; REQUIRES: asserts ; RUN: opt < %s -force-vector-width=2 -loop-vectorize -debug-only=loop-vectorize -disable-output 2>&1 | FileCheck %s target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128" target triple = "aarch64--linux-gnu" ; Check predication-related cost calculations, including scalarization overhead ; and block probability scaling. Note that the functionality being tested is ; not specific to AArch64. We specify a target to get actual values for the ; instruction costs. ; CHECK-LABEL: predicated_udiv ; ; This test checks that we correctly compute the cost of the predicated udiv ; instruction. If we assume the block probability is 50%, we compute the cost ; as: ; ; Cost of udiv: ; (udiv(2) + extractelement(6) + insertelement(3)) / 2 = 5 ; ; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3 ; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3 ; define i32 @predicated_udiv(i32* %a, i32* %b, i1 %c, i64 %n) { entry: br label %for.body for.body: %i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ] %r = phi i32 [ 0, %entry ], [ %tmp6, %for.inc ] %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i %tmp2 = load i32, i32* %tmp0, align 4 %tmp3 = load i32, i32* %tmp1, align 4 br i1 %c, label %if.then, label %for.inc if.then: %tmp4 = udiv i32 %tmp2, %tmp3 br label %for.inc for.inc: %tmp5 = phi i32 [ %tmp3, %for.body ], [ %tmp4, %if.then] %tmp6 = add i32 %r, %tmp5 %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: %tmp7 = phi i32 [ %tmp6, %for.inc ] ret i32 %tmp7 } ; CHECK-LABEL: predicated_store ; ; This test checks that we correctly compute the cost of the predicated store ; instruction. If we assume the block probability is 50%, we compute the cost ; as: ; ; Cost of store: ; (store(4) + extractelement(3)) / 2 = 3 ; ; CHECK: Scalarizing and predicating: store i32 %tmp2, i32* %tmp0, align 4 ; CHECK: Found an estimated cost of 3 for VF 2 For instruction: store i32 %tmp2, i32* %tmp0, align 4 ; define void @predicated_store(i32* %a, i1 %c, i32 %x, i64 %n) { entry: br label %for.body for.body: %i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ] %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i %tmp1 = load i32, i32* %tmp0, align 4 %tmp2 = add nsw i32 %tmp1, %x br i1 %c, label %if.then, label %for.inc if.then: store i32 %tmp2, i32* %tmp0, align 4 br label %for.inc for.inc: %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ret void } ; CHECK-LABEL: predicated_udiv_scalarized_operand ; ; This test checks that we correctly compute the cost of the predicated udiv ; instruction and the add instruction it uses. The add is scalarized and sunk ; inside the predicated block. If we assume the block probability is 50%, we ; compute the cost as: ; ; Cost of add: ; (add(2) + extractelement(3)) / 2 = 2 ; Cost of udiv: ; (udiv(2) + extractelement(3) + insertelement(3)) / 2 = 4 ; ; CHECK: Scalarizing: %tmp3 = add nsw i32 %tmp2, %x ; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp2, %tmp3 ; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp3 = add nsw i32 %tmp2, %x ; CHECK: Found an estimated cost of 4 for VF 2 For instruction: %tmp4 = udiv i32 %tmp2, %tmp3 ; define i32 @predicated_udiv_scalarized_operand(i32* %a, i1 %c, i32 %x, i64 %n) { entry: br label %for.body for.body: %i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ] %r = phi i32 [ 0, %entry ], [ %tmp6, %for.inc ] %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i %tmp2 = load i32, i32* %tmp0, align 4 br i1 %c, label %if.then, label %for.inc if.then: %tmp3 = add nsw i32 %tmp2, %x %tmp4 = udiv i32 %tmp2, %tmp3 br label %for.inc for.inc: %tmp5 = phi i32 [ %tmp2, %for.body ], [ %tmp4, %if.then] %tmp6 = add i32 %r, %tmp5 %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: %tmp7 = phi i32 [ %tmp6, %for.inc ] ret i32 %tmp7 } ; CHECK-LABEL: predicated_store_scalarized_operand ; ; This test checks that we correctly compute the cost of the predicated store ; instruction and the add instruction it uses. The add is scalarized and sunk ; inside the predicated block. If we assume the block probability is 50%, we ; compute the cost as: ; ; Cost of add: ; (add(2) + extractelement(3)) / 2 = 2 ; Cost of store: ; store(4) / 2 = 2 ; ; CHECK: Scalarizing: %tmp2 = add nsw i32 %tmp1, %x ; CHECK: Scalarizing and predicating: store i32 %tmp2, i32* %tmp0, align 4 ; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp2 = add nsw i32 %tmp1, %x ; CHECK: Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp2, i32* %tmp0, align 4 ; define void @predicated_store_scalarized_operand(i32* %a, i1 %c, i32 %x, i64 %n) { entry: br label %for.body for.body: %i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ] %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i %tmp1 = load i32, i32* %tmp0, align 4 br i1 %c, label %if.then, label %for.inc if.then: %tmp2 = add nsw i32 %tmp1, %x store i32 %tmp2, i32* %tmp0, align 4 br label %for.inc for.inc: %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ret void } ; CHECK-LABEL: predication_multi_context ; ; This test checks that we correctly compute the cost of multiple predicated ; instructions in the same block. The sdiv, udiv, and store must be scalarized ; and predicated. The sub feeding the store is scalarized and sunk inside the ; store's predicated block. However, the add feeding the sdiv and udiv cannot ; be sunk and is not scalarized. If we assume the block probability is 50%, we ; compute the cost as: ; ; Cost of add: ; add(1) = 1 ; Cost of sdiv: ; (sdiv(2) + extractelement(6) + insertelement(3)) / 2 = 5 ; Cost of udiv: ; (udiv(2) + extractelement(6) + insertelement(3)) / 2 = 5 ; Cost of sub: ; (sub(2) + extractelement(3)) / 2 = 2 ; Cost of store: ; store(4) / 2 = 2 ; ; CHECK-NOT: Scalarizing: %tmp2 = add i32 %tmp1, %x ; CHECK: Scalarizing and predicating: %tmp3 = sdiv i32 %tmp1, %tmp2 ; CHECK: Scalarizing and predicating: %tmp4 = udiv i32 %tmp3, %tmp2 ; CHECK: Scalarizing: %tmp5 = sub i32 %tmp4, %x ; CHECK: Scalarizing and predicating: store i32 %tmp5, i32* %tmp0, align 4 ; CHECK: Found an estimated cost of 1 for VF 2 For instruction: %tmp2 = add i32 %tmp1, %x ; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp3 = sdiv i32 %tmp1, %tmp2 ; CHECK: Found an estimated cost of 5 for VF 2 For instruction: %tmp4 = udiv i32 %tmp3, %tmp2 ; CHECK: Found an estimated cost of 2 for VF 2 For instruction: %tmp5 = sub i32 %tmp4, %x ; CHECK: Found an estimated cost of 2 for VF 2 For instruction: store i32 %tmp5, i32* %tmp0, align 4 ; define void @predication_multi_context(i32* %a, i1 %c, i32 %x, i64 %n) { entry: br label %for.body for.body: %i = phi i64 [ 0, %entry ], [ %i.next, %for.inc ] %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i %tmp1 = load i32, i32* %tmp0, align 4 br i1 %c, label %if.then, label %for.inc if.then: %tmp2 = add i32 %tmp1, %x %tmp3 = sdiv i32 %tmp1, %tmp2 %tmp4 = udiv i32 %tmp3, %tmp2 %tmp5 = sub i32 %tmp4, %x store i32 %tmp5, i32* %tmp0, align 4 br label %for.inc for.inc: %i.next = add nuw nsw i64 %i, 1 %cond = icmp slt i64 %i.next, %n br i1 %cond, label %for.body, label %for.end for.end: ret void }