; RUN: opt < %s -debug-only=loop-vectorize -loop-vectorize -vectorizer-maximize-bandwidth -mtriple=x86_64-unknown-linux -S 2>&1 | FileCheck %s ; RUN: opt < %s -debug-only=loop-vectorize -loop-vectorize -vectorizer-maximize-bandwidth -mtriple=x86_64-unknown-linux -mattr=+avx512f -S 2>&1 | FileCheck %s --check-prefix=AVX512F ; REQUIRES: asserts @a = global [1024 x i8] zeroinitializer, align 16 @b = global [1024 x i8] zeroinitializer, align 16 define i32 @foo() { ; This function has a loop of SAD pattern. Here we check when VF = 16 the ; register usage doesn't exceed 16. ; ; CHECK-LABEL: foo ; CHECK: LV(REG): VF = 8 ; CHECK-NEXT: LV(REG): Found max usage: 2 item ; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers ; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 7 registers ; CHECK-NEXT: LV(REG): Found invariant usage: 0 item ; CHECK: LV(REG): VF = 16 ; CHECK-NEXT: LV(REG): Found max usage: 2 item ; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers ; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 13 registers ; CHECK-NEXT: LV(REG): Found invariant usage: 0 item entry: br label %for.body for.cond.cleanup: %add.lcssa = phi i32 [ %add, %for.body ] ret i32 %add.lcssa for.body: %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] %s.015 = phi i32 [ 0, %entry ], [ %add, %for.body ] %arrayidx = getelementptr inbounds [1024 x i8], [1024 x i8]* @a, i64 0, i64 %indvars.iv %0 = load i8, i8* %arrayidx, align 1 %conv = zext i8 %0 to i32 %arrayidx2 = getelementptr inbounds [1024 x i8], [1024 x i8]* @b, i64 0, i64 %indvars.iv %1 = load i8, i8* %arrayidx2, align 1 %conv3 = zext i8 %1 to i32 %sub = sub nsw i32 %conv, %conv3 %ispos = icmp sgt i32 %sub, -1 %neg = sub nsw i32 0, %sub %2 = select i1 %ispos, i32 %sub, i32 %neg %add = add nsw i32 %2, %s.015 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 %exitcond = icmp eq i64 %indvars.iv.next, 1024 br i1 %exitcond, label %for.cond.cleanup, label %for.body } define i32 @goo() { ; For indvars.iv used in a computating chain only feeding into getelementptr or cmp, ; it will not have vector version and the vector register usage will not exceed the ; available vector register number. ; CHECK-LABEL: goo ; CHECK: LV(REG): VF = 8 ; CHECK-NEXT: LV(REG): Found max usage: 2 item ; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers ; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 7 registers ; CHECK-NEXT: LV(REG): Found invariant usage: 0 item ; CHECK: LV(REG): VF = 16 ; CHECK-NEXT: LV(REG): Found max usage: 2 item ; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers ; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 13 registers ; CHECK-NEXT: LV(REG): Found invariant usage: 0 item entry: br label %for.body for.cond.cleanup: ; preds = %for.body %add.lcssa = phi i32 [ %add, %for.body ] ret i32 %add.lcssa for.body: ; preds = %for.body, %entry %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] %s.015 = phi i32 [ 0, %entry ], [ %add, %for.body ] %tmp1 = add nsw i64 %indvars.iv, 3 %arrayidx = getelementptr inbounds [1024 x i8], [1024 x i8]* @a, i64 0, i64 %tmp1 %tmp = load i8, i8* %arrayidx, align 1 %conv = zext i8 %tmp to i32 %tmp2 = add nsw i64 %indvars.iv, 2 %arrayidx2 = getelementptr inbounds [1024 x i8], [1024 x i8]* @b, i64 0, i64 %tmp2 %tmp3 = load i8, i8* %arrayidx2, align 1 %conv3 = zext i8 %tmp3 to i32 %sub = sub nsw i32 %conv, %conv3 %ispos = icmp sgt i32 %sub, -1 %neg = sub nsw i32 0, %sub %tmp4 = select i1 %ispos, i32 %sub, i32 %neg %add = add nsw i32 %tmp4, %s.015 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 %exitcond = icmp eq i64 %indvars.iv.next, 1024 br i1 %exitcond, label %for.cond.cleanup, label %for.body } define i64 @bar(i64* nocapture %a) { ; CHECK-LABEL: bar ; CHECK: LV(REG): VF = 2 ; CHECK-NEXT: LV(REG): Found max usage: 2 item ; CHECK-NEXT: LV(REG): RegisterClass: Generic::VectorRC, 3 registers ; CHECK-NEXT: LV(REG): RegisterClass: Generic::ScalarRC, 1 registers ; CHECK-NEXT: LV(REG): Found invariant usage: 0 item entry: br label %for.body for.cond.cleanup: %add2.lcssa = phi i64 [ %add2, %for.body ] ret i64 %add2.lcssa for.body: %i.012 = phi i64 [ 0, %entry ], [ %inc, %for.body ] %s.011 = phi i64 [ 0, %entry ], [ %add2, %for.body ] %arrayidx = getelementptr inbounds i64, i64* %a, i64 %i.012 %0 = load i64, i64* %arrayidx, align 8 %add = add nsw i64 %0, %i.012 store i64 %add, i64* %arrayidx, align 8 %add2 = add nsw i64 %add, %s.011 %inc = add nuw nsw i64 %i.012, 1 %exitcond = icmp eq i64 %inc, 1024 br i1 %exitcond, label %for.cond.cleanup, label %for.body } @d = external global [0 x i64], align 8 @e = external global [0 x i32], align 4 @c = external global [0 x i32], align 4 define void @hoo(i32 %n) { ; For c[i] = e[d[i]] in the loop, e[d[i]] is not consecutive but its index %tmp can ; be gathered into a vector. For VF == 16, the vector version of %tmp will be <16 x i64> ; so the max usage of AVX512 vector register will be 2. ; AVX512F-LABEL: bar ; AVX512F: LV(REG): VF = 16 ; AVX512F-CHECK: LV(REG): Found max usage: 2 item ; AVX512F-CHECK: LV(REG): RegisterClass: Generic::ScalarRC, 2 registers ; AVX512F-CHECK: LV(REG): RegisterClass: Generic::VectorRC, 2 registers ; AVX512F-CHECK: LV(REG): Found invariant usage: 0 item entry: br label %for.body for.body: ; preds = %for.body, %entry %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] %arrayidx = getelementptr inbounds [0 x i64], [0 x i64]* @d, i64 0, i64 %indvars.iv %tmp = load i64, i64* %arrayidx, align 8 %arrayidx1 = getelementptr inbounds [0 x i32], [0 x i32]* @e, i64 0, i64 %tmp %tmp1 = load i32, i32* %arrayidx1, align 4 %arrayidx3 = getelementptr inbounds [0 x i32], [0 x i32]* @c, i64 0, i64 %indvars.iv store i32 %tmp1, i32* %arrayidx3, align 4 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 %exitcond = icmp eq i64 %indvars.iv.next, 10000 br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void }