//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass implements the Bottom Up SLP vectorizer. It detects consecutive // stores that can be put together into vector-stores. Next, it attempts to // construct vectorizable tree using the use-def chains. If a profitable tree // was found, the SLP vectorizer performs vectorization on the tree. // // The pass is inspired by the work described in the paper: // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Vectorize/SLPVectorizer.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/DemandedBits.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/IVDescriptors.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/NoFolder.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/Verifier.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/DOTGraphTraits.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/InstructionCost.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/InjectTLIMappings.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Vectorize.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; using namespace slpvectorizer; #define SV_NAME "slp-vectorizer" #define DEBUG_TYPE "SLP" STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); cl::opt RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, cl::desc("Run the SLP vectorization passes")); static cl::opt SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, cl::desc("Only vectorize if you gain more than this " "number ")); static cl::opt ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, cl::desc("Attempt to vectorize horizontal reductions")); static cl::opt ShouldStartVectorizeHorAtStore( "slp-vectorize-hor-store", cl::init(false), cl::Hidden, cl::desc( "Attempt to vectorize horizontal reductions feeding into a store")); static cl::opt MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, cl::desc("Attempt to vectorize for this register size in bits")); static cl::opt MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, cl::desc("Maximum SLP vectorization factor (0=unlimited)")); static cl::opt MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, cl::desc("Maximum depth of the lookup for consecutive stores.")); /// Limits the size of scheduling regions in a block. /// It avoid long compile times for _very_ large blocks where vector /// instructions are spread over a wide range. /// This limit is way higher than needed by real-world functions. static cl::opt ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, cl::desc("Limit the size of the SLP scheduling region per block")); static cl::opt MinVectorRegSizeOption( "slp-min-reg-size", cl::init(128), cl::Hidden, cl::desc("Attempt to vectorize for this register size in bits")); static cl::opt RecursionMaxDepth( "slp-recursion-max-depth", cl::init(12), cl::Hidden, cl::desc("Limit the recursion depth when building a vectorizable tree")); static cl::opt MinTreeSize( "slp-min-tree-size", cl::init(3), cl::Hidden, cl::desc("Only vectorize small trees if they are fully vectorizable")); // The maximum depth that the look-ahead score heuristic will explore. // The higher this value, the higher the compilation time overhead. static cl::opt LookAheadMaxDepth( "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, cl::desc("The maximum look-ahead depth for operand reordering scores")); // The Look-ahead heuristic goes through the users of the bundle to calculate // the users cost in getExternalUsesCost(). To avoid compilation time increase // we limit the number of users visited to this value. static cl::opt LookAheadUsersBudget( "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, cl::desc("The maximum number of users to visit while visiting the " "predecessors. This prevents compilation time increase.")); static cl::opt ViewSLPTree("view-slp-tree", cl::Hidden, cl::desc("Display the SLP trees with Graphviz")); // Limit the number of alias checks. The limit is chosen so that // it has no negative effect on the llvm benchmarks. static const unsigned AliasedCheckLimit = 10; // Another limit for the alias checks: The maximum distance between load/store // instructions where alias checks are done. // This limit is useful for very large basic blocks. static const unsigned MaxMemDepDistance = 160; /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling /// regions to be handled. static const int MinScheduleRegionSize = 16; /// Predicate for the element types that the SLP vectorizer supports. /// /// The most important thing to filter here are types which are invalid in LLVM /// vectors. We also filter target specific types which have absolutely no /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just /// avoids spending time checking the cost model and realizing that they will /// be inevitably scalarized. static bool isValidElementType(Type *Ty) { return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && !Ty->isPPC_FP128Ty(); } /// \returns true if all of the instructions in \p VL are in the same block or /// false otherwise. static bool allSameBlock(ArrayRef VL) { Instruction *I0 = dyn_cast(VL[0]); if (!I0) return false; BasicBlock *BB = I0->getParent(); for (int I = 1, E = VL.size(); I < E; I++) { auto *II = dyn_cast(VL[I]); if (!II) return false; if (BB != II->getParent()) return false; } return true; } /// \returns True if all of the values in \p VL are constants (but not /// globals/constant expressions). static bool allConstant(ArrayRef VL) { // Constant expressions and globals can't be vectorized like normal integer/FP // constants. for (Value *i : VL) if (!isa(i) || isa(i) || isa(i)) return false; return true; } /// \returns True if all of the values in \p VL are identical. static bool isSplat(ArrayRef VL) { for (unsigned i = 1, e = VL.size(); i < e; ++i) if (VL[i] != VL[0]) return false; return true; } /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. static bool isCommutative(Instruction *I) { if (auto *Cmp = dyn_cast(I)) return Cmp->isCommutative(); if (auto *BO = dyn_cast(I)) return BO->isCommutative(); // TODO: This should check for generic Instruction::isCommutative(), but // we need to confirm that the caller code correctly handles Intrinsics // for example (does not have 2 operands). return false; } /// Checks if the vector of instructions can be represented as a shuffle, like: /// %x0 = extractelement <4 x i8> %x, i32 0 /// %x3 = extractelement <4 x i8> %x, i32 3 /// %y1 = extractelement <4 x i8> %y, i32 1 /// %y2 = extractelement <4 x i8> %y, i32 2 /// %x0x0 = mul i8 %x0, %x0 /// %x3x3 = mul i8 %x3, %x3 /// %y1y1 = mul i8 %y1, %y1 /// %y2y2 = mul i8 %y2, %y2 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 /// ret <4 x i8> %ins4 /// can be transformed into: /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> /// %2 = mul <4 x i8> %1, %1 /// ret <4 x i8> %2 /// We convert this initially to something like: /// %x0 = extractelement <4 x i8> %x, i32 0 /// %x3 = extractelement <4 x i8> %x, i32 3 /// %y1 = extractelement <4 x i8> %y, i32 1 /// %y2 = extractelement <4 x i8> %y, i32 2 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 /// %5 = mul <4 x i8> %4, %4 /// %6 = extractelement <4 x i8> %5, i32 0 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 /// %7 = extractelement <4 x i8> %5, i32 1 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 /// %8 = extractelement <4 x i8> %5, i32 2 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 /// %9 = extractelement <4 x i8> %5, i32 3 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 /// ret <4 x i8> %ins4 /// InstCombiner transforms this into a shuffle and vector mul /// TODO: Can we split off and reuse the shuffle mask detection from /// TargetTransformInfo::getInstructionThroughput? static Optional isShuffle(ArrayRef VL) { auto *EI0 = cast(VL[0]); unsigned Size = cast(EI0->getVectorOperandType())->getNumElements(); Value *Vec1 = nullptr; Value *Vec2 = nullptr; enum ShuffleMode { Unknown, Select, Permute }; ShuffleMode CommonShuffleMode = Unknown; for (unsigned I = 0, E = VL.size(); I < E; ++I) { auto *EI = cast(VL[I]); auto *Vec = EI->getVectorOperand(); // All vector operands must have the same number of vector elements. if (cast(Vec->getType())->getNumElements() != Size) return None; auto *Idx = dyn_cast(EI->getIndexOperand()); if (!Idx) return None; // Undefined behavior if Idx is negative or >= Size. if (Idx->getValue().uge(Size)) continue; unsigned IntIdx = Idx->getValue().getZExtValue(); // We can extractelement from undef or poison vector. if (isa(Vec)) continue; // For correct shuffling we have to have at most 2 different vector operands // in all extractelement instructions. if (!Vec1 || Vec1 == Vec) Vec1 = Vec; else if (!Vec2 || Vec2 == Vec) Vec2 = Vec; else return None; if (CommonShuffleMode == Permute) continue; // If the extract index is not the same as the operation number, it is a // permutation. if (IntIdx != I) { CommonShuffleMode = Permute; continue; } CommonShuffleMode = Select; } // If we're not crossing lanes in different vectors, consider it as blending. if (CommonShuffleMode == Select && Vec2) return TargetTransformInfo::SK_Select; // If Vec2 was never used, we have a permutation of a single vector, otherwise // we have permutation of 2 vectors. return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc : TargetTransformInfo::SK_PermuteSingleSrc; } namespace { /// Main data required for vectorization of instructions. struct InstructionsState { /// The very first instruction in the list with the main opcode. Value *OpValue = nullptr; /// The main/alternate instruction. Instruction *MainOp = nullptr; Instruction *AltOp = nullptr; /// The main/alternate opcodes for the list of instructions. unsigned getOpcode() const { return MainOp ? MainOp->getOpcode() : 0; } unsigned getAltOpcode() const { return AltOp ? AltOp->getOpcode() : 0; } /// Some of the instructions in the list have alternate opcodes. bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } bool isOpcodeOrAlt(Instruction *I) const { unsigned CheckedOpcode = I->getOpcode(); return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; } InstructionsState() = delete; InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} }; } // end anonymous namespace /// Chooses the correct key for scheduling data. If \p Op has the same (or /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p /// OpValue. static Value *isOneOf(const InstructionsState &S, Value *Op) { auto *I = dyn_cast(Op); if (I && S.isOpcodeOrAlt(I)) return Op; return S.OpValue; } /// \returns true if \p Opcode is allowed as part of of the main/alternate /// instruction for SLP vectorization. /// /// Example of unsupported opcode is SDIV that can potentially cause UB if the /// "shuffled out" lane would result in division by zero. static bool isValidForAlternation(unsigned Opcode) { if (Instruction::isIntDivRem(Opcode)) return false; return true; } /// \returns analysis of the Instructions in \p VL described in /// InstructionsState, the Opcode that we suppose the whole list /// could be vectorized even if its structure is diverse. static InstructionsState getSameOpcode(ArrayRef VL, unsigned BaseIndex = 0) { // Make sure these are all Instructions. if (llvm::any_of(VL, [](Value *V) { return !isa(V); })) return InstructionsState(VL[BaseIndex], nullptr, nullptr); bool IsCastOp = isa(VL[BaseIndex]); bool IsBinOp = isa(VL[BaseIndex]); unsigned Opcode = cast(VL[BaseIndex])->getOpcode(); unsigned AltOpcode = Opcode; unsigned AltIndex = BaseIndex; // Check for one alternate opcode from another BinaryOperator. // TODO - generalize to support all operators (types, calls etc.). for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { unsigned InstOpcode = cast(VL[Cnt])->getOpcode(); if (IsBinOp && isa(VL[Cnt])) { if (InstOpcode == Opcode || InstOpcode == AltOpcode) continue; if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && isValidForAlternation(Opcode)) { AltOpcode = InstOpcode; AltIndex = Cnt; continue; } } else if (IsCastOp && isa(VL[Cnt])) { Type *Ty0 = cast(VL[BaseIndex])->getOperand(0)->getType(); Type *Ty1 = cast(VL[Cnt])->getOperand(0)->getType(); if (Ty0 == Ty1) { if (InstOpcode == Opcode || InstOpcode == AltOpcode) continue; if (Opcode == AltOpcode) { assert(isValidForAlternation(Opcode) && isValidForAlternation(InstOpcode) && "Cast isn't safe for alternation, logic needs to be updated!"); AltOpcode = InstOpcode; AltIndex = Cnt; continue; } } } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) continue; return InstructionsState(VL[BaseIndex], nullptr, nullptr); } return InstructionsState(VL[BaseIndex], cast(VL[BaseIndex]), cast(VL[AltIndex])); } /// \returns true if all of the values in \p VL have the same type or false /// otherwise. static bool allSameType(ArrayRef VL) { Type *Ty = VL[0]->getType(); for (int i = 1, e = VL.size(); i < e; i++) if (VL[i]->getType() != Ty) return false; return true; } /// \returns True if Extract{Value,Element} instruction extracts element Idx. static Optional getExtractIndex(Instruction *E) { unsigned Opcode = E->getOpcode(); assert((Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue) && "Expected extractelement or extractvalue instruction."); if (Opcode == Instruction::ExtractElement) { auto *CI = dyn_cast(E->getOperand(1)); if (!CI) return None; return CI->getZExtValue(); } ExtractValueInst *EI = cast(E); if (EI->getNumIndices() != 1) return None; return *EI->idx_begin(); } /// \returns True if in-tree use also needs extract. This refers to /// possible scalar operand in vectorized instruction. static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, TargetLibraryInfo *TLI) { unsigned Opcode = UserInst->getOpcode(); switch (Opcode) { case Instruction::Load: { LoadInst *LI = cast(UserInst); return (LI->getPointerOperand() == Scalar); } case Instruction::Store: { StoreInst *SI = cast(UserInst); return (SI->getPointerOperand() == Scalar); } case Instruction::Call: { CallInst *CI = cast(UserInst); Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { if (hasVectorInstrinsicScalarOpd(ID, i)) return (CI->getArgOperand(i) == Scalar); } LLVM_FALLTHROUGH; } default: return false; } } /// \returns the AA location that is being access by the instruction. static MemoryLocation getLocation(Instruction *I, AAResults *AA) { if (StoreInst *SI = dyn_cast(I)) return MemoryLocation::get(SI); if (LoadInst *LI = dyn_cast(I)) return MemoryLocation::get(LI); return MemoryLocation(); } /// \returns True if the instruction is not a volatile or atomic load/store. static bool isSimple(Instruction *I) { if (LoadInst *LI = dyn_cast(I)) return LI->isSimple(); if (StoreInst *SI = dyn_cast(I)) return SI->isSimple(); if (MemIntrinsic *MI = dyn_cast(I)) return !MI->isVolatile(); return true; } namespace llvm { static void inversePermutation(ArrayRef Indices, SmallVectorImpl &Mask) { Mask.clear(); const unsigned E = Indices.size(); Mask.resize(E, E + 1); for (unsigned I = 0; I < E; ++I) Mask[Indices[I]] = I; } namespace slpvectorizer { /// Bottom Up SLP Vectorizer. class BoUpSLP { struct TreeEntry; struct ScheduleData; public: using ValueList = SmallVector; using InstrList = SmallVector; using ValueSet = SmallPtrSet; using StoreList = SmallVector; using ExtraValueToDebugLocsMap = MapVector>; using OrdersType = SmallVector; BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, const DataLayout *DL, OptimizationRemarkEmitter *ORE) : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { CodeMetrics::collectEphemeralValues(F, AC, EphValues); // Use the vector register size specified by the target unless overridden // by a command-line option. // TODO: It would be better to limit the vectorization factor based on // data type rather than just register size. For example, x86 AVX has // 256-bit registers, but it does not support integer operations // at that width (that requires AVX2). if (MaxVectorRegSizeOption.getNumOccurrences()) MaxVecRegSize = MaxVectorRegSizeOption; else MaxVecRegSize = TTI->getRegisterBitWidth(true); if (MinVectorRegSizeOption.getNumOccurrences()) MinVecRegSize = MinVectorRegSizeOption; else MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); } /// Vectorize the tree that starts with the elements in \p VL. /// Returns the vectorized root. Value *vectorizeTree(); /// Vectorize the tree but with the list of externally used values \p /// ExternallyUsedValues. Values in this MapVector can be replaced but the /// generated extractvalue instructions. Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); /// \returns the cost incurred by unwanted spills and fills, caused by /// holding live values over call sites. InstructionCost getSpillCost() const; /// \returns the vectorization cost of the subtree that starts at \p VL. /// A negative number means that this is profitable. InstructionCost getTreeCost(); /// Construct a vectorizable tree that starts at \p Roots, ignoring users for /// the purpose of scheduling and extraction in the \p UserIgnoreLst. void buildTree(ArrayRef Roots, ArrayRef UserIgnoreLst = None); /// Construct a vectorizable tree that starts at \p Roots, ignoring users for /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking /// into account (and updating it, if required) list of externally used /// values stored in \p ExternallyUsedValues. void buildTree(ArrayRef Roots, ExtraValueToDebugLocsMap &ExternallyUsedValues, ArrayRef UserIgnoreLst = None); /// Clear the internal data structures that are created by 'buildTree'. void deleteTree() { VectorizableTree.clear(); ScalarToTreeEntry.clear(); MustGather.clear(); ExternalUses.clear(); NumOpsWantToKeepOrder.clear(); NumOpsWantToKeepOriginalOrder = 0; for (auto &Iter : BlocksSchedules) { BlockScheduling *BS = Iter.second.get(); BS->clear(); } MinBWs.clear(); } unsigned getTreeSize() const { return VectorizableTree.size(); } /// Perform LICM and CSE on the newly generated gather sequences. void optimizeGatherSequence(); /// \returns The best order of instructions for vectorization. Optional> bestOrder() const { assert(llvm::all_of( NumOpsWantToKeepOrder, [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { return D.getFirst().size() == VectorizableTree[0]->Scalars.size(); }) && "All orders must have the same size as number of instructions in " "tree node."); auto I = std::max_element( NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, const decltype(NumOpsWantToKeepOrder)::value_type &D2) { return D1.second < D2.second; }); if (I == NumOpsWantToKeepOrder.end() || I->getSecond() <= NumOpsWantToKeepOriginalOrder) return None; return makeArrayRef(I->getFirst()); } /// Builds the correct order for root instructions. /// If some leaves have the same instructions to be vectorized, we may /// incorrectly evaluate the best order for the root node (it is built for the /// vector of instructions without repeated instructions and, thus, has less /// elements than the root node). This function builds the correct order for /// the root node. /// For example, if the root node is \, then the leaves /// are \ and \. When we try to vectorize the first /// leaf, it will be shrink to \. If instructions in this leaf should /// be reordered, the best order will be \<1, 0\>. We need to extend this /// order for the root node. For the root node this order should look like /// \<3, 0, 1, 2\>. This function extends the order for the reused /// instructions. void findRootOrder(OrdersType &Order) { // If the leaf has the same number of instructions to vectorize as the root // - order must be set already. unsigned RootSize = VectorizableTree[0]->Scalars.size(); if (Order.size() == RootSize) return; SmallVector RealOrder(Order.size()); std::swap(Order, RealOrder); SmallVector Mask; inversePermutation(RealOrder, Mask); Order.assign(Mask.begin(), Mask.end()); // The leaf has less number of instructions - need to find the true order of // the root. // Scan the nodes starting from the leaf back to the root. const TreeEntry *PNode = VectorizableTree.back().get(); SmallVector Nodes(1, PNode); SmallPtrSet Visited; while (!Nodes.empty() && Order.size() != RootSize) { const TreeEntry *PNode = Nodes.pop_back_val(); if (!Visited.insert(PNode).second) continue; const TreeEntry &Node = *PNode; for (const EdgeInfo &EI : Node.UserTreeIndices) if (EI.UserTE) Nodes.push_back(EI.UserTE); if (Node.ReuseShuffleIndices.empty()) continue; // Build the order for the parent node. OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); SmallVector OrderCounter(Order.size(), 0); // The algorithm of the order extension is: // 1. Calculate the number of the same instructions for the order. // 2. Calculate the index of the new order: total number of instructions // with order less than the order of the current instruction + reuse // number of the current instruction. // 3. The new order is just the index of the instruction in the original // vector of the instructions. for (unsigned I : Node.ReuseShuffleIndices) ++OrderCounter[Order[I]]; SmallVector CurrentCounter(Order.size(), 0); for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; unsigned OrderIdx = Order[ReusedIdx]; unsigned NewIdx = 0; for (unsigned J = 0; J < OrderIdx; ++J) NewIdx += OrderCounter[J]; NewIdx += CurrentCounter[OrderIdx]; ++CurrentCounter[OrderIdx]; assert(NewOrder[NewIdx] == RootSize && "The order index should not be written already."); NewOrder[NewIdx] = I; } std::swap(Order, NewOrder); } assert(Order.size() == RootSize && "Root node is expected or the size of the order must be the same as " "the number of elements in the root node."); assert(llvm::all_of(Order, [RootSize](unsigned Val) { return Val != RootSize; }) && "All indices must be initialized"); } /// \return The vector element size in bits to use when vectorizing the /// expression tree ending at \p V. If V is a store, the size is the width of /// the stored value. Otherwise, the size is the width of the largest loaded /// value reaching V. This method is used by the vectorizer to calculate /// vectorization factors. unsigned getVectorElementSize(Value *V); /// Compute the minimum type sizes required to represent the entries in a /// vectorizable tree. void computeMinimumValueSizes(); // \returns maximum vector register size as set by TTI or overridden by cl::opt. unsigned getMaxVecRegSize() const { return MaxVecRegSize; } // \returns minimum vector register size as set by cl::opt. unsigned getMinVecRegSize() const { return MinVecRegSize; } unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { unsigned MaxVF = MaxVFOption.getNumOccurrences() ? MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); return MaxVF ? MaxVF : UINT_MAX; } /// Check if homogeneous aggregate is isomorphic to some VectorType. /// Accepts homogeneous multidimensional aggregate of scalars/vectors like /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. /// /// \returns number of elements in vector if isomorphism exists, 0 otherwise. unsigned canMapToVector(Type *T, const DataLayout &DL) const; /// \returns True if the VectorizableTree is both tiny and not fully /// vectorizable. We do not vectorize such trees. bool isTreeTinyAndNotFullyVectorizable() const; /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values /// can be load combined in the backend. Load combining may not be allowed in /// the IR optimizer, so we do not want to alter the pattern. For example, /// partially transforming a scalar bswap() pattern into vector code is /// effectively impossible for the backend to undo. /// TODO: If load combining is allowed in the IR optimizer, this analysis /// may not be necessary. bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values /// can be load combined in the backend. Load combining may not be allowed in /// the IR optimizer, so we do not want to alter the pattern. For example, /// partially transforming a scalar bswap() pattern into vector code is /// effectively impossible for the backend to undo. /// TODO: If load combining is allowed in the IR optimizer, this analysis /// may not be necessary. bool isLoadCombineCandidate() const; OptimizationRemarkEmitter *getORE() { return ORE; } /// This structure holds any data we need about the edges being traversed /// during buildTree_rec(). We keep track of: /// (i) the user TreeEntry index, and /// (ii) the index of the edge. struct EdgeInfo { EdgeInfo() = default; EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) : UserTE(UserTE), EdgeIdx(EdgeIdx) {} /// The user TreeEntry. TreeEntry *UserTE = nullptr; /// The operand index of the use. unsigned EdgeIdx = UINT_MAX; #ifndef NDEBUG friend inline raw_ostream &operator<<(raw_ostream &OS, const BoUpSLP::EdgeInfo &EI) { EI.dump(OS); return OS; } /// Debug print. void dump(raw_ostream &OS) const { OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") << " EdgeIdx:" << EdgeIdx << "}"; } LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } #endif }; /// A helper data structure to hold the operands of a vector of instructions. /// This supports a fixed vector length for all operand vectors. class VLOperands { /// For each operand we need (i) the value, and (ii) the opcode that it /// would be attached to if the expression was in a left-linearized form. /// This is required to avoid illegal operand reordering. /// For example: /// \verbatim /// 0 Op1 /// |/ /// Op1 Op2 Linearized + Op2 /// \ / ----------> |/ /// - - /// /// Op1 - Op2 (0 + Op1) - Op2 /// \endverbatim /// /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. /// /// Another way to think of this is to track all the operations across the /// path from the operand all the way to the root of the tree and to /// calculate the operation that corresponds to this path. For example, the /// path from Op2 to the root crosses the RHS of the '-', therefore the /// corresponding operation is a '-' (which matches the one in the /// linearized tree, as shown above). /// /// For lack of a better term, we refer to this operation as Accumulated /// Path Operation (APO). struct OperandData { OperandData() = default; OperandData(Value *V, bool APO, bool IsUsed) : V(V), APO(APO), IsUsed(IsUsed) {} /// The operand value. Value *V = nullptr; /// TreeEntries only allow a single opcode, or an alternate sequence of /// them (e.g, +, -). Therefore, we can safely use a boolean value for the /// APO. It is set to 'true' if 'V' is attached to an inverse operation /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise /// (e.g., Add/Mul) bool APO = false; /// Helper data for the reordering function. bool IsUsed = false; }; /// During operand reordering, we are trying to select the operand at lane /// that matches best with the operand at the neighboring lane. Our /// selection is based on the type of value we are looking for. For example, /// if the neighboring lane has a load, we need to look for a load that is /// accessing a consecutive address. These strategies are summarized in the /// 'ReorderingMode' enumerator. enum class ReorderingMode { Load, ///< Matching loads to consecutive memory addresses Opcode, ///< Matching instructions based on opcode (same or alternate) Constant, ///< Matching constants Splat, ///< Matching the same instruction multiple times (broadcast) Failed, ///< We failed to create a vectorizable group }; using OperandDataVec = SmallVector; /// A vector of operand vectors. SmallVector OpsVec; const DataLayout &DL; ScalarEvolution &SE; const BoUpSLP &R; /// \returns the operand data at \p OpIdx and \p Lane. OperandData &getData(unsigned OpIdx, unsigned Lane) { return OpsVec[OpIdx][Lane]; } /// \returns the operand data at \p OpIdx and \p Lane. Const version. const OperandData &getData(unsigned OpIdx, unsigned Lane) const { return OpsVec[OpIdx][Lane]; } /// Clears the used flag for all entries. void clearUsed() { for (unsigned OpIdx = 0, NumOperands = getNumOperands(); OpIdx != NumOperands; ++OpIdx) for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; ++Lane) OpsVec[OpIdx][Lane].IsUsed = false; } /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); } // The hard-coded scores listed here are not very important. When computing // the scores of matching one sub-tree with another, we are basically // counting the number of values that are matching. So even if all scores // are set to 1, we would still get a decent matching result. // However, sometimes we have to break ties. For example we may have to // choose between matching loads vs matching opcodes. This is what these // scores are helping us with: they provide the order of preference. /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). static const int ScoreConsecutiveLoads = 3; /// ExtractElementInst from same vector and consecutive indexes. static const int ScoreConsecutiveExtracts = 3; /// Constants. static const int ScoreConstants = 2; /// Instructions with the same opcode. static const int ScoreSameOpcode = 2; /// Instructions with alt opcodes (e.g, add + sub). static const int ScoreAltOpcodes = 1; /// Identical instructions (a.k.a. splat or broadcast). static const int ScoreSplat = 1; /// Matching with an undef is preferable to failing. static const int ScoreUndef = 1; /// Score for failing to find a decent match. static const int ScoreFail = 0; /// User exteranl to the vectorized code. static const int ExternalUseCost = 1; /// The user is internal but in a different lane. static const int UserInDiffLaneCost = ExternalUseCost; /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, ScalarEvolution &SE) { auto *LI1 = dyn_cast(V1); auto *LI2 = dyn_cast(V2); if (LI1 && LI2) return isConsecutiveAccess(LI1, LI2, DL, SE) ? VLOperands::ScoreConsecutiveLoads : VLOperands::ScoreFail; auto *C1 = dyn_cast(V1); auto *C2 = dyn_cast(V2); if (C1 && C2) return VLOperands::ScoreConstants; // Extracts from consecutive indexes of the same vector better score as // the extracts could be optimized away. Value *EV; ConstantInt *Ex1Idx, *Ex2Idx; if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) return VLOperands::ScoreConsecutiveExtracts; auto *I1 = dyn_cast(V1); auto *I2 = dyn_cast(V2); if (I1 && I2) { if (I1 == I2) return VLOperands::ScoreSplat; InstructionsState S = getSameOpcode({I1, I2}); // Note: Only consider instructions with <= 2 operands to avoid // complexity explosion. if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes : VLOperands::ScoreSameOpcode; } if (isa(V2)) return VLOperands::ScoreUndef; return VLOperands::ScoreFail; } /// Holds the values and their lane that are taking part in the look-ahead /// score calculation. This is used in the external uses cost calculation. SmallDenseMap InLookAheadValues; /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are /// either external to the vectorized code, or require shuffling. int getExternalUsesCost(const std::pair &LHS, const std::pair &RHS) { int Cost = 0; std::array, 2> Values = {{LHS, RHS}}; for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { Value *V = Values[Idx].first; if (isa(V)) { // Since this is a function pass, it doesn't make semantic sense to // walk the users of a subclass of Constant. The users could be in // another function, or even another module that happens to be in // the same LLVMContext. continue; } // Calculate the absolute lane, using the minimum relative lane of LHS // and RHS as base and Idx as the offset. int Ln = std::min(LHS.second, RHS.second) + Idx; assert(Ln >= 0 && "Bad lane calculation"); unsigned UsersBudget = LookAheadUsersBudget; for (User *U : V->users()) { if (const TreeEntry *UserTE = R.getTreeEntry(U)) { // The user is in the VectorizableTree. Check if we need to insert. auto It = llvm::find(UserTE->Scalars, U); assert(It != UserTE->Scalars.end() && "U is in UserTE"); int UserLn = std::distance(UserTE->Scalars.begin(), It); assert(UserLn >= 0 && "Bad lane"); if (UserLn != Ln) Cost += UserInDiffLaneCost; } else { // Check if the user is in the look-ahead code. auto It2 = InLookAheadValues.find(U); if (It2 != InLookAheadValues.end()) { // The user is in the look-ahead code. Check the lane. if (It2->second != Ln) Cost += UserInDiffLaneCost; } else { // The user is neither in SLP tree nor in the look-ahead code. Cost += ExternalUseCost; } } // Limit the number of visited uses to cap compilation time. if (--UsersBudget == 0) break; } } return Cost; } /// Go through the operands of \p LHS and \p RHS recursively until \p /// MaxLevel, and return the cummulative score. For example: /// \verbatim /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] /// \ / \ / \ / \ / /// + + + + /// G1 G2 G3 G4 /// \endverbatim /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at /// each level recursively, accumulating the score. It starts from matching /// the additions at level 0, then moves on to the loads (level 1). The /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while /// {A[0],C[0]} has a score of VLOperands::ScoreFail. /// Please note that the order of the operands does not matter, as we /// evaluate the score of all profitable combinations of operands. In /// other words the score of G1 and G4 is the same as G1 and G2. This /// heuristic is based on ideas described in: /// Look-ahead SLP: Auto-vectorization in the presence of commutative /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, /// Luís F. W. Góes int getScoreAtLevelRec(const std::pair &LHS, const std::pair &RHS, int CurrLevel, int MaxLevel) { Value *V1 = LHS.first; Value *V2 = RHS.first; // Get the shallow score of V1 and V2. int ShallowScoreAtThisLevel = std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - getExternalUsesCost(LHS, RHS)); int Lane1 = LHS.second; int Lane2 = RHS.second; // If reached MaxLevel, // or if V1 and V2 are not instructions, // or if they are SPLAT, // or if they are not consecutive, early return the current cost. auto *I1 = dyn_cast(V1); auto *I2 = dyn_cast(V2); if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || ShallowScoreAtThisLevel == VLOperands::ScoreFail || (isa(I1) && isa(I2) && ShallowScoreAtThisLevel)) return ShallowScoreAtThisLevel; assert(I1 && I2 && "Should have early exited."); // Keep track of in-tree values for determining the external-use cost. InLookAheadValues[V1] = Lane1; InLookAheadValues[V2] = Lane2; // Contains the I2 operand indexes that got matched with I1 operands. SmallSet Op2Used; // Recursion towards the operands of I1 and I2. We are trying all possbile // operand pairs, and keeping track of the best score. for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); OpIdx1 != NumOperands1; ++OpIdx1) { // Try to pair op1I with the best operand of I2. int MaxTmpScore = 0; unsigned MaxOpIdx2 = 0; bool FoundBest = false; // If I2 is commutative try all combinations. unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; unsigned ToIdx = isCommutative(I2) ? I2->getNumOperands() : std::min(I2->getNumOperands(), OpIdx1 + 1); assert(FromIdx <= ToIdx && "Bad index"); for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { // Skip operands already paired with OpIdx1. if (Op2Used.count(OpIdx2)) continue; // Recursively calculate the cost at each level int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, {I2->getOperand(OpIdx2), Lane2}, CurrLevel + 1, MaxLevel); // Look for the best score. if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { MaxTmpScore = TmpScore; MaxOpIdx2 = OpIdx2; FoundBest = true; } } if (FoundBest) { // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. Op2Used.insert(MaxOpIdx2); ShallowScoreAtThisLevel += MaxTmpScore; } } return ShallowScoreAtThisLevel; } /// \Returns the look-ahead score, which tells us how much the sub-trees /// rooted at \p LHS and \p RHS match, the more they match the higher the /// score. This helps break ties in an informed way when we cannot decide on /// the order of the operands by just considering the immediate /// predecessors. int getLookAheadScore(const std::pair &LHS, const std::pair &RHS) { InLookAheadValues.clear(); return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); } // Search all operands in Ops[*][Lane] for the one that matches best // Ops[OpIdx][LastLane] and return its opreand index. // If no good match can be found, return None. Optional getBestOperand(unsigned OpIdx, int Lane, int LastLane, ArrayRef ReorderingModes) { unsigned NumOperands = getNumOperands(); // The operand of the previous lane at OpIdx. Value *OpLastLane = getData(OpIdx, LastLane).V; // Our strategy mode for OpIdx. ReorderingMode RMode = ReorderingModes[OpIdx]; // The linearized opcode of the operand at OpIdx, Lane. bool OpIdxAPO = getData(OpIdx, Lane).APO; // The best operand index and its score. // Sometimes we have more than one option (e.g., Opcode and Undefs), so we // are using the score to differentiate between the two. struct BestOpData { Optional Idx = None; unsigned Score = 0; } BestOp; // Iterate through all unused operands and look for the best. for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { // Get the operand at Idx and Lane. OperandData &OpData = getData(Idx, Lane); Value *Op = OpData.V; bool OpAPO = OpData.APO; // Skip already selected operands. if (OpData.IsUsed) continue; // Skip if we are trying to move the operand to a position with a // different opcode in the linearized tree form. This would break the // semantics. if (OpAPO != OpIdxAPO) continue; // Look for an operand that matches the current mode. switch (RMode) { case ReorderingMode::Load: case ReorderingMode::Constant: case ReorderingMode::Opcode: { bool LeftToRight = Lane > LastLane; Value *OpLeft = (LeftToRight) ? OpLastLane : Op; Value *OpRight = (LeftToRight) ? Op : OpLastLane; unsigned Score = getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); if (Score > BestOp.Score) { BestOp.Idx = Idx; BestOp.Score = Score; } break; } case ReorderingMode::Splat: if (Op == OpLastLane) BestOp.Idx = Idx; break; case ReorderingMode::Failed: return None; } } if (BestOp.Idx) { getData(BestOp.Idx.getValue(), Lane).IsUsed = true; return BestOp.Idx; } // If we could not find a good match return None. return None; } /// Helper for reorderOperandVecs. \Returns the lane that we should start /// reordering from. This is the one which has the least number of operands /// that can freely move about. unsigned getBestLaneToStartReordering() const { unsigned BestLane = 0; unsigned Min = UINT_MAX; for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; ++Lane) { unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); if (NumFreeOps < Min) { Min = NumFreeOps; BestLane = Lane; } } return BestLane; } /// \Returns the maximum number of operands that are allowed to be reordered /// for \p Lane. This is used as a heuristic for selecting the first lane to /// start operand reordering. unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { unsigned CntTrue = 0; unsigned NumOperands = getNumOperands(); // Operands with the same APO can be reordered. We therefore need to count // how many of them we have for each APO, like this: Cnt[APO] = x. // Since we only have two APOs, namely true and false, we can avoid using // a map. Instead we can simply count the number of operands that // correspond to one of them (in this case the 'true' APO), and calculate // the other by subtracting it from the total number of operands. for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) if (getData(OpIdx, Lane).APO) ++CntTrue; unsigned CntFalse = NumOperands - CntTrue; return std::max(CntTrue, CntFalse); } /// Go through the instructions in VL and append their operands. void appendOperandsOfVL(ArrayRef VL) { assert(!VL.empty() && "Bad VL"); assert((empty() || VL.size() == getNumLanes()) && "Expected same number of lanes"); assert(isa(VL[0]) && "Expected instruction"); unsigned NumOperands = cast(VL[0])->getNumOperands(); OpsVec.resize(NumOperands); unsigned NumLanes = VL.size(); for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { OpsVec[OpIdx].resize(NumLanes); for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { assert(isa(VL[Lane]) && "Expected instruction"); // Our tree has just 3 nodes: the root and two operands. // It is therefore trivial to get the APO. We only need to check the // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or // RHS operand. The LHS operand of both add and sub is never attached // to an inversese operation in the linearized form, therefore its APO // is false. The RHS is true only if VL[Lane] is an inverse operation. // Since operand reordering is performed on groups of commutative // operations or alternating sequences (e.g., +, -), we can safely // tell the inverse operations by checking commutativity. bool IsInverseOperation = !isCommutative(cast(VL[Lane])); bool APO = (OpIdx == 0) ? false : IsInverseOperation; OpsVec[OpIdx][Lane] = {cast(VL[Lane])->getOperand(OpIdx), APO, false}; } } } /// \returns the number of operands. unsigned getNumOperands() const { return OpsVec.size(); } /// \returns the number of lanes. unsigned getNumLanes() const { return OpsVec[0].size(); } /// \returns the operand value at \p OpIdx and \p Lane. Value *getValue(unsigned OpIdx, unsigned Lane) const { return getData(OpIdx, Lane).V; } /// \returns true if the data structure is empty. bool empty() const { return OpsVec.empty(); } /// Clears the data. void clear() { OpsVec.clear(); } /// \Returns true if there are enough operands identical to \p Op to fill /// the whole vector. /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { bool OpAPO = getData(OpIdx, Lane).APO; for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { if (Ln == Lane) continue; // This is set to true if we found a candidate for broadcast at Lane. bool FoundCandidate = false; for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { OperandData &Data = getData(OpI, Ln); if (Data.APO != OpAPO || Data.IsUsed) continue; if (Data.V == Op) { FoundCandidate = true; Data.IsUsed = true; break; } } if (!FoundCandidate) return false; } return true; } public: /// Initialize with all the operands of the instruction vector \p RootVL. VLOperands(ArrayRef RootVL, const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) : DL(DL), SE(SE), R(R) { // Append all the operands of RootVL. appendOperandsOfVL(RootVL); } /// \Returns a value vector with the operands across all lanes for the /// opearnd at \p OpIdx. ValueList getVL(unsigned OpIdx) const { ValueList OpVL(OpsVec[OpIdx].size()); assert(OpsVec[OpIdx].size() == getNumLanes() && "Expected same num of lanes across all operands"); for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) OpVL[Lane] = OpsVec[OpIdx][Lane].V; return OpVL; } // Performs operand reordering for 2 or more operands. // The original operands are in OrigOps[OpIdx][Lane]. // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. void reorder() { unsigned NumOperands = getNumOperands(); unsigned NumLanes = getNumLanes(); // Each operand has its own mode. We are using this mode to help us select // the instructions for each lane, so that they match best with the ones // we have selected so far. SmallVector ReorderingModes(NumOperands); // This is a greedy single-pass algorithm. We are going over each lane // once and deciding on the best order right away with no back-tracking. // However, in order to increase its effectiveness, we start with the lane // that has operands that can move the least. For example, given the // following lanes: // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd // Lane 1 : A[1] = C[1] - B[1] // Visited 1st // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd // Lane 3 : A[3] = C[3] - B[3] // Visited 4th // we will start at Lane 1, since the operands of the subtraction cannot // be reordered. Then we will visit the rest of the lanes in a circular // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. // Find the first lane that we will start our search from. unsigned FirstLane = getBestLaneToStartReordering(); // Initialize the modes. for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { Value *OpLane0 = getValue(OpIdx, FirstLane); // Keep track if we have instructions with all the same opcode on one // side. if (isa(OpLane0)) ReorderingModes[OpIdx] = ReorderingMode::Load; else if (isa(OpLane0)) { // Check if OpLane0 should be broadcast. if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) ReorderingModes[OpIdx] = ReorderingMode::Splat; else ReorderingModes[OpIdx] = ReorderingMode::Opcode; } else if (isa(OpLane0)) ReorderingModes[OpIdx] = ReorderingMode::Constant; else if (isa(OpLane0)) // Our best hope is a Splat. It may save some cost in some cases. ReorderingModes[OpIdx] = ReorderingMode::Splat; else // NOTE: This should be unreachable. ReorderingModes[OpIdx] = ReorderingMode::Failed; } // If the initial strategy fails for any of the operand indexes, then we // perform reordering again in a second pass. This helps avoid assigning // high priority to the failed strategy, and should improve reordering for // the non-failed operand indexes. for (int Pass = 0; Pass != 2; ++Pass) { // Skip the second pass if the first pass did not fail. bool StrategyFailed = false; // Mark all operand data as free to use. clearUsed(); // We keep the original operand order for the FirstLane, so reorder the // rest of the lanes. We are visiting the nodes in a circular fashion, // using FirstLane as the center point and increasing the radius // distance. for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { // Visit the lane on the right and then the lane on the