; RUN: opt -basic-aa -loop-distribute -enable-loop-distribute -verify-loop-info -verify-dom-info -S \ ; RUN: < %s | FileCheck %s ; RUN: opt -basic-aa -loop-distribute -enable-loop-distribute -verify-loop-info -verify-dom-info \ ; RUN: -loop-accesses -analyze < %s -enable-new-pm=0 | FileCheck %s --check-prefix=ANALYSIS ; TODO: the following changes the order loop-access printing prints loops, remove legacy RUN and change after NPM switch ; TODO: opt -aa-pipeline=basic-aa -passes='loop-distribute,print-access-info' -enable-loop-distribute \ ; TODO: -verify-loop-info -verify-dom-info -disable-output < %s 2>&1 | FileCheck %s --check-prefix=ANALYSIS ; RUN: opt -basic-aa -loop-distribute -enable-loop-distribute -loop-vectorize -force-vector-width=4 -S \ ; RUN: < %s | FileCheck %s --check-prefix=VECTORIZE ; We should distribute this loop into a safe (2nd statement) and unsafe loop ; (1st statement): ; for (i = 0; i < n; i++) { ; A[i + 1] = A[i] * B[i]; ; ======================= ; C[i] = D[i] * E[i]; ; } target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-apple-macosx10.10.0" ; CHECK-LABEL: @f( define void @f(i32* noalias %a, i32* noalias %b, i32* noalias %c, i32* noalias %d, i32* noalias %e) { entry: br label %for.body ; Verify the two distributed loops. ; CHECK: entry.split.ldist1: ; CHECK: br label %for.body.ldist1 ; CHECK: for.body.ldist1: ; CHECK: %mulA.ldist1 = mul i32 %loadB.ldist1, %loadA.ldist1 ; CHECK: br i1 %exitcond.ldist1, label %entry.split, label %for.body.ldist1 ; CHECK: entry.split: ; CHECK: br label %for.body ; CHECK: for.body: ; CHECK: %mulC = mul i32 %loadD, %loadE ; CHECK: for.end: ; ANALYSIS: for.body: ; ANALYSIS-NEXT: Memory dependences are safe{{$}} ; ANALYSIS: for.body.ldist1: ; ANALYSIS-NEXT: Report: unsafe dependent memory operations in loop ; VECTORIZE: mul <4 x i32> for.body: ; preds = %for.body, %entry %ind = phi i64 [ 0, %entry ], [ %add, %for.body ] %arrayidxA = getelementptr inbounds i32, i32* %a, i64 %ind %loadA = load i32, i32* %arrayidxA, align 4 %arrayidxB = getelementptr inbounds i32, i32* %b, i64 %ind %loadB = load i32, i32* %arrayidxB, align 4 %mulA = mul i32 %loadB, %loadA %add = add nuw nsw i64 %ind, 1 %arrayidxA_plus_4 = getelementptr inbounds i32, i32* %a, i64 %add store i32 %mulA, i32* %arrayidxA_plus_4, align 4 %arrayidxD = getelementptr inbounds i32, i32* %d, i64 %ind %loadD = load i32, i32* %arrayidxD, align 4 %arrayidxE = getelementptr inbounds i32, i32* %e, i64 %ind %loadE = load i32, i32* %arrayidxE, align 4 %mulC = mul i32 %loadD, %loadE %arrayidxC = getelementptr inbounds i32, i32* %c, i64 %ind store i32 %mulC, i32* %arrayidxC, align 4 %exitcond = icmp eq i64 %add, 20 br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void } declare i32 @llvm.convergent(i32) #0 ; It is OK to distribute with a convergent operation, since in each ; new loop the convergent operation has the ssame control dependency. ; CHECK-LABEL: @f_with_convergent( define void @f_with_convergent(i32* noalias %a, i32* noalias %b, i32* noalias %c, i32* noalias %d, i32* noalias %e) { entry: br label %for.body ; Verify the two distributed loops. ; CHECK: entry.split.ldist1: ; CHECK: br label %for.body.ldist1 ; CHECK: for.body.ldist1: ; CHECK: %mulA.ldist1 = mul i32 %loadB.ldist1, %loadA.ldist1 ; CHECK: br i1 %exitcond.ldist1, label %entry.split, label %for.body.ldist1 ; CHECK: entry.split: ; CHECK: br label %for.body ; CHECK: for.body: ; CHECK: %convergentD = call i32 @llvm.convergent(i32 %loadD) ; CHECK: %mulC = mul i32 %convergentD, %loadE ; CHECK: for.end: ; ANALYSIS: for.body: ; ANALYSIS-NEXT: Has convergent operation in loop ; ANALYSIS-NEXT: Report: cannot add control dependency to convergent operation ; ANALYSIS: for.body.ldist1: ; ANALYSIS-NEXT: Report: unsafe dependent memory operations in loop ; convergent instruction happens to block vectorization ; VECTORIZE: call i32 @llvm.convergent ; VECTORIZE: mul i32 for.body: ; preds = %for.body, %entry %ind = phi i64 [ 0, %entry ], [ %add, %for.body ] %arrayidxA = getelementptr inbounds i32, i32* %a, i64 %ind %loadA = load i32, i32* %arrayidxA, align 4 %arrayidxB = getelementptr inbounds i32, i32* %b, i64 %ind %loadB = load i32, i32* %arrayidxB, align 4 %mulA = mul i32 %loadB, %loadA %add = add nuw nsw i64 %ind, 1 %arrayidxA_plus_4 = getelementptr inbounds i32, i32* %a, i64 %add store i32 %mulA, i32* %arrayidxA_plus_4, align 4 %arrayidxD = getelementptr inbounds i32, i32* %d, i64 %ind %loadD = load i32, i32* %arrayidxD, align 4 %arrayidxE = getelementptr inbounds i32, i32* %e, i64 %ind %loadE = load i32, i32* %arrayidxE, align 4 %convergentD = call i32 @llvm.convergent(i32 %loadD) %mulC = mul i32 %convergentD, %loadE %arrayidxC = getelementptr inbounds i32, i32* %c, i64 %ind store i32 %mulC, i32* %arrayidxC, align 4 %exitcond = icmp eq i64 %add, 20 br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void } attributes #0 = { nounwind readnone convergent }