CurPhase == phases::Link) { // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. // This happens to each device action originated from each input file. // Later on, device actions in DeviceLinkerInputs are used to create // device link actions in appendLinkDependences and the created device // link actions are passed to the offload action as device dependence. DeviceLinkerInputs.resize(CudaDeviceActions.size()); auto LI = DeviceLinkerInputs.begin(); for (auto *A : CudaDeviceActions) { LI->push_back(A); ++LI; } // We will pass the device action as a host dependence, so we don't // need to do anything else with them. CudaDeviceActions.clear(); return ABRT_Success; } // By default, we produce an action for each device arch. for (Action *&A : CudaDeviceActions) A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, AssociatedOffloadKind); return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host : ABRT_Success; } void appendLinkDeviceActions(ActionList &AL) override { if (DeviceLinkerInputs.size() == 0) return; assert(DeviceLinkerInputs.size() == GpuArchList.size() && "Linker inputs and GPU arch list sizes do not match."); // Append a new link action for each device. unsigned I = 0; for (auto &LI : DeviceLinkerInputs) { // Each entry in DeviceLinkerInputs corresponds to a GPU arch. auto *DeviceLinkAction = C.MakeAction(LI, types::TY_Image); // Linking all inputs for the current GPU arch. // LI contains all the inputs for the linker. OffloadAction::DeviceDependences DeviceLinkDeps; DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0], GpuArchList[I], AssociatedOffloadKind); AL.push_back(C.MakeAction(DeviceLinkDeps, DeviceLinkAction->getType())); ++I; } DeviceLinkerInputs.clear(); // Create a host object from all the device images by embedding them // in a fat binary. OffloadAction::DeviceDependences DDeps; auto *TopDeviceLinkAction = C.MakeAction(AL, types::TY_Object); DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr, AssociatedOffloadKind); // Offload the host object to the host linker. AL.push_back(C.MakeAction(DDeps, TopDeviceLinkAction->getType())); } Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); } void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {} }; /// OpenMP action builder. The host bitcode is passed to the device frontend /// and all the device linked images are passed to the host link phase. class OpenMPActionBuilder final : public DeviceActionBuilder { /// The OpenMP actions for the current input. ActionList OpenMPDeviceActions; /// The linker inputs obtained for each toolchain. SmallVector DeviceLinkerInputs; public: OpenMPActionBuilder(Compilation &C, DerivedArgList &Args, const Driver::InputList &Inputs) : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {} ActionBuilderReturnCode getDeviceDependences(OffloadAction::DeviceDependences &DA, phases::ID CurPhase, phases::ID FinalPhase, PhasesTy &Phases) override { if (OpenMPDeviceActions.empty()) return ABRT_Inactive; // We should always have an action for each input. assert(OpenMPDeviceActions.size() == ToolChains.size() && "Number of OpenMP actions and toolchains do not match."); // The host only depends on device action in the linking phase, when all // the device images have to be embedded in the host image. if (CurPhase == phases::Link) { assert(ToolChains.size() == DeviceLinkerInputs.size() && "Toolchains and linker inputs sizes do not match."); auto LI = DeviceLinkerInputs.begin(); for (auto *A : OpenMPDeviceActions) { LI->push_back(A); ++LI; } // We passed the device action as a host dependence, so we don't need to // do anything else with them. OpenMPDeviceActions.clear(); return ABRT_Success; } // By default, we produce an action for each device arch. for (Action *&A : OpenMPDeviceActions) A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); return ABRT_Success; } ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { // If this is an input action replicate it for each OpenMP toolchain. if (auto *IA = dyn_cast(HostAction)) { OpenMPDeviceActions.clear(); for (unsigned I = 0; I < ToolChains.size(); ++I) OpenMPDeviceActions.push_back( C.MakeAction(IA->getInputArg(), IA->getType())); return ABRT_Success; } // If this is an unbundling action use it as is for each OpenMP toolchain. if (auto *UA = dyn_cast(HostAction)) { OpenMPDeviceActions.clear(); auto *IA = cast(UA->getInputs().back()); std::string FileName = IA->getInputArg().getAsString(Args); // Check if the type of the file is the same as the action. Do not // unbundle it if it is not. Do not unbundle .so files, for example, // which are not object files. if (IA->getType() == types::TY_Object && (!llvm::sys::path::has_extension(FileName) || types::lookupTypeForExtension( llvm::sys::path::extension(FileName).drop_front()) != types::TY_Object)) return ABRT_Inactive; for (unsigned I = 0; I < ToolChains.size(); ++I) { OpenMPDeviceActions.push_back(UA); UA->registerDependentActionInfo( ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP); } return ABRT_Success; } // When generating code for OpenMP we use the host compile phase result as // a dependence to the device compile phase so that it can learn what // declarations should be emitted. However, this is not the only use for // the host action, so we prevent it from being collapsed. if (isa(HostAction)) { HostAction->setCannotBeCollapsedWithNextDependentAction(); assert(ToolChains.size() == OpenMPDeviceActions.size() && "Toolchains and device action sizes do not match."); OffloadAction::HostDependence HDep( *HostAction, *C.getSingleOffloadToolChain(), /*BoundArch=*/nullptr, Action::OFK_OpenMP); auto TC = ToolChains.begin(); for (Action *&A : OpenMPDeviceActions) { assert(isa(A)); OffloadAction::DeviceDependences DDep; DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); A = C.MakeAction(HDep, DDep); ++TC; } } return ABRT_Success; } void appendTopLevelActions(ActionList &AL) override { if (OpenMPDeviceActions.empty()) return; // We should always have an action for each input. assert(OpenMPDeviceActions.size() == ToolChains.size() && "Number of OpenMP actions and toolchains do not match."); // Append all device actions followed by the proper offload action. auto TI = ToolChains.begin(); for (auto *A : OpenMPDeviceActions) { OffloadAction::DeviceDependences Dep; Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP); AL.push_back(C.MakeAction(Dep, A->getType())); ++TI; } // We no longer need the action stored in this builder. OpenMPDeviceActions.clear(); } void appendLinkDeviceActions(ActionList &AL) override { assert(ToolChains.size() == DeviceLinkerInputs.size() && "Toolchains and linker inputs sizes do not match."); // Append a new link action for each device. auto TC = ToolChains.begin(); for (auto &LI : DeviceLinkerInputs) { auto *DeviceLinkAction = C.MakeAction(LI, types::TY_Image); OffloadAction::DeviceDependences DeviceLinkDeps; DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); AL.push_back(C.MakeAction(DeviceLinkDeps, DeviceLinkAction->getType())); ++TC; } DeviceLinkerInputs.clear(); } Action* appendLinkHostActions(ActionList &AL) override { // Create wrapper bitcode from the result of device link actions and compile // it to an object which will be added to the host link command. auto *BC = C.MakeAction(AL, types::TY_LLVM_BC); auto *ASM = C.MakeAction(BC, types::TY_PP_Asm); return C.MakeAction(ASM, types::TY_Object); } void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {} bool initialize() override { // Get the OpenMP toolchains. If we don't get any, the action builder will // know there is nothing to do related to OpenMP offloading. auto OpenMPTCRange = C.getOffloadToolChains(); for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; ++TI) ToolChains.push_back(TI->second); DeviceLinkerInputs.resize(ToolChains.size()); return false; } bool canUseBundlerUnbundler() const override { // OpenMP should use bundled files whenever possible. return true; } }; /// /// TODO: Add the implementation for other specialized builders here. /// /// Specialized builders being used by this offloading action builder. SmallVector SpecializedBuilders; /// Flag set to true if all valid builders allow file bundling/unbundling. bool CanUseBundler; public: OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, const Driver::InputList &Inputs) : C(C) { // Create a specialized builder for each device toolchain. IsValid = true; // Create a specialized builder for CUDA. SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); // Create a specialized builder for HIP. SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); // Create a specialized builder for OpenMP. SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs)); // // TODO: Build other specialized builders here. // // Initialize all the builders, keeping track of errors. If all valid // builders agree that we can use bundling, set the flag to true. unsigned ValidBuilders = 0u; unsigned ValidBuildersSupportingBundling = 0u; for (auto *SB : SpecializedBuilders) { IsValid = IsValid && !SB->initialize(); // Update the counters if the builder is valid. if (SB->isValid()) { ++ValidBuilders; if (SB->canUseBundlerUnbundler()) ++ValidBuildersSupportingBundling; } } CanUseBundler = ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; } ~OffloadingActionBuilder() { for (auto *SB : SpecializedBuilders) delete SB; } /// Generate an action that adds device dependences (if any) to a host action. /// If no device dependence actions exist, just return the host action \a /// HostAction. If an error is found or if no builder requires the host action /// to be generated, return nullptr. Action * addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, phases::ID