left. for (int Direction : {+1, -1}) { int Lane = FirstLane + Direction * Distance; if (Lane < 0 || Lane >= (int)NumLanes) continue; int LastLane = Lane - Direction; assert(LastLane >= 0 && LastLane < (int)NumLanes && "Out of bounds"); // Look for a good match for each operand. for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { // Search for the operand that matches SortedOps[OpIdx][Lane-1]. Optional BestIdx = getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); // By not selecting a value, we allow the operands that follow to // select a better matching value. We will get a non-null value in // the next run of getBestOperand(). if (BestIdx) { // Swap the current operand with the one returned by // getBestOperand(). swap(OpIdx, BestIdx.getValue(), Lane); } else { // We failed to find a best operand, set mode to 'Failed'. ReorderingModes[OpIdx] = ReorderingMode::Failed; // Enable the second pass. StrategyFailed = true; } } } } // Skip second pass if the strategy did not fail. if (!StrategyFailed) break; } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { switch (RMode) { case ReorderingMode::Load: return "Load"; case ReorderingMode::Opcode: return "Opcode"; case ReorderingMode::Constant: return "Constant"; case ReorderingMode::Splat: return "Splat"; case ReorderingMode::Failed: return "Failed"; } llvm_unreachable("Unimplemented Reordering Type"); } LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, raw_ostream &OS) { return OS << getModeStr(RMode); } /// Debug print. LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { printMode(RMode, dbgs()); } friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { return printMode(RMode, OS); } LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { const unsigned Indent = 2; unsigned Cnt = 0; for (const OperandDataVec &OpDataVec : OpsVec) { OS << "Operand " << Cnt++ << "\n"; for (const OperandData &OpData : OpDataVec) { OS.indent(Indent) << "{"; if (Value *V = OpData.V) OS << *V; else OS << "null"; OS << ", APO:" << OpData.APO << "}\n"; } OS << "\n"; } return OS; } /// Debug print. LLVM_DUMP_METHOD void dump() const { print(dbgs()); } #endif }; /// Checks if the instruction is marked for deletion. bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } /// Marks values operands for later deletion by replacing them with Undefs. void eraseInstructions(ArrayRef AV); ~BoUpSLP(); private: /// Checks if all users of \p I are the part of the vectorization tree. bool areAllUsersVectorized(Instruction *I) const; /// \returns the cost of the vectorizable entry. InstructionCost getEntryCost(TreeEntry *E); /// This is the recursive part of buildTree. void buildTree_rec(ArrayRef Roots, unsigned Depth, const EdgeInfo &EI); /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can /// be vectorized to use the original vector (or aggregate "bitcast" to a /// vector) and sets \p CurrentOrder to the identity permutation; otherwise /// returns false, setting \p CurrentOrder to either an empty vector or a /// non-identity permutation that allows to reuse extract instructions. bool canReuseExtract(ArrayRef VL, Value *OpValue, SmallVectorImpl &CurrentOrder) const; /// Vectorize a single entry in the tree. Value *vectorizeTree(TreeEntry *E); /// Vectorize a single entry in the tree, starting in \p VL. Value *vectorizeTree(ArrayRef VL); /// \returns the scalarization cost for this type. Scalarization in this /// context means the creation of vectors from a group of scalars. InstructionCost getGatherCost(FixedVectorType *Ty, const DenseSet &ShuffledIndices) const; /// \returns the scalarization cost for this list of values. Assuming that /// this subtree gets vectorized, we may need to extract the values from the /// roots. This method calculates the cost of extracting the values. InstructionCost getGatherCost(ArrayRef VL) const; /// Set the Builder insert point to one after the last instruction in /// the bundle void setInsertPointAfterBundle(TreeEntry *E); /// \returns a vector from a collection of scalars in \p VL. Value *gather(ArrayRef VL); /// \returns whether the VectorizableTree is fully vectorizable and will /// be beneficial even the tree height is tiny. bool isFullyVectorizableTinyTree() const; /// Reorder commutative or alt operands to get better probability of /// generating vectorized code. static void reorderInputsAccordingToOpcode(ArrayRef VL, SmallVectorImpl &Left, SmallVectorImpl &Right, const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R); struct TreeEntry { using VecTreeTy = SmallVector, 8>; TreeEntry(VecTreeTy &Container) : Container(Container) {} /// \returns true if the scalars in VL are equal to this entry. bool isSame(ArrayRef VL) const { if (VL.size() == Scalars.size()) return std::equal(VL.begin(), VL.end(), Scalars.begin()); return VL.size() == ReuseShuffleIndices.size() && std::equal( VL.begin(), VL.end(), ReuseShuffleIndices.begin(), [this](Value *V, int Idx) { return V == Scalars[Idx]; }); } /// A vector of scalars. ValueList Scalars; /// The Scalars are vectorized into this value. It is initialized to Null. Value *VectorizedValue = nullptr; /// Do we need to gather this sequence or vectorize it /// (either with vector instruction or with scatter/gather /// intrinsics for store/load)? enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; EntryState State; /// Does this sequence require some shuffling? SmallVector ReuseShuffleIndices; /// Does this entry require reordering? SmallVector ReorderIndices; /// Points back to the VectorizableTree. /// /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has /// to be a pointer and needs to be able to initialize the child iterator. /// Thus we need a reference back to the container to translate the indices /// to entries. VecTreeTy &Container; /// The TreeEntry index containing the user of this entry. We can actually /// have multiple users so the data structure is not truly a tree. SmallVector UserTreeIndices; /// The index of this treeEntry in VectorizableTree. int Idx = -1; private: /// The operands of each instruction in each lane Operands[op_index][lane]. /// Note: This helps avoid the replication of the code that performs the /// reordering of operands during buildTree_rec() and vectorizeTree(). SmallVector Operands; /// The main/alternate instruction. Instruction *MainOp = nullptr; Instruction *AltOp = nullptr; public: /// Set this bundle's \p OpIdx'th operand to \p OpVL. void setOperand(unsigned OpIdx, ArrayRef OpVL) { if (Operands.size() < OpIdx + 1) Operands.resize(OpIdx + 1); assert(Operands[OpIdx].size() == 0 && "Already resized?"); Operands[OpIdx].resize(Scalars.size()); for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) Operands[OpIdx][Lane] = OpVL[Lane]; } /// Set the operands of this bundle in their original order. void setOperandsInOrder() { assert(Operands.empty() && "Already initialized?"); auto *I0 = cast(Scalars[0]); Operands.resize(I0->getNumOperands()); unsigned NumLanes = Scalars.size(); for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); OpIdx != NumOperands; ++OpIdx) { Operands[OpIdx].resize(NumLanes); for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { auto *I = cast(Scalars[Lane]); assert(I->getNumOperands() == NumOperands && "Expected same number of operands"); Operands[OpIdx][Lane] = I->getOperand(OpIdx); } } } /// \returns the \p OpIdx operand of this TreeEntry. ValueList &getOperand(unsigned OpIdx) { assert(OpIdx < Operands.size() && "Off bounds"); return Operands[OpIdx]; } /// \returns the number of operands. unsigned getNumOperands() const { return Operands.size(); } /// \return the single \p OpIdx operand. Value *getSingleOperand(unsigned OpIdx) const { assert(OpIdx < Operands.size() && "Off bounds"); assert(!Operands[OpIdx].empty() && "No operand available"); return Operands[OpIdx][0]; } /// Some of the instructions in the list have alternate opcodes. bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } bool isOpcodeOrAlt(Instruction *I) const { unsigned CheckedOpcode = I->getOpcode(); return (getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode); } /// Chooses the correct key for scheduling data. If \p Op has the same (or /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is /// \p OpValue. Value *isOneOf(Value *Op) const { auto *I = dyn_cast(Op); if (I && isOpcodeOrAlt(I)) return Op; return MainOp; } void setOperations(const InstructionsState &S) { MainOp = S.MainOp; AltOp = S.AltOp; } Instruction *getMainOp() const { return MainOp; } Instruction *getAltOp() const { return AltOp; } /// The main/alternate opcodes for the list of instructions. unsigned getOpcode() const { return MainOp ? MainOp->getOpcode() : 0; } unsigned getAltOpcode() const { return AltOp ? AltOp->getOpcode() : 0; } /// Update operations state of this entry if reorder occurred. bool updateStateIfReorder() { if (ReorderIndices.empty()) return false; InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); setOperations(S); return true; } #ifndef NDEBUG /// Debug printer. LLVM_DUMP_METHOD void dump() const { dbgs() << Idx << ".\n"; for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { dbgs() << "Operand " << OpI << ":\n"; for (const Value *V : Operands[OpI]) dbgs().indent(2) << *V << "\n"; } dbgs() << "Scalars: \n"; for (Value *V : Scalars) dbgs().indent(2) << *V << "\n"; dbgs() << "State: "; switch (State) { case Vectorize: dbgs() << "Vectorize\n"; break; case ScatterVectorize: dbgs() << "ScatterVectorize\n"; break; case NeedToGather: dbgs() << "NeedToGather\n"; break; } dbgs() << "MainOp: "; if (MainOp) dbgs() << *MainOp << "\n"; else dbgs() << "NULL\n"; dbgs() << "AltOp: "; if (AltOp) dbgs() << *AltOp << "\n"; else dbgs() << "NULL\n"; dbgs() << "VectorizedValue: "; if (VectorizedValue) dbgs() << *VectorizedValue << "\n"; else dbgs() << "NULL\n"; dbgs() << "ReuseShuffleIndices: "; if (ReuseShuffleIndices.empty()) dbgs() << "Empty"; else for (unsigned ReuseIdx : ReuseShuffleIndices) dbgs() << ReuseIdx << ", "; dbgs() << "\n"; dbgs() << "ReorderIndices: "; for (unsigned ReorderIdx : ReorderIndices) dbgs() << ReorderIdx << ", "; dbgs() << "\n"; dbgs() << "UserTreeIndices: "; for (const auto &EInfo : UserTreeIndices) dbgs() << EInfo << ", "; dbgs() << "\n"; } #endif }; #ifndef NDEBUG void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, InstructionCost VecCost, InstructionCost ScalarCost) const { dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); dbgs() << "SLP: Costs:\n"; dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; dbgs() << "SLP: VectorCost = " << VecCost << "\n"; dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << ReuseShuffleCost + VecCost - ScalarCost << "\n"; } #endif /// Create a new VectorizableTree entry. TreeEntry *newTreeEntry(ArrayRef VL, Optional Bundle, const InstructionsState &S, const EdgeInfo &UserTreeIdx, ArrayRef ReuseShuffleIndices = None, ArrayRef ReorderIndices = None) { TreeEntry::EntryState EntryState = Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, ReuseShuffleIndices, ReorderIndices); } TreeEntry *newTreeEntry(ArrayRef VL, TreeEntry::EntryState EntryState, Optional Bundle, const InstructionsState &S, const EdgeInfo &UserTreeIdx, ArrayRef ReuseShuffleIndices = None, ArrayRef ReorderIndices = None) { assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || (Bundle && EntryState != TreeEntry::NeedToGather)) && "Need to vectorize gather entry?"); VectorizableTree.push_back(std::make_unique(VectorizableTree)); TreeEntry *Last = VectorizableTree.back().get(); Last->Idx = VectorizableTree.size() - 1; Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); Last->State = EntryState; Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), ReuseShuffleIndices.end()); Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); Last->setOperations(S); if (Last->State != TreeEntry::NeedToGather) { for (Value *V : VL) { assert(!getTreeEntry(V) && "Scalar already in tree!"); ScalarToTreeEntry[V] = Last; } // Update the scheduler bundle to point to this TreeEntry. unsigned Lane = 0; for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; BundleMember = BundleMember->NextInBundle) { BundleMember->TE = Last; BundleMember->Lane = Lane; ++Lane; } assert((!Bundle.getValue() || Lane == VL.size()) && "Bundle and VL out of sync"); } else { MustGather.insert(VL.begin(), VL.end()); } if (UserTreeIdx.UserTE) Last->UserTreeIndices.push_back(UserTreeIdx); return Last; } /// -- Vectorization State -- /// Holds all of the tree entries. TreeEntry::VecTreeTy VectorizableTree; #ifndef NDEBUG /// Debug printer. LLVM_DUMP_METHOD void dumpVectorizableTree() const { for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { VectorizableTree[Id]->dump(); dbgs() << "\n"; } } #endif TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } const TreeEntry *getTreeEntry(Value *V) const { return ScalarToTreeEntry.lookup(V); } /// Maps a specific scalar to its tree entry. SmallDenseMap ScalarToTreeEntry; /// Maps a value to the proposed vectorizable size. SmallDenseMap InstrElementSize; /// A list of scalars that we found that we need to keep as scalars. ValueSet MustGather; /// This POD struct describes one external user in the vectorized tree. struct ExternalUser { ExternalUser(Value *S, llvm::User *U, int L) : Scalar(S), User(U), Lane(L) {} // Which scalar in our function. Value *Scalar; // Which user that uses the scalar. llvm::User *User; // Which lane does the scalar belong to. int Lane; }; using UserList = SmallVector; /// Checks if two instructions may access the same memory. /// /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it /// is invariant in the calling loop. bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, Instruction *Inst2) { // First check if the result is already in the cache. AliasCacheKey key = std::make_pair(Inst1, Inst2); Optional &result = AliasCache[key]; if (result.hasValue()) { return result.getValue(); } MemoryLocation Loc2 = getLocation(Inst2, AA); bool aliased = true; if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { // Do the alias check. aliased = AA->alias(Loc1, Loc2); } // Store the result in the cache. result = aliased; return aliased; } using AliasCacheKey = std::pair; /// Cache for alias results. /// TODO: consider moving this to the AliasAnalysis itself. DenseMap> AliasCache; /// Removes an instruction from its block and eventually deletes it. /// It's like Instruction::eraseFromParent() except that the actual deletion /// is delayed until BoUpSLP is destructed. /// This is required to ensure that there are no incorrect collisions in the /// AliasCache, which can happen if a new instruction is allocated at the /// same address as a previously deleted instruction. void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; } /// Temporary store for deleted instructions. Instructions will be deleted /// eventually when the BoUpSLP is destructed. DenseMap DeletedInstructions; /// A list of values that need to extracted out of the tree. /// This list holds pairs of (Internal Scalar : External User). External User /// can be nullptr, it means that this Internal Scalar will be used later, /// after