; RUN: opt < %s -analyze -enable-new-pm=0 -scalar-evolution | FileCheck %s ; RUN: opt < %s -disable-output "-passes=print" 2>&1 | FileCheck %s target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" @A = weak global [1000 x i32] zeroinitializer, align 32 ; The resulting predicate is i16 {0,+,1} , meanining ; that the resulting backedge expression will be valid for: ; (1 + (-1 smax %M)) <= MAX_INT16 ; ; At the limit condition for M (MAX_INT16 - 1) we have in the ; last iteration: ; i0 <- MAX_INT16 ; i0.ext <- MAX_INT16 ; ; and therefore no wrapping happend for i0 or i0.ext ; throughout the execution of the loop. The resulting predicated ; backedge taken count is correct. ; CHECK: Classifying expressions for: @test1 ; CHECK: %i.0.ext = sext i16 %i.0 to i32 ; CHECK-NEXT: --> (sext i16 {0,+,1}<%bb3> to i32) ; CHECK: Loop %bb3: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %bb3: Unpredictable max backedge-taken count. ; CHECK-NEXT: Loop %bb3: Predicated backedge-taken count is (1 + (-1 smax %M)) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {0,+,1}<%bb3> Added Flags: define void @test1(i32 %N, i32 %M) { entry: br label %bb3 bb: ; preds = %bb3 %tmp = getelementptr [1000 x i32], [1000 x i32]* @A, i32 0, i16 %i.0 ; [#uses=1] store i32 123, i32* %tmp %tmp2 = add i16 %i.0, 1 ; [#uses=1] br label %bb3 bb3: ; preds = %bb, %entry %i.0 = phi i16 [ 0, %entry ], [ %tmp2, %bb ] ; [#uses=3] %i.0.ext = sext i16 %i.0 to i32 %tmp3 = icmp sle i32 %i.0.ext, %M ; [#uses=1] br i1 %tmp3, label %bb, label %bb5 bb5: ; preds = %bb3 br label %return return: ; preds = %bb5 ret void } ; The predicated backedge taken count is: ; (2 + (zext i16 %Start to i32) + ((-2 + (-1 * (sext i16 %Start to i32))) ; smax (-1 + (-1 * %M))) ; ) ; -1 + (-1 * %M) <= (-2 + (-1 * (sext i16 %Start to i32)) ; The predicated backedge taken count is 0. ; From the IR, this is correct since we will bail out at the ; first iteration. ; * -1 + (-1 * %M) > (-2 + (-1 * (sext i16 %Start to i32)) ; or: %M < 1 + (sext i16 %Start to i32) ; ; The predicated backedge taken count is 1 + (zext i16 %Start to i32) - %M ; ; If %M >= MIN_INT + 1, this predicated backedge taken count would be correct (even ; without predicates). However, for %M < MIN_INT this would be an infinite loop. ; In these cases, the {%Start,+,-1} predicate would be false, as the ; final value of the expression {%Start,+,-1} expression (%M - 1) would not be ; representable as an i16. ; There is also a limit case here where the value of %M is MIN_INT. In this case ; we still have an infinite loop, since icmp sge %x, MIN_INT will always return ; true. ; CHECK: Classifying expressions for: @test2 ; CHECK: %i.0.ext = sext i16 %i.0 to i32 ; CHECK-NEXT: --> (sext i16 {%Start,+,-1}<%bb3> to i32) ; CHECK: Loop %bb3: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %bb3: Unpredictable max backedge-taken count. ; CHECK-NEXT: Loop %bb3: Predicated backedge-taken count is (1 + (sext i16 %Start to i32) + (-1 * ((1 + (sext i16 %Start to i32)) smin %M))) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {%Start,+,-1}<%bb3> Added Flags: define void @test2(i32 %N, i32 %M, i16 %Start) { entry: br label %bb3 bb: ; preds = %bb3 %tmp = getelementptr [1000 x i32], [1000 x i32]* @A, i32 0, i16 %i.0 ; [#uses=1] store i32 123, i32* %tmp %tmp2 = sub i16 %i.0, 1 ; [#uses=1] br label %bb3 bb3: ; preds = %bb, %entry %i.0 = phi i16 [ %Start, %entry ], [ %tmp2, %bb ] ; [#uses=3] %i.0.ext = sext i16 %i.0 to i32 %tmp3 = icmp sge i32 %i.0.ext, %M ; [#uses=1] br i1 %tmp3, label %bb, label %bb5 bb5: ; preds = %bb3 br label %return return: ; preds = %bb5 ret void }