CurPhase, phases::ID FinalPhase, DeviceActionBuilder::PhasesTy &Phases) { if (!IsValid) return nullptr; if (SpecializedBuilders.empty()) return HostAction; assert(HostAction && "Invalid host action!"); OffloadAction::DeviceDependences DDeps; // Check if all the programming models agree we should not emit the host // action. Also, keep track of the offloading kinds employed. auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; unsigned InactiveBuilders = 0u; unsigned IgnoringBuilders = 0u; for (auto *SB : SpecializedBuilders) { if (!SB->isValid()) { ++InactiveBuilders; continue; } auto RetCode = SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); // If the builder explicitly says the host action should be ignored, // we need to increment the variable that tracks the builders that request // the host object to be ignored. if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) ++IgnoringBuilders; // Unless the builder was inactive for this action, we have to record the // offload kind because the host will have to use it. if (RetCode != DeviceActionBuilder::ABRT_Inactive) OffloadKind |= SB->getAssociatedOffloadKind(); } // If all builders agree that the host object should be ignored, just return // nullptr. if (IgnoringBuilders && SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) return nullptr; if (DDeps.getActions().empty()) return HostAction; // We have dependences we need to bundle together. We use an offload action // for that. OffloadAction::HostDependence HDep( *HostAction, *C.getSingleOffloadToolChain(), /*BoundArch=*/nullptr, DDeps); return C.MakeAction(HDep, DDeps); } /// Generate an action that adds a host dependence to a device action. The /// results will be kept in this action builder. Return true if an error was /// found. bool addHostDependenceToDeviceActions(Action *&HostAction, const Arg *InputArg) { if (!IsValid) return true; // If we are supporting bundling/unbundling and the current action is an // input action of non-source file, we replace the host action by the // unbundling action. The bundler tool has the logic to detect if an input // is a bundle or not and if the input is not a bundle it assumes it is a // host file. Therefore it is safe to create an unbundling action even if // the input is not a bundle. if (CanUseBundler && isa(HostAction) && InputArg->getOption().getKind() == llvm::opt::Option::InputClass && (!types::isSrcFile(HostAction->getType()) || HostAction->getType() == types::TY_PP_HIP)) { auto UnbundlingHostAction = C.MakeAction(HostAction); UnbundlingHostAction->registerDependentActionInfo( C.getSingleOffloadToolChain(), /*BoundArch=*/StringRef(), Action::OFK_Host); HostAction = UnbundlingHostAction; } assert(HostAction && "Invalid host action!"); // Register the offload kinds that are used. auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; for (auto *SB : SpecializedBuilders) { if (!SB->isValid()) continue; auto RetCode = SB->addDeviceDepences(HostAction); // Host dependences for device actions are not compatible with that same // action being ignored. assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && "Host dependence not expected to be ignored.!"); // Unless the builder was inactive for this action, we have to record the // offload kind because the host will have to use it. if (RetCode != DeviceActionBuilder::ABRT_Inactive) OffloadKind |= SB->getAssociatedOffloadKind(); } // Do not use unbundler if the Host does not depend on device action. if (OffloadKind == Action::OFK_None && CanUseBundler) if (auto *UA = dyn_cast(HostAction)) HostAction = UA->getInputs().back(); return false; } /// Add the offloading top level actions to the provided action list. This /// function can replace the host action by a bundling action if the /// programming models allow it. bool appendTopLevelActions(ActionList &AL, Action *HostAction, const Arg *InputArg) { // Get the device actions to be appended. ActionList OffloadAL; for (auto *SB : SpecializedBuilders) { if (!SB->isValid()) continue; SB->appendTopLevelActions(OffloadAL); } // If we can use the bundler, replace the host action by the bundling one in // the resulting list. Otherwise, just append the device actions. For // device only compilation, HostAction is a null pointer, therefore only do // this when HostAction is not a null pointer. if (CanUseBundler && HostAction && HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) { // Add the host action to the list in order to create the bundling action. OffloadAL.push_back(HostAction); // We expect that the host action was just appended to the action list // before this method was called. assert(HostAction == AL.back() && "Host action not in the list??"); HostAction = C.MakeAction(OffloadAL); AL.back() = HostAction; } else AL.append(OffloadAL.begin(), OffloadAL.end()); // Propagate to the current host action (if any) the offload information // associated with the current input. if (HostAction) HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], /*BoundArch=*/nullptr); return false; } Action* makeHostLinkAction() { // Build a list of device linking actions. ActionList DeviceAL; for (DeviceActionBuilder *SB : SpecializedBuilders) { if (!SB->isValid()) continue; SB->appendLinkDeviceActions(DeviceAL); } if (DeviceAL.empty()) return nullptr; // Let builders add host linking actions. Action* HA; for (DeviceActionBuilder *SB : SpecializedBuilders) { if (!SB->isValid()) continue; HA = SB->appendLinkHostActions(DeviceAL); } return HA; } /// Processes the host linker action. This currently consists of replacing it /// with an offload action if there are device link objects and propagate to /// the host action all the offload kinds used in the current compilation. The /// resulting action is returned. Action *processHostLinkAction(Action *HostAction) { // Add all the dependences from the device linking actions. OffloadAction::DeviceDependences DDeps; for (auto *SB : SpecializedBuilders) { if (!SB->isValid()) continue; SB->appendLinkDependences(DDeps); } // Calculate all the offload kinds used in the current compilation. unsigned ActiveOffloadKinds = 0u; for (auto &I : InputArgToOffloadKindMap) ActiveOffloadKinds |= I.second; // If we don't have device dependencies, we don't have to create an offload // action. if (DDeps.getActions().empty()) { // Propagate all the active kinds to host action. Given that it is a link // action it is assumed to depend on all actions generated so far. HostAction->propagateHostOffloadInfo(ActiveOffloadKinds, /*BoundArch=*/nullptr); return HostAction; } // Create the offload action with all dependences. When an offload action // is created the kinds are propagated to the host action, so we don't have // to do that explicitly here. OffloadAction::HostDependence HDep( *HostAction, *C.getSingleOffloadToolChain(), /*BoundArch*/ nullptr, ActiveOffloadKinds); return C.MakeAction(HDep, DDeps); } }; } // anonymous namespace. void Driver::handleArguments(Compilation &C, DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const { // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames. Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); Args.eraseArg(options::OPT__SLASH_Yc); Args.eraseArg(options::OPT__SLASH_Yu); YcArg = YuArg = nullptr; } if (YcArg && Inputs.size() > 1) { Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); Args.eraseArg(options::OPT__SLASH_Yc); YcArg = nullptr; } Arg *FinalPhaseArg; phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); if (FinalPhase == phases::Link) { if (Args.hasArg(options::OPT_emit_llvm)) Diag(clang::diag::err_drv_emit_llvm_link); if (IsCLMode() && LTOMode != LTOK_None && !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld")) Diag(clang::diag::err_drv_lto_without_lld); } if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { // If only preprocessing or /Y- is used, all pch handling is disabled. // Rather than check for it everywhere, just remove clang-cl pch-related // flags here. Args.eraseArg(options::OPT__SLASH_Fp); Args.eraseArg(options::OPT__SLASH_Yc); Args.eraseArg(options::OPT__SLASH_Yu); YcArg = YuArg = nullptr; } unsigned LastPLSize = 0; for (auto &I : Inputs) { types::ID InputType = I.first; const Arg *InputArg = I.second; auto PL = types::getCompilationPhases(InputType); LastPLSize = PL.size(); // If the first step comes after the final phase we are doing as part of // this compilation, warn the user about it. phases::ID InitialPhase = PL[0]; if (InitialPhase > FinalPhase) { if (InputArg->isClaimed()) continue; // Claim here to avoid the more general unused warning. InputArg->claim(); // Suppress all unused style warnings with -Qunused-arguments if (Args.hasArg(options::OPT_Qunused_arguments)) continue; // Special case when final phase determined by binary name, rather than // by a command-line argument with a corresponding Arg. if (CCCIsCPP()) Diag(clang::diag::warn_drv_input_file_unused_by_cpp) << InputArg->getAsString(Args) << getPhaseName(InitialPhase); // Special case '-E' warning on a previously preprocessed file to make // more sense. else if (InitialPhase == phases::Compile && (Args.getLastArg(options::OPT__SLASH_EP, options::OPT__SLASH_P) || Args.getLastArg(options::OPT_E) || Args.getLastArg(options::OPT_M, options::OPT_MM)) && getPreprocessedType(InputType) == types::TY_INVALID) Diag(clang::diag::warn_drv_preprocessed_input_file_unused) << InputArg->getAsString(Args) << !!FinalPhaseArg << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); else Diag(clang::diag::warn_drv_input_file_unused) << InputArg->getAsString(Args) << getPhaseName(InitialPhase) << !!FinalPhaseArg << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); continue; } if (YcArg) { // Add a separate precompile phase for the compile phase. if (FinalPhase >= phases::Compile) { const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); // Build the pipeline for the pch file. Action *ClangClPch = C.MakeAction(*InputArg, HeaderType); for (phases::ID Phase : types::getCompilationPhases(HeaderType)) ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); assert(ClangClPch); Actions.push_back(ClangClPch); // The driver currently exits after the first failed command. This // relies on that behavior, to make sure if the pch generation fails, // the main compilation won't run. // FIXME: If the main compilation fails, the PCH generation should // probably not be considered successful either. } } } // If we are linking, claim any options which are obviously only used for // compilation. // FIXME: Understand why the last Phase List length is used here. if (FinalPhase == phases::Link && LastPLSize == 1) { Args.ClaimAllArgs(options::OPT_CompileOnly_Group); Args.ClaimAllArgs(options::OPT_cl_compile_Group); } } void Driver::BuildActions(Compilation &C, DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const { llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); if (!SuppressMissingInputWarning && Inputs.empty()) { Diag(clang::diag::err_drv_no_input_files); return; } // Reject -Z* at the top level, these options should never have been exposed // by gcc. if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); // Diagnose misuse of /Fo. if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { StringRef V = A->getValue(); if (Inputs.size() > 1 && !V.empty() && !llvm::sys::path::is_separator(V.back())) { // Check whether /Fo tries to name an output file for multiple inputs. Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) << A->getSpelling() << V; Args.eraseArg(options::OPT__SLASH_Fo); } } // Diagnose misuse of /Fa. if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { StringRef V = A->getValue(); if (Inputs.size() > 1 && !V.empty() && !llvm::sys::path::is_separator(V.back())) { // Check whether /Fa tries to name an asm file for multiple inputs. Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) << A->getSpelling() << V; Args.eraseArg(options::OPT__SLASH_Fa); } } // Diagnose misuse of /o. if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { if (A->getValue()[0] == '\0') { // It has to have a value. Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; Args.eraseArg(options::OPT__SLASH_o); } } handleArguments(C, Args, Inputs, Actions); // Builder to be used to build offloading actions. OffloadingActionBuilder OffloadBuilder(C, Args, Inputs); // Construct the actions to perform. HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr; ActionList LinkerInputs; ActionList MergerInputs; for (auto &I : Inputs) { types::ID InputType = I.first; const Arg *InputArg = I.second; auto PL = types::getCompilationPhases(*this, Args, InputType); if (PL.empty()) continue; auto FullPL = types::getCompilationPhases(InputType); // Build the pipeline for this file. Action *Current = C.MakeAction(*InputArg, InputType); // Use the current host action in any of the offloading actions, if // required. if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) break; for (phases::ID Phase : PL) { // Add any offload action the host action depends on. Current = OffloadBuilder.addDeviceDependencesToHostAction( Current, InputArg, Phase, PL.back(), FullPL); if (!Current) break; // Queue linker inputs. if (Phase == phases::Link) { assert(Phase == PL.back() && "linking must be final compilation step."); LinkerInputs.push_back(Current); Current = nullptr; break; } // TODO: Consider removing this because the merged may not end up being // the final Phase in the pipeline. Perhaps the merged could just merge // and then pass an artifact of some sort to the Link Phase. // Queue merger inputs. if (Phase == phases::IfsMerge) { assert(Phase == PL.back() && "merging must be final compilation step."); MergerInputs.push_back(Current); Current = nullptr; break; } // Each precompiled header file after a module file action is a module // header of that same module file, rather than being compiled to a // separate PCH. if (Phase == phases::Precompile && HeaderModuleAction && getPrecompiledType(InputType) == types::TY_PCH) { HeaderModuleAction->addModuleHeaderInput(Current); Current = nullptr; break; } // FIXME: Should we include any prior module file outputs as inputs of // later actions in the same command line? // Otherwise construct the appropriate action. Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); // We didn't create a new action, so we will just move to the next phase. if (NewCurrent == Current) continue; if (auto *HMA = dyn_cast(NewCurrent)) HeaderModuleAction = HMA; Current = NewCurrent; // Use the current host action in any of the offloading actions, if // required. if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) break; if (Current->getType() == types::TY_Nothing) break; } // If we ended with something, add to the output list. if (Current) Actions.push_back(Current); // Add any top level actions generated for offloading. OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg); } // Add a link action if necessary. if (!LinkerInputs.empty()) { if (Action *Wrapper = OffloadBuilder.makeHostLinkAction()) LinkerInputs.push_back(Wrapper); Action *LA; // Check if this Linker Job should emit a static library. if (ShouldEmitStaticLibrary(Args)) { LA = C.MakeAction(LinkerInputs, types::TY_Image); } else { LA = C.MakeAction(LinkerInputs, types::TY_Image); } LA = OffloadBuilder.processHostLinkAction(LA); Actions.push_back(LA); } // Add an interface stubs merge action if necessary. if (!MergerInputs.empty()) Actions.push_back( C.MakeAction(MergerInputs, types::TY_Image)); if (Args.hasArg(options::OPT_emit_interface_stubs)) { auto PhaseList = types::getCompilationPhases( types::TY_IFS_CPP, Args.hasArg(options::OPT_c) ? phases::Compile : phases::LastPhase); ActionList MergerInputs; for (auto &I : Inputs) { types::ID InputType = I.first; const Arg *InputArg = I.second; // Currently clang and the llvm assembler do not support generating symbol // stubs from assembly, so we skip the input on asm files. For ifs files // we rely on the normal pipeline setup in the pipeline setup code above. if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm || InputType == types::TY_Asm) continue; Action *Current = C.MakeAction(*InputArg, InputType); for (auto Phase : PhaseList) { switch (Phase) { default: llvm_unreachable( "IFS Pipeline can only consist of Compile followed by IfsMerge."); case phases::Compile: { // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs // files where the .o file is located. The compile action can not // handle this. if (InputType == types::TY_Object) break; Current = C.MakeAction(Current, types::TY_IFS_CPP); break; } case phases::IfsMerge: { assert(Phase == PhaseList.back() && "merging must be final compilation step."); MergerInputs.push_back(Current); Current = nullptr; break; } } } // If we ended with something, add to the output list. if (Current) Actions.push_back(Current); } // Add an interface stubs merge action if necessary. if (!MergerInputs.empty()) Actions.push_back( C.MakeAction(MergerInputs, types::TY_Image)); } // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom // Compile phase that prints out supported cpu models and quits. if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) { // Use the -mcpu=? flag as the dummy input to cc1. Actions.clear(); Action *InputAc = C.MakeAction(*A, types::TY_C); Actions.push_back( C.MakeAction(InputAc, types::TY_Nothing)); for (auto &I : Inputs) I.second->claim(); } // Claim ignored clang-cl options. Args.ClaimAllArgs(options::OPT_cl_ignored_Group); // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed // to non-CUDA compilations and should not trigger warnings there. Args.ClaimAllArgs(options::OPT_cuda_host_only); Args.ClaimAllArgs(options::OPT_cuda_compile_host_device); } Action *Driver::ConstructPhaseAction( Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, Action::OffloadKind TargetDeviceOffloadKind) const { llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); // Some types skip the assembler phase (e.g., llvm-bc), but we can't // encode this in the steps because the intermediate type depends on // arguments. Just special case here. if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) return Input; // Build the appropriate action. switch (Phase) { case phases::Link: llvm_unreachable("link action invalid here."); case phases::IfsMerge: llvm_unreachable("ifsmerge action invalid here."); case phases::Preprocess: { types::ID OutputTy; // -M and -MM specify the dependency file name by altering the output type, // -if -MD and -MMD are not specified. if (Args.hasArg(options::OPT_M, options::OPT_MM) && !Args.hasArg(options::OPT_MD, options::OPT_MMD)) { OutputTy = types::TY_Dependencies; } else { OutputTy = Input->getType(); if (!Args.hasFlag(options::OPT_frewrite_includes, options::OPT_fno_rewrite_includes, false) && !Args.hasFlag(options::OPT_frewrite_imports, options::OPT_fno_rewrite_imports, false) && !CCGenDiagnostics) OutputTy = types::getPreprocessedType(OutputTy); assert(OutputTy != types::TY_INVALID && "Cannot preprocess this input type!"); } return C.MakeAction(Input, OutputTy); } case phases::Precompile: { types::ID OutputTy = getPrecompiledType(Input->getType()); assert(OutputTy != types::TY_INVALID && "Cannot precompile this input type!"); // If we're given a module name, precompile header file inputs as a // module, not as a precompiled header. const char *ModName = nullptr; if (OutputTy == types::TY_PCH) { if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ)) ModName = A->getValue(); if (ModName) OutputTy = types::TY_ModuleFile; } if (Args.hasArg(options::OPT_fsyntax_only)) { // Syntax checks should not emit a PCH file OutputTy = types::TY_Nothing; } if (ModName) return C.MakeAction(Input, OutputTy, ModName); return C.MakeAction(Input, OutputTy); } case phases::Compile: { if (Args.hasArg(options::OPT_fsyntax_only)) return C.MakeAction(Input, types::TY_Nothing); if (Args.hasArg(options::OPT_rewrite_objc)) return C.MakeAction(Input, types::TY_RewrittenObjC); if (Args.hasArg(options::OPT_rewrite_legacy_objc)) return C.MakeAction(Input, types::TY_RewrittenLegacyObjC); if (Args.hasArg(options::OPT__analyze)) return C.MakeAction(Input, types::TY_Plist); if (Args.hasArg(options::OPT__migrate)) return C.MakeAction(Input, types::TY_Remap); if (Args.hasArg(options::OPT_emit_ast)) return C.MakeAction(Input, types::TY_AST); if (Args.hasArg(options::OPT_module_file_info)) return C.MakeAction(Input, types::TY_ModuleFile); if (Args.hasArg(options::OPT_verify_pch)) return C.MakeAction(Input, types::TY_Nothing); return C.MakeAction(Input, types::TY_LLVM_BC); } case phases::Backend: { if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { types::ID Output = Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; return C.MakeAction(Input, Output); } if (Args.hasArg(options::OPT_emit_llvm) || (TargetDeviceOffloadKind == Action::OFK_HIP && Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))) { types::ID Output = Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; return C.MakeAction(Input, Output); } return C.MakeAction(Input, types::TY_PP_Asm); } case phases::Assemble: return C.MakeAction(std::move(Input), types::TY_Object); } llvm_unreachable("invalid phase in ConstructPhaseAction"); } void Driver::BuildJobs(Compilation &C) const { llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); // It is an error to provide a -o option if we are making multiple output // files. There are exceptions: // // IfsMergeJob: when generating interface stubs enabled we want to be able to // generate the stub file at the same time that we generate the real // library/a.out. So when a .o, .so, etc are the output, with clang interface // stubs there will also be a .ifs and .ifso at the same location. // // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled // and -c is passed, we still want to be able to generate a .ifs file while // we are also generating .o files. So we allow more than one output file in // this case as well. // if (FinalOutput) { unsigned NumOutputs = 0; unsigned NumIfsOutputs = 0; for (const Action *A : C.getActions()) if (A->getType() != types::TY_Nothing && !(A->getKind() == Action::IfsMergeJobClass || (A->getType() == clang::driver::types::TY_IFS_CPP && A->getKind() == clang::driver::Action::CompileJobClass && 0 == NumIfsOutputs++) || (A->getKind() == Action::BindArchClass && A->getInputs().size() && A->getInputs().front()->getKind() == Action::IfsMergeJobClass))) ++NumOutputs; if (NumOutputs > 1) { Diag(clang::diag::err_drv_output_argument_with_multiple_files); FinalOutput = nullptr; } } const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple(); if (RawTriple.isOSAIX()) if (Arg *A = C.getArgs().getLastArg(options::OPT_G)) Diag(diag::err_drv_unsupported_opt_for_target) << A->getSpelling() << RawTriple.str(); // Collect the list of architectures. llvm::StringSet<> ArchNames; if (RawTriple.isOSBinFormatMachO()) for (const Arg *A : C.getArgs()) if (A->getOption().matches(options::OPT_arch)) ArchNames.insert(A->getValue()); // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. std::map, InputInfo> CachedResults; for (Action *A : C.getActions()) { // If we are linking an image for multiple archs then the linker wants // -arch_multiple and -final_output . Unfortunately, this // doesn't fit in cleanly because we have to pass this information down. // // FIXME: This is a hack; find a cleaner way to integrate this into the // process. const char *LinkingOutput = nullptr; if (isa(A)) { if (FinalOutput) LinkingOutput = FinalOutput->getValue(); else LinkingOutput = getDefaultImageName(); } BuildJobsForAction(C, A, &C.getDefaultToolChain(), /*BoundArch*/ StringRef(), /*AtTopLevel*/ true, /*MultipleArchs*/ ArchNames.size() > 1, /*LinkingOutput*/ LinkingOutput, CachedResults, /*TargetDeviceOffloadKind*/ Action::OFK_None); } StringRef StatReportFile; bool PrintProcessStat = false; if (const Arg *A = C.getArgs().getLastArg(options::OPT_fproc_stat_report_EQ)) StatReportFile = A->getValue(); if (C.getArgs().hasArg(options::OPT_fproc_stat_report)) PrintProcessStat = true; // If we have more than one job, then disable integrated-cc1 for now. Do this // also when we need to report process execution statistics. if (C.getJobs().size() > 1 || !StatReportFile.empty() || PrintProcessStat) for (auto &J : C.getJobs()) J.InProcess = false; if (!StatReportFile.empty() || PrintProcessStat) { C.setPostCallback([=](const Command &Cmd, int Res) { Optional ProcStat = Cmd.getProcessStatistics(); if (!ProcStat) return; if (PrintProcessStat) { using namespace llvm; // Human readable output. outs() << sys::path::filename(Cmd.getExecutable()) << ": " << "output="; if (Cmd.getOutputFilenames().empty()) outs() << "\"\""; else outs() << Cmd.getOutputFilenames().front(); outs() << ", total=" << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms" << ", user=" << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms" << ", mem=" << ProcStat->PeakMemory << " Kb\n"; } if (!StatReportFile.empty()) { // CSV format. std::string Buffer; llvm::raw_string_ostream Out(Buffer); llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()), /*Quote*/ true); Out << ','; if (Cmd.getOutputFilenames().empty()) Out << "\"\""; else llvm::sys::printArg(Out, Cmd.getOutputFilenames().front(), true); Out << ',' << ProcStat->TotalTime.count() << ',' << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory << '\n'; Out.flush(); std::error_code EC; llvm::raw_fd_ostream OS(StatReportFile, EC, llvm::sys::fs::OF_Append); if (EC) return; auto L = OS.lock(); if (!L) { llvm::errs() << "ERROR: Cannot lock file " << StatReportFile << ": " << toString(L.takeError()) << "\n"; return; } OS << Buffer; } }); } // If the user passed -Qunused-arguments or there were errors, don't warn // about any unused arguments. if (Diags.hasErrorOccurred() || C.getArgs().hasArg(options::OPT_Qunused_arguments)) return; // Claim -### here. (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); // Claim --driver-mode, --rsp-quoting, it was handled earlier. (void)C.getArgs().hasArg(options::OPT_driver_mode); (void)C.getArgs().hasArg(options::OPT_rsp_quoting); for (Arg *A : C.getArgs()) { // FIXME: It would be nice to be able to send the argument to the // DiagnosticsEngine, so that extra values, position, and so on could be // printed. if (!A->isClaimed()) { if (A->getOption().hasFlag(options::NoArgumentUnused)) continue; // Suppress the warning automatically if this is just a flag, and it is an // instance of an argument we already claimed. const Option &Opt = A->getOption(); if (Opt.getKind() == Option::FlagClass) { bool DuplicateClaimed = false; for (const Arg *AA : C.getArgs().filtered(&Opt)) { if (AA->isClaimed()) { DuplicateClaimed = true; break; } } if (DuplicateClaimed) continue; } // In clang-cl, don't mention unknown arguments here since they have // already been warned about. if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) Diag(clang::diag::warn_drv_unused_argument) << A->getAsString(C.getArgs()); } } } namespace { /// Utility class to control the collapse of dependent actions and select the /// tools accordingly. class ToolSelector final { /// The tool chain this selector refers to. const ToolChain &TC; /// The compilation this selector refers to. const Compilation &C; /// The base action this selector refers to. const JobAction *BaseAction; /// Set to true if the current toolchain refers to host actions. bool IsHostSelector; /// Set to true if save-temps and embed-bitcode functionalities are active. bool SaveTemps; bool EmbedBitcode; /// Get previous dependent action or null if that does not exist. If /// \a CanBeCollapsed is false, that action must be legal to collapse or /// null will be returned. const JobAction *getPrevDependentAction(const ActionList &Inputs, ActionList &SavedOffloadAction, bool CanBeCollapsed = true) { // An option can be collapsed only if it has a single input. if (Inputs.size() != 1) return nullptr; Action *CurAction = *Inputs.begin(); if (CanBeCollapsed && !CurAction->isCollapsingWithNextDependentActionLegal()) return nullptr; // If the input action is an offload action. Look through it and save any // offload action that can be dropped in the event of a collapse. if (auto *OA = dyn_cast(CurAction)) { // If the dependent action is a device action, we will attempt to collapse // only with other device actions. Otherwise, we would do the same but // with host actions only. if (!IsHostSelector) { if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { CurAction = OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); if (CanBeCollapsed && !CurAction->isCollapsingWithNextDependentActionLegal()) return nullptr; SavedOffloadAction.push_back(OA); return dyn_cast(CurAction); } } else if (OA->hasHostDependence()) { CurAction = OA->getHostDependence(); if (CanBeCollapsed && !CurAction->isCollapsingWithNextDependentActionLegal()) return nullptr; SavedOffloadAction.push_back(OA); return dyn_cast(CurAction); } return nullptr; } return dyn_cast(CurAction); } /// Return true if an assemble action can be collapsed. bool canCollapseAssembleAction() const { return TC.useIntegratedAs() && !SaveTemps && !C.getArgs().hasArg(options::OPT_via_file_asm) && !C.getArgs().hasArg(options::OPT__SLASH_FA) && !C.getArgs().hasArg(options::OPT__SLASH_Fa); } /// Return true if a preprocessor action can be collapsed. bool canCollapsePreprocessorAction() const { return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && !C.getArgs().hasArg(options::OPT_rewrite_objc); } /// Struct that relates an action with the offload actions that would be /// collapsed with it. struct JobActionInfo final { /// The action this info refers to. const JobAction *JA = nullptr; /// The offload actions we need to take care off if this action is /// collapsed. ActionList SavedOffloadAction; }; /// Append collapsed offload actions from the give nnumber of elements in the /// action info array. static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, ArrayRef &ActionInfo, unsigned ElementNum) { assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); for (unsigned I = 0; I < ElementNum; ++I) CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), ActionInfo[I].SavedOffloadAction.end()); } /// Functions that attempt to perform the combining. They detect if that is /// legal, and if so they update the inputs \a Inputs and the offload action /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with /// the combined action is returned. If the combining is not legal or if the /// tool does not exist, null is returned. /// Currently three kinds of collapsing are supported: /// - Assemble + Backend + Compile; /// - Assemble + Backend ; /// - Backend + Compile. const Tool * combineAssembleBackendCompile(ArrayRef ActionInfo, ActionList &Inputs, ActionList &CollapsedOffloadAction) { if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) return nullptr; auto *AJ = dyn_cast(ActionInfo[0].JA); auto *BJ = dyn_cast(ActionInfo[1].JA); auto *CJ = dyn_cast(ActionInfo[2].JA); if (!AJ || !BJ || !CJ) return nullptr; // Get compiler tool. const Tool *T = TC.SelectTool(*CJ); if (!T) return nullptr; // When using -fembed-bitcode, it is required to have the same tool (clang) // for both CompilerJA and BackendJA. Otherwise, combine two stages. if (EmbedBitcode) { const Tool *BT = TC.SelectTool(*BJ); if (BT == T) return nullptr; } if (!T->hasIntegratedAssembler()) return nullptr; Inputs = CJ->getInputs(); AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, /*NumElements=*/3); return T; } const Tool *combineAssembleBackend(ArrayRef ActionInfo, ActionList &Inputs, ActionList &CollapsedOffloadAction) { if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) return nullptr; auto *AJ = dyn_cast(ActionInfo[0].JA); auto *BJ = dyn_cast(ActionInfo[1].JA); if (!AJ || !BJ) return nullptr; // Get backend tool. const Tool *T = TC.SelectTool(*BJ); if (!T) return nullptr; if (!T->hasIntegratedAssembler()) return nullptr; Inputs = BJ->getInputs(); AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, /*NumElements=*/2); return T; } const Tool *combineBackendCompile(ArrayRef ActionInfo, ActionList &Inputs, ActionList &CollapsedOffloadAction) { if (ActionInfo.size() < 2) return nullptr; auto *BJ = dyn_cast(ActionInfo[0].JA); auto *CJ = dyn_cast(ActionInfo[1].JA); if (!BJ || !CJ) return nullptr; // Check if the initial input (to the compile job or its predessor if one // exists) is LLVM bitcode. In that case, no preprocessor step is required // and we can still collapse the compile and backend jobs when we have // -save-temps. I.e. there is no need for a separate compile job just to // emit unoptimized bitcode. bool InputIsBitcode = true; for (size_t i = 1; i < ActionInfo.size(); i++) if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && ActionInfo[i].JA->getType() != types::TY_LTO_BC) { InputIsBitcode = false; break; } if (!InputIsBitcode && !canCollapsePreprocessorAction()) return nullptr; // Get compiler tool. const Tool *T = TC.SelectTool(*CJ); if (!T) return nullptr; if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) return nullptr; Inputs = CJ->getInputs(); AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, /*NumElements=*/2); return T; } /// Updates the inputs if the obtained tool supports combining with /// preprocessor action, and the current input is indeed a preprocessor /// action. If combining results in the collapse of offloading actions, those /// are appended to \a CollapsedOffloadAction. void combineWithPreprocessor(const Tool *T, ActionList &Inputs, ActionList &CollapsedOffloadAction) { if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) return; // Attempt to get a preprocessor action dependence. ActionList PreprocessJobOffloadActions; ActionList NewInputs; for (Action *A : Inputs) { auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions); if (!PJ || !isa(PJ)) { NewInputs.push_back(A); continue; } // This is legal to combine. Append any offload action we found and add the // current input to preprocessor inputs. CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), PreprocessJobOffloadActions.end()); NewInputs.append(PJ->input_begin(), PJ->input_end()); } Inputs = NewInputs; } public: ToolSelector(const JobAction *BaseAction, const ToolChain &TC, const Compilation &C, bool SaveTemps, bool EmbedBitcode) : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), EmbedBitcode(EmbedBitcode) { assert(BaseAction && "Invalid base action."); IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; } /// Check if a chain of actions can be combined and return the tool that can /// handle the combination of actions. The pointer to the current inputs \a /// Inputs and the list of offload actions \a CollapsedOffloadActions /// connected to collapsed actions are updated accordingly. The latter enables /// the caller of the selector to process them afterwards instead of just /// dropping them. If no suitable tool is found, null will be returned. const Tool *getTool(ActionList &Inputs, ActionList &CollapsedOffloadAction) { // // Get the largest chain of actions that we could combine. // SmallVector ActionChain(1); ActionChain.back().JA = BaseAction; while (ActionChain.back().JA) { const Action *CurAction = ActionChain.back().JA; // Grow the chain by one element. ActionChain.resize(ActionChain.size() + 1); JobActionInfo &AI = ActionChain.back(); // Attempt to fill it with the AI.JA = getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); } // Pop the last action info as it could not be filled. ActionChain.pop_back(); // // Attempt to combine actions. If all combining attempts failed, just return // the tool of the provided action. At the end we attempt to combine the // action with any preprocessor action it may depend on. // const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); if (!T) T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); if (!T) T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); if (!T) { Inputs = BaseAction->getInputs(); T = TC.SelectTool(*BaseAction); } combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); return T; } }; } /// Return a string that uniquely identifies the result of a job. The bound arch /// is not necessarily represented in the toolchain's triple -- for example, /// armv7 and armv7s both map to the same triple -- so we need both in our map. /// Also, we need to add the offloading device kind, as the same tool chain can /// be used for host and device for some programming models, e.g. OpenMP. static std::string GetTriplePlusArchString(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind OffloadKind) { std::string TriplePlusArch = TC->getTriple().normalize(); if (!BoundArch.empty()) { TriplePlusArch += "-"; TriplePlusArch += BoundArch; } TriplePlusArch += "-"; TriplePlusArch += Action::GetOffloadKindName(OffloadKind); return TriplePlusArch; } InputInfo Driver::BuildJobsForAction( Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map, InputInfo> &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const { std::pair ActionTC = { A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; auto CachedResult = CachedResults.find(ActionTC); if (CachedResult != CachedResults.end()) { return CachedResult->second; } InputInfo Result = BuildJobsForActionNoCache( C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, CachedResults, TargetDeviceOffloadKind); CachedResults[ActionTC] = Result; return Result; } InputInfo Driver::BuildJobsForActionNoCache( Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map, InputInfo> &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const { llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); InputInfoList OffloadDependencesInputInfo; bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; if (const OffloadAction *OA = dyn_cast(A)) { // The 'Darwin' toolchain is initialized only when its arguments are // computed. Get the default arguments for OFK_None to ensure that // initialization is performed before processing the offload action. // FIXME: Remove when darwin's toolchain is initialized during construction. C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); // The offload action is expected to be used in four different situations. // // a) Set a toolchain/architecture/kind for a host action: // Host Action 1 -> OffloadAction -> Host Action 2 // // b) Set a toolchain/architecture/kind for a device action; // Device Action 1 -> OffloadAction -> Device Action 2 // // c) Specify a device dependence to a host action; // Device Action 1 _ // \ // Host Action 1 ---> OffloadAction -> Host Action 2 // // d) Specify a host dependence to a device action. // Host Action 1 _ // \ // Device Action 1 ---> OffloadAction -> Device Action 2 // // For a) and b), we just return the job generated