vectorization. UserList ExternalUses; /// Values used only by @llvm.assume calls. SmallPtrSet EphValues; /// Holds all of the instructions that we gathered. SetVector GatherSeq; /// A list of blocks that we are going to CSE. SetVector CSEBlocks; /// Contains all scheduling relevant data for an instruction. /// A ScheduleData either represents a single instruction or a member of an /// instruction bundle (= a group of instructions which is combined into a /// vector instruction). struct ScheduleData { // The initial value for the dependency counters. It means that the // dependencies are not calculated yet. enum { InvalidDeps = -1 }; ScheduleData() = default; void init(int BlockSchedulingRegionID, Value *OpVal) { FirstInBundle = this; NextInBundle = nullptr; NextLoadStore = nullptr; IsScheduled = false; SchedulingRegionID = BlockSchedulingRegionID; UnscheduledDepsInBundle = UnscheduledDeps; clearDependencies(); OpValue = OpVal; TE = nullptr; Lane = -1; } /// Returns true if the dependency information has been calculated. bool hasValidDependencies() const { return Dependencies != InvalidDeps; } /// Returns true for single instructions and for bundle representatives /// (= the head of a bundle). bool isSchedulingEntity() const { return FirstInBundle == this; } /// Returns true if it represents an instruction bundle and not only a /// single instruction. bool isPartOfBundle() const { return NextInBundle != nullptr || FirstInBundle != this; } /// Returns true if it is ready for scheduling, i.e. it has no more /// unscheduled depending instructions/bundles. bool isReady() const { assert(isSchedulingEntity() && "can't consider non-scheduling entity for ready list"); return UnscheduledDepsInBundle == 0 && !IsScheduled; } /// Modifies the number of unscheduled dependencies, also updating it for /// the whole bundle. int incrementUnscheduledDeps(int Incr) { UnscheduledDeps += Incr; return FirstInBundle->UnscheduledDepsInBundle += Incr; } /// Sets the number of unscheduled dependencies to the number of /// dependencies. void resetUnscheduledDeps() { incrementUnscheduledDeps(Dependencies - UnscheduledDeps); } /// Clears all dependency information. void clearDependencies() { Dependencies = InvalidDeps; resetUnscheduledDeps(); MemoryDependencies.clear(); } void dump(raw_ostream &os) const { if (!isSchedulingEntity()) { os << "/ " << *Inst; } else if (NextInBundle) { os << '[' << *Inst; ScheduleData *SD = NextInBundle; while (SD) { os << ';' << *SD->Inst; SD = SD->NextInBundle; } os << ']'; } else { os << *Inst; } } Instruction *Inst = nullptr; /// Points to the head in an instruction bundle (and always to this for /// single instructions). ScheduleData *FirstInBundle = nullptr; /// Single linked list of all instructions in a bundle. Null if it is a /// single instruction. ScheduleData *NextInBundle = nullptr; /// Single linked list of all memory instructions (e.g. load, store, call) /// in the block - until the end of the scheduling region. ScheduleData *NextLoadStore = nullptr; /// The dependent memory instructions. /// This list is derived on demand in calculateDependencies(). SmallVector MemoryDependencies; /// This ScheduleData is in the current scheduling region if this matches /// the current SchedulingRegionID of BlockScheduling. int SchedulingRegionID = 0; /// Used for getting a "good" final ordering of instructions. int SchedulingPriority = 0; /// The number of dependencies. Constitutes of the number of users of the /// instruction plus the number of dependent memory instructions (if any). /// This value is calculated on demand. /// If InvalidDeps, the number of dependencies is not calculated yet. int Dependencies = InvalidDeps; /// The number of dependencies minus the number of dependencies of scheduled /// instructions. As soon as this is zero, the instruction/bundle gets ready /// for scheduling. /// Note that this is negative as long as Dependencies is not calculated. int UnscheduledDeps = InvalidDeps; /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for /// single instructions. int UnscheduledDepsInBundle = InvalidDeps; /// True if this instruction is scheduled (or considered as scheduled in the /// dry-run). bool IsScheduled = false; /// Opcode of the current instruction in the schedule data. Value *OpValue = nullptr; /// The TreeEntry that this instruction corresponds to. TreeEntry *TE = nullptr; /// The lane of this node in the TreeEntry. int Lane = -1; }; #ifndef NDEBUG friend inline raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { SD.dump(os); return os; } #endif friend struct GraphTraits; friend struct DOTGraphTraits; /// Contains all scheduling data for a basic block. struct BlockScheduling { BlockScheduling(BasicBlock *BB) : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} void clear() { ReadyInsts.clear(); ScheduleStart = nullptr; ScheduleEnd = nullptr; FirstLoadStoreInRegion = nullptr; LastLoadStoreInRegion = nullptr; // Reduce the maximum schedule region size by the size of the // previous scheduling run. ScheduleRegionSizeLimit -= ScheduleRegionSize; if (ScheduleRegionSizeLimit < MinScheduleRegionSize) ScheduleRegionSizeLimit = MinScheduleRegionSize; ScheduleRegionSize = 0; // Make a new scheduling region, i.e. all existing ScheduleData is not // in the new region yet. ++SchedulingRegionID; } ScheduleData *getScheduleData(Value *V) { ScheduleData *SD = ScheduleDataMap[V]; if (SD && SD->SchedulingRegionID == SchedulingRegionID) return SD; return nullptr; } ScheduleData *getScheduleData(Value *V, Value *Key) { if (V == Key) return getScheduleData(V); auto I = ExtraScheduleDataMap.find(V); if (I != ExtraScheduleDataMap.end()) { ScheduleData *SD = I->second[Key]; if (SD && SD->SchedulingRegionID == SchedulingRegionID) return SD; } return nullptr; } bool isInSchedulingRegion(ScheduleData *SD) const { return SD->SchedulingRegionID == SchedulingRegionID; } /// Marks an instruction as scheduled and puts all dependent ready /// instructions into the ready-list. template void schedule(ScheduleData *SD, ReadyListType &ReadyList) { SD->IsScheduled = true; LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); ScheduleData *BundleMember = SD; while (BundleMember) { if (BundleMember->Inst != BundleMember->OpValue) { BundleMember = BundleMember->NextInBundle; continue; } // Handle the def-use chain dependencies. // Decrement the unscheduled counter and insert to ready list if ready. auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { if (OpDef && OpDef->hasValidDependencies() && OpDef->incrementUnscheduledDeps(-1) == 0) { // There are no more unscheduled dependencies after // decrementing, so we can put the dependent instruction // into the ready list. ScheduleData *DepBundle = OpDef->FirstInBundle; assert(!DepBundle->IsScheduled && "already scheduled bundle gets ready"); ReadyList.insert(DepBundle); LLVM_DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); } }); }; // If BundleMember is a vector bundle, its operands may have been // reordered duiring buildTree(). We therefore need to get its operands // through the TreeEntry. if (TreeEntry *TE = BundleMember->TE) { int Lane = BundleMember->Lane; assert(Lane >= 0 && "Lane not set"); // Since vectorization tree is being built recursively this assertion // ensures that the tree entry has all operands set before reaching // this code. Couple of exceptions known at the moment are extracts // where their second (immediate) operand is not added. Since // immediates do not affect scheduler behavior this is considered // okay. auto *In = TE->getMainOp(); assert(In && (isa(In) || isa(In) || In->getNumOperands() == TE->getNumOperands()) && "Missed TreeEntry operands?"); (void)In; // fake use to avoid build failure when assertions disabled for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); OpIdx != NumOperands; ++OpIdx) if (auto *I = dyn_cast(TE->getOperand(OpIdx)[Lane])) DecrUnsched(I); } else { // If BundleMember is a stand-alone instruction, no operand reordering // has taken place, so we directly access its operands. for (Use &U : BundleMember->Inst->operands()) if (auto *I = dyn_cast(U.get())) DecrUnsched(I); } // Handle the memory dependencies. for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { // There are no more unscheduled dependencies after decrementing, // so we can put the dependent instruction into the ready list. ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; assert(!DepBundle->IsScheduled && "already scheduled bundle gets ready"); ReadyList.insert(DepBundle); LLVM_DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); } } BundleMember = BundleMember->NextInBundle; } } void doForAllOpcodes(Value *V, function_ref Action) { if (ScheduleData *SD = getScheduleData(V)) Action(SD); auto I = ExtraScheduleDataMap.find(V); if (I != ExtraScheduleDataMap.end()) for (auto &P : I->second) if (P.second->SchedulingRegionID == SchedulingRegionID) Action(P.second); } /// Put all instructions into the ReadyList which are ready for scheduling. template void initialFillReadyList(ReadyListType &ReadyList) { for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { doForAllOpcodes(I, [&](ScheduleData *SD) { if (SD->isSchedulingEntity() && SD->isReady()) { ReadyList.insert(SD); LLVM_DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); } }); } } /// Checks if a bundle of instructions can be scheduled, i.e. has no /// cyclic dependencies. This is only a dry-run, no instructions are /// actually moved at this stage. /// \returns the scheduling bundle. The returned Optional value is non-None /// if \p VL is allowed to be scheduled. Optional tryScheduleBundle(ArrayRef VL, BoUpSLP *SLP, const InstructionsState &S); /// Un-bundles a group of instructions. void cancelScheduling(ArrayRef VL, Value *OpValue); /// Allocates schedule data chunk. ScheduleData *allocateScheduleDataChunks(); /// Extends the scheduling region so that V is inside the region. /// \returns true if the region size is within the limit. bool extendSchedulingRegion(Value *V, const InstructionsState &S); /// Initialize the ScheduleData structures for new instructions in the /// scheduling region. void initScheduleData(Instruction *FromI, Instruction *ToI, ScheduleData *PrevLoadStore, ScheduleData *NextLoadStore); /// Updates the dependency information of a bundle and of all instructions/ /// bundles which depend on the original bundle. void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, BoUpSLP *SLP); /// Sets all instruction in the scheduling region to un-scheduled. void resetSchedule(); BasicBlock *BB; /// Simple memory allocation for ScheduleData. std::vector> ScheduleDataChunks; /// The size of a ScheduleData array in ScheduleDataChunks. int ChunkSize; /// The allocator position in the current chunk, which is the last entry /// of ScheduleDataChunks. int ChunkPos; /// Attaches ScheduleData to Instruction. /// Note that the mapping survives during all vectorization iterations, i.e. /// ScheduleData structures are recycled. DenseMap ScheduleDataMap; /// Attaches ScheduleData to Instruction with the leading key. DenseMap> ExtraScheduleDataMap; struct ReadyList : SmallVector { void insert(ScheduleData *SD) { push_back(SD); } }; /// The ready-list for scheduling (only used for the dry-run). ReadyList ReadyInsts; /// The first instruction of the scheduling region. Instruction *ScheduleStart = nullptr; /// The first instruction _after_ the scheduling region. Instruction *ScheduleEnd = nullptr; /// The first memory accessing instruction in the scheduling region /// (can be null). ScheduleData *FirstLoadStoreInRegion = nullptr; /// The last memory accessing instruction in the scheduling region /// (can be null). ScheduleData *LastLoadStoreInRegion = nullptr; /// The current size of the scheduling region. int ScheduleRegionSize = 0; /// The maximum size allowed for the scheduling region. int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; /// The ID of the scheduling region. For a new vectorization iteration this /// is incremented which "removes" all ScheduleData from the region. // Make sure that the initial SchedulingRegionID is greater than the // initial SchedulingRegionID in ScheduleData (which is 0). int SchedulingRegionID = 1; }; /// Attaches the BlockScheduling structures to basic blocks. MapVector> BlocksSchedules; /// Performs the "real" scheduling. Done before vectorization is actually /// performed in a basic block. void scheduleBlock(BlockScheduling *BS); /// List of users to ignore during scheduling and that don't need extracting. ArrayRef UserIgnoreList; /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of /// sorted SmallVectors of unsigned. struct OrdersTypeDenseMapInfo { static OrdersType getEmptyKey() { OrdersType V; V.push_back(~1U); return V; } static OrdersType getTombstoneKey() { OrdersType V; V.push_back(~2U); return V; } static unsigned getHashValue(const OrdersType &V) { return static_cast(hash_combine_range(V.begin(), V.end())); } static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { return LHS == RHS; } }; /// Contains orders of operations along with the number of bundles that have /// operations in this order. It stores only those orders that require /// reordering, if reordering is not required it is counted using \a /// NumOpsWantToKeepOriginalOrder. DenseMap NumOpsWantToKeepOrder; /// Number of bundles that do not require reordering. unsigned NumOpsWantToKeepOriginalOrder = 0; // Analysis and block reference. Function *F; ScalarEvolution *SE; TargetTransformInfo *TTI; TargetLibraryInfo *TLI; AAResults *AA; LoopInfo *LI; DominatorTree *DT; AssumptionCache *AC; DemandedBits *DB; const DataLayout *DL; OptimizationRemarkEmitter *ORE; unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. unsigned MinVecRegSize; // Set by cl::opt (default: 128). /// Instruction builder to construct the vectorized tree. IRBuilder<> Builder; /// A map of scalar integer values to the smallest bit width with which they /// can legally be represented. The values map to (width, signed) pairs, /// where "width" indicates the minimum bit width and "signed" is True if the /// value must be signed-extended, rather than zero-extended, back to its /// original width. MapVector> MinBWs; }; } // end namespace slpvectorizer template <> struct GraphTraits { using TreeEntry = BoUpSLP::TreeEntry; /// NodeRef has to be a pointer per the GraphWriter. using NodeRef = TreeEntry *; using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; /// Add the VectorizableTree to the index iterator to be able to return /// TreeEntry pointers. struct ChildIteratorType : public iterator_adaptor_base< ChildIteratorType, SmallVector::iterator> { ContainerTy &VectorizableTree; ChildIteratorType(SmallVector::iterator W, ContainerTy &VT) : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} NodeRef operator*() { return I->UserTE; } }; static NodeRef getEntryNode(BoUpSLP &R) { return R.VectorizableTree[0].get(); } static ChildIteratorType child_begin(NodeRef N) { return {N->UserTreeIndices.begin(), N->Container}; } static ChildIteratorType child_end(NodeRef N) { return {N->UserTreeIndices.end(), N->Container}; } /// For the node iterator we just need to turn the TreeEntry iterator into a /// TreeEntry* iterator so that it dereferences to NodeRef. class nodes_iterator { using ItTy = ContainerTy::iterator; ItTy It; public: nodes_iterator(const ItTy &It2) : It(It2) {} NodeRef operator*() { return It->get(); } nodes_iterator operator++() { ++It; return *this; } bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } }; static nodes_iterator nodes_begin(BoUpSLP *R) { return nodes_iterator(R->VectorizableTree.begin()); } static nodes_iterator nodes_end(BoUpSLP *R) { return nodes_iterator(R->VectorizableTree.end()); } static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } }; template <> struct DOTGraphTraits : public DefaultDOTGraphTraits { using TreeEntry = BoUpSLP::TreeEntry; DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { std::string Str; raw_string_ostream OS(Str); if (isSplat(Entry->Scalars)) { OS << " " << *Entry->Scalars[0]; return Str; } for (auto V : Entry->Scalars) { OS << *V; if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) OS << " "; OS << "\n"; } return Str; } static std::string getNodeAttributes(const TreeEntry *Entry, const BoUpSLP *) { if (Entry->State == TreeEntry::NeedToGather) return "color=red"; return ""; } }; } // end namespace llvm BoUpSLP::~BoUpSLP() { for (const auto &Pair : DeletedInstructions) { // Replace operands of ignored instructions with Undefs in case if they were // marked for deletion. if (Pair.getSecond()) { Value *Undef = UndefValue::get(Pair.getFirst()->getType()); Pair.getFirst()->replaceAllUsesWith(Undef); } Pair.getFirst()->dropAllReferences(); } for (const auto &Pair : DeletedInstructions) { assert(Pair.getFirst()->use_empty() && "trying to erase instruction with users."); Pair.getFirst()->eraseFromParent(); } #ifdef EXPENSIVE_CHECKS // If we could guarantee that this call is not extremely slow, we could // remove the ifdef limitation (see PR47712). assert(!verifyFunction(*F, &dbgs())); #endif } void BoUpSLP::eraseInstructions(ArrayRef AV) { for (auto *V : AV) { if (auto *I = dyn_cast(V)) eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); }; } void BoUpSLP::buildTree(ArrayRef Roots, ArrayRef UserIgnoreLst) { ExtraValueToDebugLocsMap ExternallyUsedValues; buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); } void BoUpSLP::buildTree(ArrayRef Roots, ExtraValueToDebugLocsMap &ExternallyUsedValues, ArrayRef UserIgnoreLst) { deleteTree(); UserIgnoreList = UserIgnoreLst; if (!allSameType(Roots)) return; buildTree_rec(Roots, 0, EdgeInfo()); // Collect the values that we need to extract from the tree. for (auto &TEPtr : VectorizableTree) { TreeEntry *Entry = TEPtr.get(); // No need to handle users of gathered values. if (Entry->State == TreeEntry::NeedToGather) continue; // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; int FoundLane = Lane; if (!Entry->ReuseShuffleIndices.empty()) { FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), llvm::find(Entry->ReuseShuffleIndices, FoundLane)); } // Check if the scalar is externally used as an extra arg. auto ExtI = ExternallyUsedValues.find(Scalar); if (ExtI != ExternallyUsedValues.end()) { LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << Lane << " from " << *Scalar << ".\n"); ExternalUses.emplace_back(Scalar, nullptr, FoundLane); } for (User *U : Scalar->users()) { LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); Instruction *UserInst = dyn_cast(U); if (!UserInst) continue; // Skip in-tree scalars that become vectors if (TreeEntry *UseEntry = getTreeEntry(U)) { Value *UseScalar = UseEntry->Scalars[0]; // Some in-tree scalars will remain as scalar in vectorized // instructions. If that is the case, the one in Lane 0 will // be used. if (UseScalar != U || !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U << ".\n"); assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); continue; } } // Ignore users in the user ignore list. if (is_contained(UserIgnoreList, UserInst)) continue; LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << Lane << " from " << *Scalar << ".\n"); ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); } } } } void BoUpSLP::buildTree_rec(ArrayRef VL, unsigned Depth, const EdgeInfo &UserTreeIdx) { assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); InstructionsState S = getSameOpcode(VL); if (Depth == RecursionMaxDepth) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); return; } // Don't handle vectors. if (S.OpValue->getType()->isVectorTy()) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); return; } if (StoreInst *SI = dyn_cast(S.OpValue)) if (SI->getValueOperand()->getType()->isVectorTy()) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); return; } // If all of the operands are identical or constant we have a simple solution. if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); return; } // We now know that this is a vector of instructions of the same type from // the same block. // Don't vectorize ephemeral values. for (Value *V : VL) { if (EphValues.count(V)) { LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V << ") is ephemeral.\n"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); return; } } // Check if this is a duplicate of another entry. if (TreeEntry *E = getTreeEntry(S.OpValue)) { LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); if (!E->isSame(VL)) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); return; } // Record the reuse of the tree node. FIXME, currently this is only used to // properly draw the graph rather than for the actual vectorization. E->UserTreeIndices.push_back(UserTreeIdx); LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); return; } // Check that none of the instructions in the bundle are already in the tree. for (Value *V : VL) { auto *I = dyn_cast(V); if (!I) continue; if (getTreeEntry(I)) { LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V << ") is already in tree.\n"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); return; } } // If any of the scalars is marked as a value that needs to stay scalar, then // we need to gather the scalars. // The reduction nodes (stored in UserIgnoreList) also should stay scalar. for (Value *V : VL) { if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); return; } } // Check that all of the users of the scalars that we want to vectorize are // schedulable. auto *VL0 = cast(S.OpValue); BasicBlock *BB = VL0->getParent(); if (!DT->isReachableFromEntry(BB)) { // Don't go into unreachable blocks. They may contain instructions with // dependency cycles which confuse the final scheduling. LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); return; } // Check that every instruction appears once in this bundle. SmallVector ReuseShuffleIndicies; SmallVector UniqueValues; DenseMap UniquePositions; for (Value *V : VL) { auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); ReuseShuffleIndicies.emplace_back(Res.first->second); if (Res.second) UniqueValues.emplace_back(V); } size_t NumUniqueScalarValues = UniqueValues.size(); if (NumUniqueScalarValues == VL.size()) { ReuseShuffleIndicies.clear(); } else { LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); if (NumUniqueScalarValues <= 1 || !llvm::isPowerOf2_32(NumUniqueScalarValues)) { LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); return; } VL = UniqueValues; } auto &BSRef = BlocksSchedules[BB]; if (!BSRef) BSRef = std::make_unique(BB); BlockScheduling &BS = *BSRef.get(); Optional Bundle = BS.tryScheduleBundle(VL, this, S); if (!Bundle) { LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); assert((!BS.getScheduleData(VL0) || !BS.getScheduleData(VL0)->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); return; } LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); unsigned ShuffleOrOp = S.isAltShuffle() ? (unsigned) Instruction::ShuffleVector : S.getOpcode(); switch (ShuffleOrOp) { case Instruction::PHI: { auto *PH = cast(VL0); // Check for terminator values (e.g. invoke). for (Value *V : VL) for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { Instruction *Term = dyn_cast( cast(V)->getIncomingValueForBlock( PH->getIncomingBlock(I))); if (Term && Term->isTerminator()) { LLVM_DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (terminator use).\n"); BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); return; } } TreeEntry *TE = newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); // Keeps the reordered operands to avoid code duplication. SmallVector OperandsVec; for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { ValueList Operands; // Prepare the operand vector. for (Value *V : VL) Operands.push_back(cast(V)->getIncomingValueForBlock( PH->getIncomingBlock(I))); TE->setOperand(I, Operands); OperandsVec.push_back(Operands); } for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); return; } case Instruction::ExtractValue: case Instruction::ExtractElement: { OrdersType CurrentOrder; bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); if (Reuse) { LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); ++NumOpsWantToKeepOriginalOrder; newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); // This is a special case, as it does not gather, but at the same time // we are not extending buildTree_rec() towards the operands. ValueList Op0; Op0.assign(VL.size(), VL0->getOperand(0)); VectorizableTree.back()->setOperand(0, Op0); return; } if (!CurrentOrder.empty()) { LLVM_DEBUG({ dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " "with order"; for (unsigned Idx : CurrentOrder) dbgs() << " " << Idx; dbgs() << "\n"; }); // Insert new order with initial value 0, if it does not exist, // otherwise return the iterator to the existing one. newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies, CurrentOrder); findRootOrder(CurrentOrder); ++NumOpsWantToKeepOrder[CurrentOrder]; // This is a special case, as it does not gather, but at the same time // we are not extending buildTree_rec() towards the operands. ValueList Op0; Op0.assign(VL.size(), VL0->getOperand(0)); VectorizableTree.back()->setOperand(0, Op0); return; } LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); BS.cancelScheduling(VL, VL0); return; } case Instruction::Load: { // Check that a vectorized load would load the same memory as a scalar // load. For example, we don't want to vectorize loads that are smaller // than 8-bit. Even though we have a packed struct {} LLVM // treats loading/storing it as an i8 struct. If we vectorize loads/stores // from such a struct, we read/write packed bits disagreeing with the // unvectorized version. Type *ScalarTy = VL0->getType(); if (DL->getTypeSizeInBits(ScalarTy) != DL->getTypeAllocSizeInBits(ScalarTy)) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); return; } // Make sure all loads in the bundle are simple - we can't vectorize // atomic or volatile loads. SmallVector PointerOps(VL.size()); auto POIter = PointerOps.begin(); for (Value *V : VL) { auto *L = cast(V); if (!L->isSimple()) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); return; } *POIter = L->getPointerOperand(); ++POIter; } OrdersType CurrentOrder; // Check the order of pointer operands. if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { Value *Ptr0; Value *PtrN; if (CurrentOrder.empty()) { Ptr0 = PointerOps.front(); PtrN = PointerOps.back(); } else { Ptr0 = PointerOps[CurrentOrder.front()]; PtrN = PointerOps[CurrentOrder.back()]; } const SCEV *Scev0 = SE->getSCEV(Ptr0); const SCEV *ScevN = SE->getSCEV(PtrN); const auto *Diff = dyn_cast(SE->getMinusSCEV(ScevN, Scev0)); uint64_t Size = DL->getTypeAllocSize(ScalarTy); // Check that the sorted loads are consecutive. if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { if (CurrentOrder.empty()) { // Original loads are consecutive and does not require reordering. ++NumOpsWantToKeepOriginalOrder; TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); TE->setOperandsInOrder(); LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); } else { // Need to reorder. TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies, CurrentOrder); TE->setOperandsInOrder(); LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); findRootOrder(CurrentOrder); ++NumOpsWantToKeepOrder[CurrentOrder]; } return; } // Vectorizing non-consecutive loads with `llvm.masked.gather`. TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); TE->setOperandsInOrder(); buildTree_rec(PointerOps, Depth + 1, {TE, 0}); LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); return; } LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); return; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcTy = VL0->getOperand(0)->getType(); for (Value *V : VL) { Type *Ty = cast(V)->getOperand(0)->getType(); if (Ty != SrcTy || !isValidElementType(Ty)) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); return; } } TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); TE->setOperandsInOrder(); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *V : VL) Operands.push_back(cast(V)->getOperand(i)); buildTree_rec(Operands, Depth + 1, {TE, i}); } return; } case Instruction::ICmp: case Instruction::FCmp: { // Check that all of the compares have the same predicate. CmpInst::Predicate P0 = cast(VL0)->getPredicate(); CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); Type *ComparedTy = VL0->getOperand(0)->getType(); for (Value *V : VL) { CmpInst *Cmp = cast(V); if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || Cmp->getOperand(0)->getType() != ComparedTy) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); return; } } TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); ValueList Left, Right; if (cast(VL0)->isCommutative()) { // Commutative predicate - collect + sort operands of the instructions // so that each side is more likely to have the same opcode. assert(P0 == SwapP0 && "Commutative Predicate mismatch"); reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); } else { // Collect operands - commute if it uses the swapped predicate. for (Value *V : VL) { auto *Cmp = cast(V); Value *LHS = Cmp->getOperand(0); Value *RHS = Cmp->getOperand(1); if (Cmp->getPredicate() != P0) std::swap(LHS, RHS); Left.push_back(LHS); Right.push_back(RHS); } } TE->setOperand(0, Left); TE->setOperand(1, Right); buildTree_rec(Left, Depth + 1, {TE, 0}); buildTree_rec(Right, Depth + 1, {TE, 1}); return; } case Instruction::Select: case Instruction::FNeg: case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); // Sort operands of the instructions so that each side is more likely to // have the same opcode. if (isa(VL0) && VL0->isCommutative()) { ValueList Left, Right; reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); TE->setOperand(0, Left); TE->setOperand(1, Right); buildTree_rec(Left, Depth + 1, {TE, 0}); buildTree_rec(Right, Depth + 1, {TE, 1}); return; } TE->setOperandsInOrder(); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *V : VL) Operands.push_back(cast(V)->getOperand(i)); buildTree_rec(Operands, Depth + 1, {TE, i}); } return; } case Instruction::GetElementPtr: { // We don't combine GEPs