; RUN: opt -basic-aa -loop-distribute -enable-loop-distribute -verify-loop-info -verify-dom-info -S \ ; RUN: < %s | FileCheck %s ; RUN: opt -basic-aa -loop-distribute -enable-loop-distribute -loop-vectorize -force-vector-width=4 \ ; RUN: -verify-loop-info -verify-dom-info -S < %s | \ ; RUN: FileCheck --check-prefix=VECTORIZE %s ; RUN: opt -basic-aa -loop-distribute -enable-loop-distribute -verify-loop-info -verify-dom-info \ ; RUN: -loop-accesses -analyze < %s -enable-new-pm=0 | FileCheck %s --check-prefix=ANALYSIS ; TODO: the following changes the order loop-access printing prints loops, remove legacy RUN and change after NPM switch ; TODO: opt -aa-pipeline=basic-aa -passes='loop-distribute,print-access-info' -enable-loop-distribute \ ; TODO: -verify-loop-info -verify-dom-info -disable-output < %s 2>&1 | FileCheck %s --check-prefix=ANALYSIS ; The memcheck version of basic.ll. We should distribute and vectorize the ; second part of this loop with 5 memchecks (A+1 x {C, D, E} + C x {A, B}) ; ; for (i = 0; i < n; i++) { ; A[i + 1] = A[i] * B[i]; ; ------------------------------- ; C[i] = D[i] * E[i]; ; } target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-apple-macosx10.10.0" @B = common global i32* null, align 8 @A = common global i32* null, align 8 @C = common global i32* null, align 8 @D = common global i32* null, align 8 @E = common global i32* null, align 8 ; CHECK-LABEL: @f( define void @f() { entry: %a = load i32*, i32** @A, align 8 %b = load i32*, i32** @B, align 8 %c = load i32*, i32** @C, align 8 %d = load i32*, i32** @D, align 8 %e = load i32*, i32** @E, align 8 br label %for.body ; We have two compares for each array overlap check. ; Since the checks to A and A + 4 get merged, this will give us a ; total of 8 compares. ; ; CHECK: for.body.lver.check: ; CHECK: = icmp ; CHECK: = icmp ; CHECK: = icmp ; CHECK: = icmp ; CHECK: = icmp ; CHECK: = icmp ; CHECK: = icmp ; CHECK: = icmp ; CHECK-NOT: = icmp ; CHECK: br i1 %memcheck.conflict, label %for.body.ph.lver.orig, label %for.body.ph.ldist1 ; The non-distributed loop that the memchecks fall back on. ; CHECK: for.body.ph.lver.orig: ; CHECK: br label %for.body.lver.orig ; CHECK: for.body.lver.orig: ; CHECK: br i1 %exitcond.lver.orig, label %for.end.loopexit, label %for.body.lver.orig ; Verify the two distributed loops. ; CHECK: for.body.ph.ldist1: ; CHECK: br label %for.body.ldist1 ; CHECK: for.body.ldist1: ; CHECK: %mulA.ldist1 = mul i32 %loadB.ldist1, %loadA.ldist1 ; CHECK: br i1 %exitcond.ldist1, label %for.body.ph, label %for.body.ldist1 ; CHECK: for.body.ph: ; CHECK: br label %for.body ; CHECK: for.body: ; CHECK: %mulC = mul i32 %loadD, %loadE ; CHECK: for.end: ; VECTORIZE: mul <4 x i32> for.body: ; preds = %for.body, %entry %ind = phi i64 [ 0, %entry ], [ %add, %for.body ] %arrayidxA = getelementptr inbounds i32, i32* %a, i64 %ind %loadA = load i32, i32* %arrayidxA, align 4 %arrayidxB = getelementptr inbounds i32, i32* %b, i64 %ind %loadB = load i32, i32* %arrayidxB, align 4 %mulA = mul i32 %loadB, %loadA %add = add nuw nsw i64 %ind, 1 %arrayidxA_plus_4 = getelementptr inbounds i32, i32* %a, i64 %add store i32 %mulA, i32* %arrayidxA_plus_4, align 4 %arrayidxD = getelementptr inbounds i32, i32* %d, i64 %ind %loadD = load i32, i32* %arrayidxD, align 4 %arrayidxE = getelementptr inbounds i32, i32* %e, i64 %ind %loadE = load i32, i32* %arrayidxE, align 4 %mulC = mul i32 %loadD, %loadE %arrayidxC = getelementptr inbounds i32, i32* %c, i64 %ind store i32 %mulC, i32* %arrayidxC, align 4 %exitcond = icmp eq i64 %add, 20 br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void } ; Make sure there's no "Multiple reports generated" assert with a ; volatile load, and no distribution ; TODO: Distribution of volatile may be possible under some ; circumstance, but the current implementation does not touch them. ; CHECK-LABEL: @f_volatile_load( ; CHECK: br label %for.body{{$}} ; CHECK-NOT: load ; CHECK: {{^}}for.body: ; CHECK: load i32 ; CHECK: load i32 ; CHECK: load volatile i32 ; CHECK: load i32 ; CHECK: br i1 %exitcond, label %for.end, label %for.body{{$}} ; CHECK-NOT: load ; VECTORIZE-NOT: load <4 x i32> ; VECTORIZE-NOT: mul <4 x i32> define void @f_volatile_load() { entry: %a = load i32*, i32** @A, align 8 %b = load i32*, i32** @B, align 