for the dependence. For // c) and d) we override the current action with the host/device dependence // if the current toolchain is host/device and set the offload dependences // info with the jobs obtained from the device/host dependence(s). // If there is a single device option, just generate the job for it. if (OA->hasSingleDeviceDependence()) { InputInfo DevA; OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { DevA = BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, DepA->getOffloadingDeviceKind()); }); return DevA; } // If 'Action 2' is host, we generate jobs for the device dependences and // override the current action with the host dependence. Otherwise, we // generate the host dependences and override the action with the device // dependence. The dependences can't therefore be a top-level action. OA->doOnEachDependence( /*IsHostDependence=*/BuildingForOffloadDevice, [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { OffloadDependencesInputInfo.push_back(BuildJobsForAction( C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, DepA->getOffloadingDeviceKind())); }); A = BuildingForOffloadDevice ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) : OA->getHostDependence(); } if (const InputAction *IA = dyn_cast(A)) { // FIXME: It would be nice to not claim this here; maybe the old scheme of // just using Args was better? const Arg &Input = IA->getInputArg(); Input.claim(); if (Input.getOption().matches(options::OPT_INPUT)) { const char *Name = Input.getValue(); return InputInfo(A, Name, /* _BaseInput = */ Name); } return InputInfo(A, &Input, /* _BaseInput = */ ""); } if (const BindArchAction *BAA = dyn_cast(A)) { const ToolChain *TC; StringRef ArchName = BAA->getArchName(); if (!ArchName.empty()) TC = &getToolChain(C.getArgs(), computeTargetTriple(*this, TargetTriple, C.getArgs(), ArchName)); else TC = &C.getDefaultToolChain(); return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, MultipleArchs, LinkingOutput, CachedResults, TargetDeviceOffloadKind); } ActionList Inputs = A->getInputs(); const JobAction *JA = cast(A); ActionList CollapsedOffloadActions; ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), embedBitcodeInObject() && !isUsingLTO()); const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); if (!T) return InputInfo(); // If we've collapsed action list that contained OffloadAction we // need to build jobs for host/device-side inputs it may have held. for (const auto *OA : CollapsedOffloadActions) cast(OA)->doOnEachDependence( /*IsHostDependence=*/BuildingForOffloadDevice, [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { OffloadDependencesInputInfo.push_back(BuildJobsForAction( C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, DepA->getOffloadingDeviceKind())); }); // Only use pipes when there is exactly one input. InputInfoList InputInfos; for (const Action *Input : Inputs) { // Treat dsymutil and verify sub-jobs as being at the top-level too, they // shouldn't get temporary output names. // FIXME: Clean this up. bool SubJobAtTopLevel = AtTopLevel && (isa(A) || isa(A)); InputInfos.push_back(BuildJobsForAction( C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, CachedResults, A->getOffloadingDeviceKind())); } // Always use the first input as the base input. const char *BaseInput = InputInfos[0].getBaseInput(); // ... except dsymutil actions, which use their actual input as the base // input. if (JA->getType() == types::TY_dSYM) BaseInput = InputInfos[0].getFilename(); // ... and in header module compilations, which use the module name. if (auto *ModuleJA = dyn_cast(JA)) BaseInput = ModuleJA->getModuleName(); // Append outputs of offload device jobs to the input list if (!OffloadDependencesInputInfo.empty()) InputInfos.append(OffloadDependencesInputInfo.begin(), OffloadDependencesInputInfo.end()); // Set the effective triple of the toolchain for the duration of this job. llvm::Triple EffectiveTriple; const ToolChain &ToolTC = T->getToolChain(); const ArgList &Args = C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); if (InputInfos.size() != 1) { EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); } else { // Pass along the input type if it can be unambiguously determined. EffectiveTriple = llvm::Triple( ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); } RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); // Determine the place to write output to, if any. InputInfo Result; InputInfoList UnbundlingResults; if (auto *UA = dyn_cast(JA)) { // If we have an unbundling job, we need to create results for all the // outputs. We also update the results cache so that other actions using // this unbundling action can get the right results. for (auto &UI : UA->getDependentActionsInfo()) { assert(UI.DependentOffloadKind != Action::OFK_None && "Unbundling with no offloading??"); // Unbundling actions are never at the top level. When we generate the // offloading prefix, we also do that for the host file because the // unbundling action does not change the type of the output which can // cause a overwrite. std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( UI.DependentOffloadKind, UI.DependentToolChain->getTriple().normalize(), /*CreatePrefixForHost=*/true); auto CurI = InputInfo( UA, GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, /*AtTopLevel=*/false, MultipleArchs || UI.DependentOffloadKind == Action::OFK_HIP, OffloadingPrefix), BaseInput); // Save the unbundling result. UnbundlingResults.push_back(CurI); // Get the unique string identifier for this dependence and cache the // result. StringRef Arch; if (TargetDeviceOffloadKind == Action::OFK_HIP) { if (UI.DependentOffloadKind == Action::OFK_Host) Arch = StringRef(); else Arch = UI.DependentBoundArch; } else Arch = BoundArch; CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, UI.DependentOffloadKind)}] = CurI; } // Now that we have all the results generated, select the one that should be // returned for the current depending action. std::pair ActionTC = { A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; assert(CachedResults.find(ActionTC) != CachedResults.end() && "Result does not exist??"); Result = CachedResults[ActionTC]; } else if (JA->getType() == types::TY_Nothing) Result = InputInfo(A, BaseInput); else { // We only have to generate a prefix for the host if this is not a top-level // action. std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( A->getOffloadingDeviceKind(), TC->getTriple().normalize(), /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() && !AtTopLevel); if (isa(JA)) { OffloadingPrefix += "-wrapper"; if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) BaseInput = FinalOutput->getValue(); else BaseInput = getDefaultImageName(); } Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, AtTopLevel, MultipleArchs, OffloadingPrefix), BaseInput); } if (CCCPrintBindings && !CCGenDiagnostics) { llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' << " - \"" << T->getName() << "\", inputs: ["; for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { llvm::errs() << InputInfos[i].getAsString(); if (i + 1 != e) llvm::errs() << ", "; } if (UnbundlingResults.empty()) llvm::errs() << "], output: " << Result.getAsString() << "\n"; else { llvm::errs() << "], outputs: ["; for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { llvm::errs() << UnbundlingResults[i].getAsString(); if (i + 1 != e) llvm::errs() << ", "; } llvm::errs() << "] \n"; } } else { if (UnbundlingResults.empty()) T->ConstructJob( C, *JA, Result, InputInfos, C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), LinkingOutput); else T->ConstructJobMultipleOutputs( C, *JA, UnbundlingResults, InputInfos, C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), LinkingOutput); } return Result; } const char *Driver::getDefaultImageName() const { llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); return Target.isOSWindows() ? "a.exe" : "a.out"; } /// Create output filename based on ArgValue, which could either be a /// full filename, filename without extension, or a directory. If ArgValue /// does not provide a filename, then use BaseName, and use the extension /// suitable for FileType. static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, StringRef BaseName, types::ID FileType) { SmallString<128> Filename = ArgValue; if (ArgValue.empty()) { // If the argument is empty, output to BaseName in the current dir. Filename = BaseName; } else if (llvm::sys::path::is_separator(Filename.back())) { // If the argument is a directory, output to BaseName in that dir. llvm::sys::path::append(Filename, BaseName); } if (!llvm::sys::path::has_extension(ArgValue)) { // If the argument didn't provide an extension, then set it. const char *Extension = types::getTypeTempSuffix(FileType, true); if (FileType == types::TY_Image && Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { // The output file is a dll. Extension = "dll"; } llvm::sys::path::replace_extension(Filename, Extension); } return Args.MakeArgString(Filename.c_str()); } static bool HasPreprocessOutput(const Action &JA) { if (isa(JA)) return true; if (isa(JA) && isa(JA.getInputs()[0])) return true; if (isa(JA) && HasPreprocessOutput(*(JA.getInputs()[0]))) return true; return false; } const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, StringRef OrigBoundArch, bool AtTopLevel, bool MultipleArchs, StringRef OffloadingPrefix) const { std::string BoundArch = OrigBoundArch.str(); #if defined(_WIN32) // BoundArch may contains ':', which is invalid in file names on Windows, // therefore replace it with '%'. std::replace(BoundArch.begin(), BoundArch.end(), ':', '@'); #endif llvm::PrettyStackTraceString CrashInfo("Computing output path"); // Output to a user requested destination? if (AtTopLevel && !isa(JA) && !isa(JA)) { if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) return C.addResultFile(FinalOutput->getValue(), &JA); } // For /P, preprocess to file named after BaseInput. if (C.getArgs().hasArg(options::OPT__SLASH_P)) { assert(AtTopLevel && isa(JA)); StringRef BaseName = llvm::sys::path::filename(BaseInput); StringRef NameArg; if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) NameArg = A->getValue(); return C.addResultFile( MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), &JA); } // Default to writing to stdout? if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) { return "-"; } // Is this the assembly listing for /FA? if (JA.getType() == types::TY_PP_Asm && (C.getArgs().hasArg(options::OPT__SLASH_FA) || C.getArgs().hasArg(options::OPT__SLASH_Fa))) { // Use /Fa and the input filename to determine the asm file name. StringRef BaseName = llvm::sys::path::filename(BaseInput); StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); return C.addResultFile( MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), &JA); } // Output to a temporary file? if ((!AtTopLevel && !isSaveTempsEnabled() && !