with complicated (nested) indexing. for (Value *V : VL) { if (cast(V)->getNumOperands() != 2) { LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); return; } } // We can't combine several GEPs into one vector if they operate on // different types. Type *Ty0 = VL0->getOperand(0)->getType(); for (Value *V : VL) { Type *CurTy = cast(V)->getOperand(0)->getType(); if (Ty0 != CurTy) { LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); return; } } // We don't combine GEPs with non-constant indexes. Type *Ty1 = VL0->getOperand(1)->getType(); for (Value *V : VL) { auto Op = cast(V)->getOperand(1); if (!isa(Op) || (Op->getType() != Ty1 && Op->getType()->getScalarSizeInBits() > DL->getIndexSizeInBits( V->getType()->getPointerAddressSpace()))) { LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); return; } } TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); TE->setOperandsInOrder(); for (unsigned i = 0, e = 2; i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *V : VL) Operands.push_back(cast(V)->getOperand(i)); buildTree_rec(Operands, Depth + 1, {TE, i}); } return; } case Instruction::Store: { // Check if the stores are consecutive or if we need to swizzle them. llvm::Type *ScalarTy = cast(VL0)->getValueOperand()->getType(); // Avoid types that are padded when being allocated as scalars, while // being packed together in a vector (such as i1). if (DL->getTypeSizeInBits(ScalarTy) != DL->getTypeAllocSizeInBits(ScalarTy)) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); return; } // Make sure all stores in the bundle are simple - we can't vectorize // atomic or volatile stores. SmallVector PointerOps(VL.size()); ValueList Operands(VL.size()); auto POIter = PointerOps.begin(); auto OIter = Operands.begin(); for (Value *V : VL) { auto *SI = cast(V); if (!SI->isSimple()) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); return; } *POIter = SI->getPointerOperand(); *OIter = SI->getValueOperand(); ++POIter; ++OIter; } OrdersType CurrentOrder; // Check the order of pointer operands. if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { Value *Ptr0; Value *PtrN; if (CurrentOrder.empty()) { Ptr0 = PointerOps.front(); PtrN = PointerOps.back(); } else { Ptr0 = PointerOps[CurrentOrder.front()]; PtrN = PointerOps[CurrentOrder.back()]; } const SCEV *Scev0 = SE->getSCEV(Ptr0); const SCEV *ScevN = SE->getSCEV(PtrN); const auto *Diff = dyn_cast(SE->getMinusSCEV(ScevN, Scev0)); uint64_t Size = DL->getTypeAllocSize(ScalarTy); // Check that the sorted pointer operands are consecutive. if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { if (CurrentOrder.empty()) { // Original stores are consecutive and does not require reordering. ++NumOpsWantToKeepOriginalOrder; TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); TE->setOperandsInOrder(); buildTree_rec(Operands, Depth + 1, {TE, 0}); LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); } else { TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies, CurrentOrder); TE->setOperandsInOrder(); buildTree_rec(Operands, Depth + 1, {TE, 0}); LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); findRootOrder(CurrentOrder); ++NumOpsWantToKeepOrder[CurrentOrder]; } return; } } BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); return; } case Instruction::Call: { // Check if the calls are all to the same vectorizable intrinsic or // library function. CallInst *CI = cast(VL0); Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); VFShape Shape = VFShape::get( *CI, ElementCount::getFixed(static_cast(VL.size())), false /*HasGlobalPred*/); Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); if (!VecFunc && !isTriviallyVectorizable(ID)) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); return; } Function *F = CI->getCalledFunction(); unsigned NumArgs = CI->getNumArgOperands(); SmallVector ScalarArgs(NumArgs, nullptr); for (unsigned j = 0; j != NumArgs; ++j) if (hasVectorInstrinsicScalarOpd(ID, j)) ScalarArgs[j] = CI->getArgOperand(j); for (Value *V : VL) { CallInst *CI2 = dyn_cast(V); if (!CI2 || CI2->getCalledFunction() != F || getVectorIntrinsicIDForCall(CI2, TLI) != ID || (VecFunc && VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || !CI->hasIdenticalOperandBundleSchema(*CI2)) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V << "\n"); return; } // Some intrinsics have scalar arguments and should be same in order for // them to be vectorized. for (unsigned j = 0; j != NumArgs; ++j) { if (hasVectorInstrinsicScalarOpd(ID, j)) { Value *A1J = CI2->getArgOperand(j); if (ScalarArgs[j] != A1J) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI << " argument " << ScalarArgs[j] << "!=" << A1J << "\n"); return; } } } // Verify that the bundle operands are identical between the two calls. if (CI->hasOperandBundles() && !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), CI->op_begin() + CI->getBundleOperandsEndIndex(), CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" << *V << '\n'); return; } } TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); TE->setOperandsInOrder(); for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *V : VL) { auto *CI2 = cast(V); Operands.push_back(CI2->getArgOperand(i)); } buildTree_rec(Operands, Depth + 1, {TE, i}); } return; } case Instruction::ShuffleVector: { // If this is not an alternate sequence of opcode like add-sub // then do not vectorize this instruction. if (!S.isAltShuffle()) { BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); return; } TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); // Reorder operands if reordering would enable vectorization. if (isa(VL0)) { ValueList Left, Right; reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); TE->setOperand(0, Left); TE->setOperand(1, Right); buildTree_rec(Left, Depth + 1, {TE, 0}); buildTree_rec(Right, Depth + 1, {TE, 1}); return; } TE->setOperandsInOrder(); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *V : VL) Operands.push_back(cast(V)->getOperand(i)); buildTree_rec(Operands, Depth + 1, {TE, i}); } return; } default: BS.cancelScheduling(VL, VL0); newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, ReuseShuffleIndicies); LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); return; } } unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { unsigned N = 1; Type *EltTy = T; while (isa(EltTy) || isa(EltTy) || isa(EltTy)) { if (auto *ST = dyn_cast(EltTy)) { // Check that struct is homogeneous. for (const auto *Ty : ST->elements()) if (Ty != *ST->element_begin()) return 0; N *= ST->getNumElements(); EltTy = *ST->element_begin(); } else if (auto *AT = dyn_cast(EltTy)) { N *= AT->getNumElements(); EltTy = AT->getElementType(); } else { auto *VT = cast(EltTy); N *= VT->getNumElements(); EltTy = VT->getElementType(); } } if (!isValidElementType(EltTy)) return 0; uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) return 0; return N; } bool BoUpSLP::canReuseExtract(ArrayRef VL, Value *OpValue, SmallVectorImpl &CurrentOrder) const { Instruction *E0 = cast(OpValue); assert(E0->getOpcode() == Instruction::ExtractElement || E0->getOpcode() == Instruction::ExtractValue); assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); // Check if all of the extracts come from the same vector and from the // correct offset. Value *Vec = E0->getOperand(0); CurrentOrder.clear(); // We have to extract from a vector/aggregate with the same number of elements. unsigned NElts; if (E0->getOpcode() == Instruction::ExtractValue) { const DataLayout &DL = E0->getModule()->getDataLayout(); NElts = canMapToVector(Vec->getType(), DL); if (!NElts) return false; // Check if load can be rewritten as load of vector. LoadInst *LI = dyn_cast(Vec); if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) return false; } else { NElts = cast(Vec->getType())->getNumElements(); } if (NElts != VL.size()) return false; // Check that all of the indices extract from the correct offset. bool ShouldKeepOrder = true; unsigned E = VL.size(); // Assign to all items the initial value E + 1 so we can check if the extract // instruction index was used already. // Also, later we can check that all the indices are used and we have a // consecutive access in the extract instructions, by checking that no // element of CurrentOrder still has value E + 1. CurrentOrder.assign(E, E + 1); unsigned I = 0; for (; I < E; ++I) { auto *Inst = cast(VL[I]); if (Inst->getOperand(0) != Vec) break; Optional Idx = getExtractIndex(Inst); if (!Idx) break; const unsigned ExtIdx = *Idx; if (ExtIdx != I) { if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) break; ShouldKeepOrder = false; CurrentOrder[ExtIdx] = I; } else { if (CurrentOrder[I] != E + 1) break; CurrentOrder[I] = I; } } if (I < E) { CurrentOrder.clear(); return false; } return ShouldKeepOrder; } bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { return ScalarToTreeEntry.count(U) > 0; }); } static std::pair getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); // Calculate the cost of the scalar and vector calls. IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getElementCount()); auto IntrinsicCost = TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast( VecTy->getNumElements())), false /*HasGlobalPred*/); Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); auto LibCost = IntrinsicCost; if (!CI->isNoBuiltin() && VecFunc) { // Calculate the cost of the vector library call. SmallVector VecTys; for (Use &Arg : CI->args()) VecTys.push_back( FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); // If the corresponding vector call is cheaper, return its cost. LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, TTI::TCK_RecipThroughput); } return {IntrinsicCost, LibCost}; } InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { ArrayRef VL = E->Scalars; Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast(VL[0])) ScalarTy = SI->getValueOperand()->getType(); else if (CmpInst *CI = dyn_cast(VL[0])) ScalarTy = CI->getOperand(0)->getType(); auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; // If we have computed a smaller type for the expression, update VecTy so // that the costs will be accurate. if (MinBWs.count(VL[0])) VecTy = FixedVectorType::get( IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); InstructionCost ReuseShuffleCost = 0; if (NeedToShuffleReuses) { ReuseShuffleCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); } if (E->State == TreeEntry::NeedToGather) { if (allConstant(VL)) return 0; if (isSplat(VL)) { return ReuseShuffleCost + TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); } if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && allSameBlock(VL)) { Optional ShuffleKind = isShuffle(VL); if (ShuffleKind.hasValue()) { InstructionCost Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); for (auto *V : VL) { // If all users of instruction are going to be vectorized and this // instruction itself is not going to be vectorized, consider this // instruction as dead and remove its cost from the final cost of the // vectorized tree. if (areAllUsersVectorized(cast(V)) && !ScalarToTreeEntry.count(V)) { auto *IO = cast( cast(V)->getIndexOperand()); Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, IO->getZExtValue()); } } return ReuseShuffleCost + Cost; } } return ReuseShuffleCost + getGatherCost(VL); } assert((E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && "Unhandled state"); assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); Instruction *VL0 = E->getMainOp(); unsigned ShuffleOrOp = E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); switch (ShuffleOrOp) { case Instruction::PHI: return 0; case Instruction::ExtractValue: case Instruction::ExtractElement: { if (NeedToShuffleReuses) { unsigned Idx = 0; for (unsigned I : E->ReuseShuffleIndices) { if (ShuffleOrOp == Instruction::ExtractElement) { auto *IO = cast( cast(VL[I])->getIndexOperand()); Idx = IO->getZExtValue(); ReuseShuffleCost -= TTI->getVectorInstrCost( Instruction::ExtractElement, VecTy, Idx); } else { ReuseShuffleCost -= TTI->getVectorInstrCost( Instruction::ExtractElement, VecTy, Idx); ++Idx; } } Idx = ReuseShuffleNumbers; for (Value *V : VL) { if (ShuffleOrOp == Instruction::ExtractElement) { auto *IO = cast( cast(V)->getIndexOperand()); Idx = IO->getZExtValue(); } else { --Idx; } ReuseShuffleCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); } } InstructionCost DeadCost = ReuseShuffleCost; if (!E->ReorderIndices.empty()) { // TODO: Merge this shuffle with the ReuseShuffleCost. DeadCost += TTI->getShuffleCost( TargetTransformInfo::SK_PermuteSingleSrc, VecTy); } for (unsigned I = 0, E = VL.size(); I < E; ++I) { Instruction *EI = cast(VL[I]); // If all users are going to be vectorized, instruction can be // considered as dead. // The same, if have only one user, it will be vectorized for sure. if (areAllUsersVectorized(EI)) { // Take credit for instruction that will become dead. if (EI->hasOneUse()) { Instruction *Ext = EI->user_back(); if ((isa(Ext) || isa(Ext)) && all_of(Ext->users(), [](User *U) { return isa(U); })) { // Use getExtractWithExtendCost() to calculate the cost of // extractelement/ext pair. DeadCost -= TTI->getExtractWithExtendCost( Ext->getOpcode(), Ext->getType(), VecTy, I); // Add back the cost of s|zext which is subtracted separately. DeadCost += TTI->getCastInstrCost( Ext->getOpcode(), Ext->getType(), EI->getType(), TTI::getCastContextHint(Ext), CostKind, Ext); continue; } } DeadCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); } } return DeadCost; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcTy = VL0->getOperand(0)->getType(); InstructionCost ScalarEltCost = TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, TTI::getCastContextHint(VL0), CostKind, VL0); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } // Calculate the cost of this instruction. InstructionCost ScalarCost = VL.size() * ScalarEltCost; auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); InstructionCost VecCost = 0; // Check if the values are candidates to demote. if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { VecCost = ReuseShuffleCost + TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, TTI::getCastContextHint(VL0), CostKind, VL0); } LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); return VecCost - ScalarCost; } case Instruction::FCmp: case Instruction::ICmp: case Instruction::Select: { // Calculate the cost of this instruction. InstructionCost ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; // Check if all entries in VL are either compares or selects with compares // as condition that have the same predicates. CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; bool First = true; for (auto *V : VL) { CmpInst::Predicate CurrentPred; auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && !match(V, MatchCmp)) || (!First && VecPred != CurrentPred)) { VecPred = CmpInst::BAD_ICMP_PREDICATE; break; } First = false; VecPred = CurrentPred; } InstructionCost VecCost = TTI->getCmpSelInstrCost( E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); // Check if it is possible and profitable to use min/max for selects in // VL. // auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, {VecTy, VecTy}); InstructionCost IntrinsicCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); // If the selects are the only uses of the compares, they will be dead // and we can adjust the cost by removing their cost. if (IntrinsicAndUse.second) IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, CmpInst::BAD_ICMP_PREDICATE, CostKind); VecCost = std::min(VecCost, IntrinsicCost); } LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); return ReuseShuffleCost + VecCost - ScalarCost; } case Instruction::FNeg: case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Certain instructions can be cheaper to vectorize if they have a // constant second vector operand. TargetTransformInfo::OperandValueKind Op1VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_UniformConstantValue; TargetTransformInfo::OperandValueProperties Op1VP = TargetTransformInfo::OP_None; TargetTransformInfo::OperandValueProperties Op2VP = TargetTransformInfo::OP_PowerOf2; // If all operands are exactly the same ConstantInt then set the // operand kind to OK_UniformConstantValue. // If instead not all operands are constants, then set the operand kind // to OK_AnyValue. If all operands are constants but not the same, // then set the operand kind to OK_NonUniformConstantValue. ConstantInt *CInt0 = nullptr; for (unsigned i = 0, e = VL.size(); i < e; ++i) { const Instruction *I = cast(VL[i]); unsigned OpIdx = isa(I) ? 