8 %c = load i32*, i32** @C, align 8 %d = load i32*, i32** @D, align 8 %e = load i32*, i32** @E, align 8 br label %for.body for.body: %ind = phi i64 [ 0, %entry ], [ %add, %for.body ] %arrayidxA = getelementptr inbounds i32, i32* %a, i64 %ind %loadA = load i32, i32* %arrayidxA, align 4 %arrayidxB = getelementptr inbounds i32, i32* %b, i64 %ind %loadB = load i32, i32* %arrayidxB, align 4 %mulA = mul i32 %loadB, %loadA %add = add nuw nsw i64 %ind, 1 %arrayidxA_plus_4 = getelementptr inbounds i32, i32* %a, i64 %add store i32 %mulA, i32* %arrayidxA_plus_4, align 4 %arrayidxD = getelementptr inbounds i32, i32* %d, i64 %ind %loadD = load volatile i32, i32* %arrayidxD, align 4 %arrayidxE = getelementptr inbounds i32, i32* %e, i64 %ind %loadE = load i32, i32* %arrayidxE, align 4 %mulC = mul i32 %loadD, %loadE %arrayidxC = getelementptr inbounds i32, i32* %c, i64 %ind store i32 %mulC, i32* %arrayidxC, align 4 %exitcond = icmp eq i64 %add, 20 br i1 %exitcond, label %for.end, label %for.body for.end: ret void } declare i32 @llvm.convergent(i32) #0 ; This is the same as f, and would require the same bounds ; check. However, it is not OK to introduce new control dependencies ; on the convergent call. ; CHECK-LABEL: @f_with_convergent( ; CHECK: call i32 @llvm.convergent ; CHECK-NOT: call i32 @llvm.convergent ; ANALYSIS: for.body: ; ANALYSIS: Report: cannot add control dependency to convergent operation define void @f_with_convergent() #1 { entry: %a = load i32*, i32** @A, align 8 %b = load i32*, i32** @B, align 8 %c = load i32*, i32** @C, align 8 %d = load i32*, i32** @D, align 8 %e = load i32*, i32** @E, align 8 br label %for.body for.body: ; preds = %for.body, %entry %ind = phi i64 [ 0, %entry ], [ %add, %for.body ] %arrayidxA = getelementptr inbounds i32, i32* %a, i64 %ind %loadA = load i32, i32* %arrayidxA, align 4 %arrayidxB = getelementptr inbounds i32, i32* %b, i64 %ind %loadB = load i32, i32* %arrayidxB, align 4 %mulA = mul i32 %loadB, %loadA %add = add nuw nsw i64 %ind, 1 %arrayidxA_plus_4 = getelementptr inbounds i32, i32* %a, i64 %add store i32 %mulA, i32* %arrayidxA_plus_4, align 4 %arrayidxD = getelementptr inbounds i32, i32* %d, i64 %ind %loadD = load i32, i32* %arrayidxD, align 4 %arrayidxE = getelementptr inbounds i32, i32* %e, i64 %ind %loadE = load i32, i32* %arrayidxE, align 4 %convergentD = call i32 @llvm.convergent(i32 %loadD) %mulC = mul i32 %convergentD, %loadE %arrayidxC = getelementptr inbounds i32, i32* %c, i64 %ind store i32 %mulC, i32* %arrayidxC, align 4 %exitcond = icmp eq i64 %add, 20 br i1 %exitcond, label %for.end, label %for.body for.end: ; preds = %for.body ret void } ; Make sure an explicit request for distribution is ignored if it ; requires possibly illegal checks. ; CHECK-LABEL: @f_with_convergent_forced_distribute( ; CHECK: call i32 @llvm.convergent ; CHECK-NOT: call i32 @llvm.convergent define void @f_with_convergent_forced_distribute() #1 { entry: %a = load i32*, i32** @A, align 8 %b = load i32*, i32** @B, align 8 %c = load i32*, i32** @C, align 8 %d = load i32*, i32** @D, align 8 %e = load i32*, i32** @E, align 8 br label %for.body for.body: ; preds = %for.body, %entry %ind = phi i64 [ 0, %entry ], [ %add, %for.body ] %arrayidxA = getelementptr inbounds i32, i32* %a, i64 %ind %loadA = load i32, i32* %arrayidxA, align 4 %arrayidxB = getelementptr inbounds i32, i32* %b, i64 %ind %loadB = load i32, i32* %arrayidxB, align 4 %mulA = mul i32 %loadB, %loadA %add = add nuw nsw i64 %ind, 1 %arrayidxA_plus_4 = getelementptr inbounds i32, i32* %a, i64 %add store i32 %mulA, i32* %arrayidxA_plus_4, align 4 %arrayidxD = getelementptr inbounds i32, i32* %d, i64 %ind %loadD = load i32, i32* %arrayidxD, align 4 %arrayidxE = getelementptr inbounds i32, i32* %e, i64 %ind %loadE = load i32, i32* %arrayidxE, align 4 %convergentD = call i32 @llvm.convergent(i32 %loadD) %mulC = mul i32 %convergentD, %loadE %arrayidxC = getelementptr inbounds i32, i32* %c, i64 %ind store i32 %mulC, i32* %arrayidxC, align 4 %exitcond = icmp eq i64 %add, 20 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0 for.end: ; preds = %for.body ret void } attributes #0 = { nounwind readnone convergent } attributes #1 = { nounwind convergent } !0 = distinct !{!0, !1} !1 = !{!"llvm.loop.distribute.enable", i1 true}