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || CCGenDiagnostics) { StringRef Name = llvm::sys::path::filename(BaseInput); std::pair Split = Name.split('.'); SmallString<128> TmpName; const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); if (CCGenDiagnostics && A) { SmallString<128> CrashDirectory(A->getValue()); if (!getVFS().exists(CrashDirectory)) llvm::sys::fs::create_directories(CrashDirectory); llvm::sys::path::append(CrashDirectory, Split.first); const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%"; std::error_code EC = llvm::sys::fs::createUniqueFile( CrashDirectory + Middle + Suffix, TmpName); if (EC) { Diag(clang::diag::err_unable_to_make_temp) << EC.message(); return ""; } } else { TmpName = GetTemporaryPath(Split.first, Suffix); } return C.addTempFile(C.getArgs().MakeArgString(TmpName)); } SmallString<128> BasePath(BaseInput); SmallString<128> ExternalPath(""); StringRef BaseName; // Dsymutil actions should use the full path. if (isa(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) { ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue(); // We use posix style here because the tests (specifically // darwin-dsymutil.c) demonstrate that posix style paths are acceptable // even on Windows and if we don't then the similar test covering this // fails. llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix, llvm::sys::path::filename(BasePath)); BaseName = ExternalPath; } else if (isa(JA) || isa(JA)) BaseName = BasePath; else BaseName = llvm::sys::path::filename(BasePath); // Determine what the derived output name should be. const char *NamedOutput; if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { // The /Fo or /o flag decides the object filename. StringRef Val = C.getArgs() .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) ->getValue(); NamedOutput = MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); } else if (JA.getType() == types::TY_Image && C.getArgs().hasArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)) { // The /Fe or /o flag names the linked file. StringRef Val = C.getArgs() .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) ->getValue(); NamedOutput = MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); } else if (JA.getType() == types::TY_Image) { if (IsCLMode()) { // clang-cl uses BaseName for the executable name. NamedOutput = MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); } else { SmallString<128> Output(getDefaultImageName()); // HIP image for device compilation with -fno-gpu-rdc is per compilation // unit. bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP && !C.getArgs().hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false); if (IsHIPNoRDC) { Output = BaseName; llvm::sys::path::replace_extension(Output, ""); } Output += OffloadingPrefix; if (MultipleArchs && !BoundArch.empty()) { Output += "-"; Output.append(BoundArch); } if (IsHIPNoRDC) Output += ".out"; NamedOutput = C.getArgs().MakeArgString(Output.c_str()); } } else if (JA.getType() == types::TY_PCH && IsCLMode()) { NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); } else { const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); assert(Suffix && "All types used for output should have a suffix."); std::string::size_type End = std::string::npos; if (!types::appendSuffixForType(JA.getType())) End = BaseName.rfind('.'); SmallString<128> Suffixed(BaseName.substr(0, End)); Suffixed += OffloadingPrefix; if (MultipleArchs && !BoundArch.empty()) { Suffixed += "-"; Suffixed.append(BoundArch); } // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for // the unoptimized bitcode so that it does not get overwritten by the ".bc" // optimized bitcode output. auto IsHIPRDCInCompilePhase = [](const JobAction &JA, const llvm::opt::DerivedArgList &Args) { // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile // phase.) return isa(JA) && JA.getOffloadingDeviceKind() == Action::OFK_HIP && Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false); }; if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC && (C.getArgs().hasArg(options::OPT_emit_llvm) || IsHIPRDCInCompilePhase(JA, C.getArgs()))) Suffixed += ".tmp"; Suffixed += '.'; Suffixed += Suffix; NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); } // Prepend object file path if -save-temps=obj if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && JA.getType() != types::TY_PCH) { Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); SmallString<128> TempPath(FinalOutput->getValue()); llvm::sys::path::remove_filename(TempPath); StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); llvm::sys::path::append(TempPath, OutputFileName); NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); } // If we're saving temps and the temp file conflicts with the input file, // then avoid overwriting input file. if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { bool SameFile = false; SmallString<256> Result; llvm::sys::fs::current_path(Result); llvm::sys::path::append(Result, BaseName); llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); // Must share the same path to conflict. if (SameFile) { StringRef Name = llvm::sys::path::filename(BaseInput); std::pair Split = Name.split('.'); std::string TmpName = GetTemporaryPath( Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); return C.addTempFile(C.getArgs().MakeArgString(TmpName)); } } // As an annoying special case, PCH generation doesn't strip the pathname. if (JA.getType() == types::TY_PCH && !IsCLMode()) { llvm::sys::path::remove_filename(BasePath); if (BasePath.empty()) BasePath = NamedOutput; else llvm::sys::path::append(BasePath, NamedOutput); return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); } else { return C.addResultFile(NamedOutput, &JA); } } std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { // Search for Name in a list of paths. auto SearchPaths = [&](const llvm::SmallVectorImpl &P) -> llvm::Optional { // Respect a limited subset of the '-Bprefix' functionality in GCC by // attempting to use this prefix when looking for file paths. for (const auto &Dir : P) { if (Dir.empty()) continue; SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); llvm::sys::path::append(P, Name); if (llvm::sys::fs::exists(Twine(P))) return std::string(P); } return None; }; if (auto P = SearchPaths(PrefixDirs)) return *P; SmallString<128> R(ResourceDir); llvm::sys::path::append(R, Name); if (llvm::sys::fs::exists(Twine(R))) return std::string(R.str()); SmallString<128> P(TC.getCompilerRTPath()); llvm::sys::path::append(P, Name); if (llvm::sys::fs::exists(Twine(P))) return std::string(P.str()); SmallString<128> D(Dir); llvm::sys::path::append(D, "..", Name); if (llvm::sys::fs::exists(Twine(D))) return std::string(D.str()); if (auto P = SearchPaths(TC.getLibraryPaths())) return *P; if (auto P = SearchPaths(TC.getFilePaths())) return *P; return std::string(Name); } void Driver::generatePrefixedToolNames( StringRef Tool, const ToolChain &TC, SmallVectorImpl &Names) const { // FIXME: Needs a better variable than TargetTriple Names.emplace_back((TargetTriple + "-" + Tool).str()); Names.emplace_back(Tool); // Allow the discovery of tools prefixed with LLVM's default target triple. std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple(); if (DefaultTargetTriple != TargetTriple) Names.emplace_back((DefaultTargetTriple + "-" + Tool).str()); } static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) { llvm::sys::path::append(Dir, Name); if (llvm::sys::fs::can_execute(Twine(Dir))) return true; llvm::sys::path::remove_filename(Dir); return false; } std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { SmallVector TargetSpecificExecutables; generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); // Respect a limited subset of the '-Bprefix' functionality in GCC by // attempting to use this prefix when looking for program paths. for (const auto &PrefixDir : PrefixDirs) { if (llvm::sys::fs::is_directory(PrefixDir)) { SmallString<128> P(PrefixDir); if (ScanDirForExecutable(P, Name)) return std::string(P.str()); } else { SmallString<128> P((PrefixDir + Name).str()); if (llvm::sys::fs::can_execute(Twine(P))) return std::string(P.str()); } } const ToolChain::path_list &List = TC.getProgramPaths(); for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) { // For each possible name of the tool look for it in // program paths first, then the path. // Higher priority names will be first, meaning