; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py ; RUN: opt -analyze -enable-new-pm=0 -scalar-evolution %s | FileCheck %s ; RUN: opt -disable-output "-passes=print" %s 2>&1 | FileCheck %s ; exact-not-taken cannot be umin(n, m) because it is possible for (n, m) to be (0, poison) ; https://alive2.llvm.org/ce/z/NsP9ue define void @logical_and(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and' ; CHECK-NEXT: Classifying expressions for: @logical_and ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_i, i1 %cond_i2, i1 false ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Unpredictable predicated backedge-taken count. ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_i = icmp ult i32 %i, %n %cond_i2 = icmp ult i32 %i, %m %cond = select i1 %cond_i, i1 %cond_i2, i1 false br i1 %cond, label %loop, label %exit exit: ret void } ; If m is constant, exact-not-taken is umin(n, m) ; https://alive2.llvm.org/ce/z/ZTNXgY define void @logical_and_m_const(i32 %n) { ; CHECK-LABEL: 'logical_and_m_const' ; CHECK-NEXT: Classifying expressions for: @logical_and_m_const ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,3) S: [0,3) Exits: (2 umin %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,4) S: [1,4) Exits: (1 + (2 umin %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_i, i1 %cond_i2, i1 false ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_m_const ; CHECK-NEXT: Loop %loop: backedge-taken count is (2 umin %n) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 2 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (2 umin %n) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_i = icmp ult i32 %i, %n %cond_i2 = icmp ult i32 %i, 2 %cond = select i1 %cond_i, i1 %cond_i2, i1 false br i1 %cond, label %loop, label %exit exit: ret void } ; exact-not-taken is umin(2, m) because m participates in the exit branch condition. ; https://alive2.llvm.org/ce/z/rCVMmp define void @logical_and_nonzero(i32 %m) { ; CHECK-LABEL: 'logical_and_nonzero' ; CHECK-NEXT: Classifying expressions for: @logical_and_nonzero ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,3) S: [0,3) Exits: (2 umin %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,4) S: [1,4) Exits: (1 + (2 umin %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_i, i1 %cond_i2, i1 false ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_nonzero ; CHECK-NEXT: Loop %loop: backedge-taken count is (2 umin %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 2 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (2 umin %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_i = icmp ult i32 %i, 2 %cond_i2 = icmp ult i32 %i, %m %cond = select i1 %cond_i, i1 %cond_i2, i1 false br i1 %cond, label %loop, label %exit exit: ret void } ; exact-not-taken cannot be umin(0, m) because m never participates in the exit branch condition. ; https://alive2.llvm.org/ce/z/rlaN4a ; Instead, it should be just 0. define void @logical_and_zero(i32 %m) { ; CHECK-LABEL: 'logical_and_zero' ; CHECK-NEXT: Classifying expressions for: @logical_and_zero ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,2) S: [1,2) Exits: 1 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_i, i1 %cond_i2, i1 false ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_zero ; CHECK-NEXT: Loop %loop: backedge-taken count is 0 ; CHECK-NEXT: Loop %loop: max backedge-taken count is 0 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is 0 ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_i = icmp ult i32 %i, 0 %cond_i2 = icmp ult i32 %i, %m %cond = select i1 %cond_i, i1 %cond_i2, i1 false br i1 %cond, label %loop, label %exit exit: ret void } ; exact-not-taken is umax(n, m) because both conditions (cond_i, cond_i2) participate in branching, ; preventing them from being poison. ; https://alive2.llvm.org/ce/z/8_p-zu ; Currently SCEV is conservative in this case and simply returns unknown. define void @logical_and_inversed(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_inversed' ; CHECK-NEXT: Classifying expressions for: @logical_and_inversed ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_i, i1 %cond_i2, i1 false ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_inversed ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable predicated backedge-taken count. ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_i = icmp uge i32 %i, %n %cond_i2 = icmp uge i32 %i, %m %cond = select i1 %cond_i, i1 %cond_i2, i1 false br i1 %cond, label %exit, label %loop exit: ret void } ; exact-not-taken cannot be umin(n, m) because it is possible for (n, m) to be (0, poison) ; https://alive2.llvm.org/ce/z/ApRitq define void @logical_or(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_or' ; CHECK-NEXT: Classifying expressions for: @logical_or ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_i, i1 true, i1 %cond_i2 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Unpredictable predicated backedge-taken count. ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_i = icmp uge i32 %i, %n %cond_i2 = icmp uge i32 %i, %m %cond = select i1 %cond_i, i1 true, i1 %cond_i2 br i1 %cond, label %exit, label %loop exit: ret void } ; If m is constant, exact-not-taken is umin(n, m) ; https://alive2.llvm.org/ce/z/RQmJiq define void @logical_or_m_const(i32 %n) { ; CHECK-LABEL: 'logical_or_m_const' ; CHECK-NEXT: Classifying expressions for: @logical_or_m_const ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,3) S: [0,3) Exits: (2 umin %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,4) S: [1,4) Exits: (1 + (2 umin %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_i, i1 true, i1 %cond_i2 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_m_const ; CHECK-NEXT: Loop %loop: backedge-taken count is (2 umin %n) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 2 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (2 umin %n) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_i = icmp uge i32 %i, %n %cond_i2 = icmp uge i32 %i, 2 %cond = select i1 %cond_i, i1 true, i1 %cond_i2 br i1 %cond, label %exit, label %loop exit: ret void } ; exact-not-taken is umin(2, m) because m participates in exit branch condition. ; https://alive2.llvm.org/ce/z/zcHS_d define void @logical_or_nonzero(i32 %m) { ; CHECK-LABEL: 'logical_or_nonzero' ; CHECK-NEXT: Classifying expressions for: @logical_or_nonzero ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,3) S: [0,3) Exits: (2 umin %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,4) S: [1,4) Exits: (1 + (2 umin %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_i, i1 true, i1 %cond_i2 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_nonzero ; CHECK-NEXT: Loop %loop: backedge-taken count is (2 umin %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 2 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (2 umin %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_i = icmp uge i32 %i, 2 %cond_i2 = icmp uge i32 %i, %m %cond = select i1 %cond_i, i1 true, i1 %cond_i2 br i1 %cond, label %exit, label %loop exit: ret void } ; exact-not-taken cannot be umin(0, m) because m does not participate in exit branch condition. ; https://alive2.llvm.org/ce/z/-dUmmc ; Instead, exact-not-taken should be just 0. define void @logical_or_zero(i32 %m) { ; CHECK-LABEL: 'logical_or_zero' ; CHECK-NEXT: Classifying expressions for: @logical_or_zero ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,2) S: [1,2) Exits: 1 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_i, i1 true, i1 %cond_i2 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_zero ; CHECK-NEXT: Loop %loop: backedge-taken count is 0 ; CHECK-NEXT: Loop %loop: max backedge-taken count is 0 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is 0 ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_i = icmp uge i32 %i, 0 %cond_i2 = icmp uge i32 %i, %m %cond = select i1 %cond_i, i1 true, i1 %cond_i2 br i1 %cond, label %exit, label %loop exit: ret void } ; exact-not-taken is umax(n, m) because both conditions (cond_i, cond_i2) participate in branching, ; preventing them from being poison. ; https://alive2.llvm.org/ce/z/VaCu9C ; Currently SCEV is conservative in this case and simply returns unknown. define void @logical_or_inversed(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_or_inversed' ; CHECK-NEXT: Classifying expressions for: @logical_or_inversed ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_i, i1 true, i1 %cond_i2 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_inversed ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable predicated backedge-taken count. ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_i = icmp ult i32 %i, %n %cond_i2 = icmp ult i32 %i, %m %cond = select i1 %cond_i, i1 true, i1 %cond_i2 br i1 %cond, label %loop, label %exit exit: ret void }