that // a higher priority name in the path will be found // instead of a lower priority name in the program path. // E.g. -gcc on the path will be found instead // of gcc in the program path for (const auto &Path : List) { SmallString<128> P(Path); if (ScanDirForExecutable(P, TargetSpecificExecutable)) return std::string(P.str()); } // Fall back to the path if (llvm::ErrorOr P = llvm::sys::findProgramByName(TargetSpecificExecutable)) return *P; } return std::string(Name); } std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { SmallString<128> Path; std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); if (EC) { Diag(clang::diag::err_unable_to_make_temp) << EC.message(); return ""; } return std::string(Path.str()); } std::string Driver::GetTemporaryDirectory(StringRef Prefix) const { SmallString<128> Path; std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path); if (EC) { Diag(clang::diag::err_unable_to_make_temp) << EC.message(); return ""; } return std::string(Path.str()); } std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { SmallString<128> Output; if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { // FIXME: If anybody needs it, implement this obscure rule: // "If you specify a directory without a file name, the default file name // is VCx0.pch., where x is the major version of Visual C++ in use." Output = FpArg->getValue(); // "If you do not specify an extension as part of the path name, an // extension of .pch is assumed. " if (!llvm::sys::path::has_extension(Output)) Output += ".pch"; } else { if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) Output = YcArg->getValue(); if (Output.empty()) Output = BaseName; llvm::sys::path::replace_extension(Output, ".pch"); } return std::string(Output.str()); } const ToolChain &Driver::getToolChain(const ArgList &Args, const llvm::Triple &Target) const { auto &TC = ToolChains[Target.str()]; if (!TC) { switch (Target.getOS()) { case llvm::Triple::AIX: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::Haiku: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::Ananas: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::CloudABI: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::Darwin: case llvm::Triple::MacOSX: case llvm::Triple::IOS: case llvm::Triple::TvOS: case llvm::Triple::WatchOS: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::DragonFly: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::OpenBSD: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::NetBSD: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::FreeBSD: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::Minix: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::Linux: case llvm::Triple::ELFIAMCU: if (Target.getArch() == llvm::Triple::hexagon) TC = std::make_unique(*this, Target, Args); else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && !Target.hasEnvironment()) TC = std::make_unique(*this, Target, Args); else if (Target.isPPC()) TC = std::make_unique(*this, Target, Args); else if (Target.getArch() == llvm::Triple::ve) TC = std::make_unique(*this, Target, Args); else TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::NaCl: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::Fuchsia: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::Solaris: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::AMDHSA: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::AMDPAL: case llvm::Triple::Mesa3D: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::Win32: switch (Target.getEnvironment()) { default: if (Target.isOSBinFormatELF()) TC = std::make_unique(*this, Target, Args); else if (Target.isOSBinFormatMachO()) TC = std::make_unique(*this, Target, Args); else TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::GNU: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::Itanium: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::MSVC: case llvm::Triple::UnknownEnvironment: if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) .startswith_lower("bfd")) TC = std::make_unique( *this, Target, Args); else TC = std::make_unique(*this, Target, Args); break; } break; case llvm::Triple::PS4: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::Contiki: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::Hurd: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::ZOS: TC = std::make_unique(*this, Target, Args); break; default: // Of these targets, Hexagon is the only one that might have // an OS of Linux, in which case it got handled above already. switch (Target.getArch()) { case llvm::Triple::tce: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::tcele: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::hexagon: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::lanai: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::xcore: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::wasm32: case llvm::Triple::wasm64: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::avr: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::msp430: TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::riscv32: case llvm::Triple::riscv64: if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args)) TC = std::make_unique(*this, Target, Args); else TC = std::make_unique(*this, Target, Args); break; case llvm::Triple::ve: TC = std::make_unique(*this, Target, Args); break; default: if (Target.getVendor() == llvm::Triple::Myriad) TC = std::make_unique(*this, Target, Args); else if (toolchains::BareMetal::handlesTarget(Target)) TC = std::make_unique(*this, Target, Args); else if (Target.isOSBinFormatELF()) TC = std::make_unique(*this, Target, Args); else if (Target.isOSBinFormatMachO()) TC = std::make_unique(*this, Target, Args); else TC = std::make_unique(*this, Target, Args); } } } // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA // compiles always need two toolchains, the CUDA toolchain and the host // toolchain. So the only valid way to create a CUDA toolchain is via // CreateOffloadingDeviceToolChains. return *TC; } bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { // Say "no" if there is not exactly one input of a type clang understands. if (JA.size() != 1 || !types::isAcceptedByClang((*JA.input_begin())->getType())) return false; // And say "no" if this is not a kind of action clang understands. if (!isa(JA) && !isa(JA) && !isa(JA) && !isa(JA)) return false; return true; } bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const { // Say "no" if there is not exactly one input of a type flang understands. if (JA.size() != 1 || !types::isFortran((*JA.input_begin())->getType())) return false; // And say "no" if this is not a kind of action flang understands. if (!isa(JA) && !isa(JA) && !isa(JA)) return false; return true; } bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const { // Only emit static library if the flag is set explicitly. if (Args.hasArg(options::OPT_emit_static_lib)) return true; return false; } /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the /// grouped values as integers. Numbers which are not provided are set to 0. /// /// \return True if the entire string was parsed (9.2), or all groups were /// parsed (10.3.5extrastuff). bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, unsigned &Micro, bool &HadExtra) { HadExtra = false; Major = Minor = Micro = 0; if (Str.empty()) return false; if (Str.consumeInteger(10, Major)) return false; if (Str.empty()) return true; if (Str[0] != '.') return false; Str = Str.drop_front(1); if (Str.consumeInteger(10, Minor)) return false; if (Str.empty()) return true; if (Str[0] != '.') return false; Str = Str.drop_front(1); if (Str.consumeInteger(10, Micro)) return false; if (!Str.empty()) HadExtra = true; return true; } /// Parse digits from a string \p Str and fulfill \p Digits with /// the parsed numbers. This method assumes that the max number of /// digits to look for is equal to Digits.size(). /// /// \return True if the entire string was parsed and there are /// no extra characters remaining at the end. bool Driver::GetReleaseVersion(StringRef Str, MutableArrayRef Digits) { if (Str.empty()) return false; unsigned CurDigit = 0; while (CurDigit < Digits.size()) { unsigned Digit; if (Str.consumeInteger(10, Digit)) return false; Digits[CurDigit] = Digit; if (Str.empty()) return true; if (Str[0] != '.') return false; Str = Str.drop_front(1); CurDigit++; } // More digits than requested, bail out... return false; } std::pair Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const { unsigned IncludedFlagsBitmask = 0; unsigned ExcludedFlagsBitmask = options::NoDriverOption; if (IsClCompatMode) { // Include CL and Core options. IncludedFlagsBitmask |= options::CLOption; IncludedFlagsBitmask |= options::CoreOption; } else { ExcludedFlagsBitmask |= options::CLOption; } return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); } bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); } bool clang::driver::willEmitRemarks(const ArgList &Args) { // -fsave-optimization-record enables it. if (Args.hasFlag(options::OPT_fsave_optimization_record, options::OPT_fno_save_optimization_record, false)) return true; // -fsave-optimization-record= enables it as well. if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ, options::OPT_fno_save_optimization_record, false)) return true; // -foptimization-record-file alone enables it too. if (Args.hasFlag(options::OPT_foptimization_record_file_EQ, options::OPT_fno_save_optimization_record, false)) return true; // -foptimization-record-passes alone enables it too. if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ, options::OPT_fno_save_optimization_record, false)) return true; return false; }