1 : 0; ConstantInt *CInt = dyn_cast(I->getOperand(OpIdx)); if (!CInt) { Op2VK = TargetTransformInfo::OK_AnyValue; Op2VP = TargetTransformInfo::OP_None; break; } if (Op2VP == TargetTransformInfo::OP_PowerOf2 && !CInt->getValue().isPowerOf2()) Op2VP = TargetTransformInfo::OP_None; if (i == 0) { CInt0 = CInt; continue; } if (CInt0 != CInt) Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; } SmallVector Operands(VL0->operand_values()); InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; InstructionCost VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, VL0); LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); return ReuseShuffleCost + VecCost - ScalarCost; } case Instruction::GetElementPtr: { TargetTransformInfo::OperandValueKind Op1VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_UniformConstantValue; InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; InstructionCost VecCost = TTI->getArithmeticInstrCost( Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); return ReuseShuffleCost + VecCost - ScalarCost; } case Instruction::Load: { // Cost of wide load - cost of scalar loads. Align alignment = cast(VL0)->getAlign(); InstructionCost ScalarEltCost = TTI->getMemoryOpCost( Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; InstructionCost VecLdCost; if (E->State == TreeEntry::Vectorize) { VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, CostKind, VL0); } else { assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); VecLdCost = TTI->getGatherScatterOpCost( Instruction::Load, VecTy, cast(VL0)->getPointerOperand(), /*VariableMask=*/false, alignment, CostKind, VL0); } if (!E->ReorderIndices.empty()) { // TODO: Merge this shuffle with the ReuseShuffleCost. VecLdCost += TTI->getShuffleCost( TargetTransformInfo::SK_PermuteSingleSrc, VecTy); } LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); return ReuseShuffleCost + VecLdCost - ScalarLdCost; } case Instruction::Store: { // We know that we can merge the stores. Calculate the cost. bool IsReorder = !E->ReorderIndices.empty(); auto *SI = cast(IsReorder ? VL[E->ReorderIndices.front()] : VL0); Align Alignment = SI->getAlign(); InstructionCost ScalarEltCost = TTI->getMemoryOpCost( Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); if (NeedToShuffleReuses) ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; InstructionCost VecStCost = TTI->getMemoryOpCost( Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); if (IsReorder) { // TODO: Merge this shuffle with the ReuseShuffleCost. VecStCost += TTI->getShuffleCost( TargetTransformInfo::SK_PermuteSingleSrc, VecTy); } LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); return ReuseShuffleCost + VecStCost - ScalarStCost; } case Instruction::Call: { CallInst *CI = cast(VL0); Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); // Calculate the cost of the scalar and vector calls. IntrinsicCostAttributes CostAttrs(ID, *CI, ElementCount::getFixed(1), 1); InstructionCost ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); if (NeedToShuffleReuses) { ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; } InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); InstructionCost VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost << " (" << VecCallCost << "-" << ScalarCallCost << ")" << " for " << *CI << "\n"); return ReuseShuffleCost + VecCallCost - ScalarCallCost; } case Instruction::ShuffleVector: { assert(E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"); InstructionCost ScalarCost = 0; if (NeedToShuffleReuses) { for (unsigned Idx : E->ReuseShuffleIndices) { Instruction *I = cast(VL[Idx]); ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); } for (Value *V : VL) { Instruction *I = cast(V); ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); } } for (Value *V : VL) { Instruction *I = cast(V); assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); ScalarCost += TTI->getInstructionCost(I, CostKind); } // VecCost is equal to sum of the cost of creating 2 vectors // and the cost of creating shuffle. InstructionCost VecCost = 0; if (Instruction::isBinaryOp(E->getOpcode())) { VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, CostKind); } else { Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, TTI::CastContextHint::None, CostKind); VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, TTI::CastContextHint::None, CostKind); } VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); return ReuseShuffleCost + VecCost - ScalarCost; } default: llvm_unreachable("Unknown instruction"); } } bool BoUpSLP::isFullyVectorizableTinyTree() const { LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " << VectorizableTree.size() << " is fully vectorizable .\n"); // We only handle trees of heights 1 and 2. if (VectorizableTree.size() == 1 && VectorizableTree[0]->State == TreeEntry::Vectorize) return true; if (VectorizableTree.size() != 2) return false; // Handle splat and all-constants stores. if (VectorizableTree[0]->State == TreeEntry::Vectorize && (allConstant(VectorizableTree[1]->Scalars) || isSplat(VectorizableTree[1]->Scalars))) return true; // Gathering cost would be too much for tiny trees. if (VectorizableTree[0]->State == TreeEntry::NeedToGather || VectorizableTree[1]->State == TreeEntry::NeedToGather) return false; return true; } static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, TargetTransformInfo *TTI) { // Look past the root to find a source value. Arbitrarily follow the // path through operand 0 of any 'or'. Also, peek through optional // shift-left-by-multiple-of-8-bits. Value *ZextLoad = Root; const APInt *ShAmtC; while (!isa(ZextLoad) && (match(ZextLoad, m_Or(m_Value(), m_Value())) || (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && ShAmtC->urem(8) == 0))) ZextLoad = cast(ZextLoad)->getOperand(0); // Check if the input is an extended load of the required or/shift expression. Value *LoadPtr; if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) return false; // Require that the total load bit width is a legal integer type. // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. Type *SrcTy = LoadPtr->getType()->getPointerElementType(); unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) return false; // Everything matched - assume that we can fold the whole sequence using // load combining. LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " << *(cast(Root)) << "\n"); return true; } bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { if (RdxKind != RecurKind::Or) return false; unsigned NumElts = VectorizableTree[0]->Scalars.size(); Value *FirstReduced = VectorizableTree[0]->Scalars[0]; return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); } bool BoUpSLP::isLoadCombineCandidate() const { // Peek through a final sequence of stores and check if all operations are // likely to be load-combined. unsigned NumElts = VectorizableTree[0]->Scalars.size(); for (Value *Scalar : VectorizableTree[0]->Scalars) { Value *X; if (!match(Scalar, m_Store(m_Value(X), m_Value())) || !isLoadCombineCandidateImpl(X, NumElts, TTI)) return false; } return true; } bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { // We can vectorize the tree if its size is greater than or equal to the // minimum size specified by the MinTreeSize command line option. if (VectorizableTree.size() >= MinTreeSize) return false; // If we have a tiny tree (a tree whose size is less than MinTreeSize), we // can vectorize it if we can prove it fully vectorizable. if (isFullyVectorizableTinyTree()) return false; assert(VectorizableTree.empty() ? ExternalUses.empty() : true && "We shouldn't have any external users"); // Otherwise, we can't vectorize the tree. It is both tiny and not fully // vectorizable. return true; } InstructionCost BoUpSLP::getSpillCost() const { // Walk from the bottom of the tree to the top, tracking which values are // live. When we see a call instruction that is not part of our tree, // query TTI to see if there is a cost to keeping values live over it // (for example, if spills and fills are required). unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); InstructionCost Cost = 0; SmallPtrSet LiveValues; Instruction *PrevInst = nullptr; // The entries in VectorizableTree are not necessarily ordered by their // position in basic blocks. Collect them and order them by dominance so later // instructions are guaranteed to be visited first. For instructions in // different basic blocks, we only scan to the beginning of the block, so // their order does not matter, as long as all instructions in a basic block // are grouped together. Using dominance ensures a deterministic order. SmallVector OrderedScalars; for (const auto &TEPtr : VectorizableTree) { Instruction *Inst = dyn_cast(TEPtr->Scalars[0]); if (!Inst) continue; OrderedScalars.push_back(Inst); } llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { return DT->dominates(B, A); }); for (Instruction *Inst : OrderedScalars) { if (!PrevInst) { PrevInst = Inst; continue; } // Update LiveValues. LiveValues.erase(PrevInst); for (auto &J : PrevInst->operands()) { if (isa(&*J) && getTreeEntry(&*J)) LiveValues.insert(cast(&*J)); } LLVM_DEBUG({ dbgs() << "SLP: #LV: " << LiveValues.size(); for (auto *X : LiveValues) dbgs() << " " << X->getName(); dbgs() << ", Looking at "; Inst->dump(); }); // Now find the sequence of instructions between PrevInst and Inst. unsigned NumCalls = 0; BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), PrevInstIt = PrevInst->getIterator().getReverse(); while (InstIt != PrevInstIt) { if (PrevInstIt == PrevInst->getParent()->rend()) { PrevInstIt = Inst->getParent()->rbegin(); continue; } // Debug information does not impact spill cost. if ((isa(&*PrevInstIt) && !isa(&*PrevInstIt)) && &*PrevInstIt != PrevInst) NumCalls++; ++PrevInstIt; } if (NumCalls) { SmallVector V; for (auto *II : LiveValues) V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); } PrevInst = Inst; } return Cost; } InstructionCost BoUpSLP::getTreeCost() { InstructionCost Cost = 0; LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << VectorizableTree.size() << ".\n"); unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { TreeEntry &TE = *VectorizableTree[I].get(); // We create duplicate tree entries for gather sequences that have multiple // uses. However, we should not compute the cost of duplicate sequences. // For example, if we have a build vector (i.e., insertelement sequence) // that is used by more than one vector instruction, we only need to // compute the cost of the insertelement instructions once. The redundant // instructions will be eliminated by CSE. // // We should consider not creating duplicate tree entries for gather // sequences, and instead add additional edges to the tree representing // their uses. Since such an approach results in fewer total entries, // existing heuristics based on tree size may yield different results. // if (TE.State == TreeEntry::NeedToGather && std::any_of(std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), [TE](const std::unique_ptr &EntryPtr) { return EntryPtr->State == TreeEntry::NeedToGather && EntryPtr->isSame(TE.Scalars); })) continue; InstructionCost C = getEntryCost(&TE); Cost += C; LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " << *TE.Scalars[0] << ".\n" << "SLP: Current total cost = " << Cost << "\n"); } SmallPtrSet ExtractCostCalculated; InstructionCost ExtractCost = 0; for (ExternalUser &EU : ExternalUses) { // We only add extract cost once for the same scalar. if (!ExtractCostCalculated.insert(EU.Scalar).second) continue; // Uses by ephemeral values are free (because the ephemeral value will be // removed prior to code generation, and so the extraction will be // removed as well). if (EphValues.count(EU.User)) continue; // If we plan to rewrite the tree in a smaller type, we will need to sign // extend the extracted value back to the original type. Here, we account // for the extract and the added cost of the sign extend if needed. auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; if (MinBWs.count(ScalarRoot)) { auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); auto Extend = MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; VecTy = FixedVectorType::get(MinTy, BundleWidth); ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), VecTy, EU.Lane); } else { ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); } } InstructionCost SpillCost = getSpillCost(); Cost += SpillCost + ExtractCost; #ifndef NDEBUG SmallString<256> Str; { raw_svector_ostream OS(Str); OS << "SLP: Spill Cost = " << SpillCost << ".\n" << "SLP: Extract Cost = " << ExtractCost << ".\n" << "SLP: Total Cost = " << Cost << ".\n"; } LLVM_DEBUG(dbgs() << Str); if (ViewSLPTree) ViewGraph(this, "SLP" + F->getName(), false, Str); #endif return Cost; } InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, const DenseSet &ShuffledIndices) const { unsigned NumElts = Ty->getNumElements(); APInt DemandedElts = APInt::getNullValue(NumElts); for (unsigned I = 0; I < NumElts; ++I) if (!ShuffledIndices.count(I)) DemandedElts.setBit(I); InstructionCost Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, /*Extract*/ false); if (!ShuffledIndices.empty()) Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); return Cost; } InstructionCost BoUpSLP::getGatherCost(ArrayRef VL) const { // Find the type of the operands in VL. Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast(VL[0])) ScalarTy = SI->getValueOperand()->getType(); auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); // Find the cost of inserting/extracting values from the vector. // Check if the same elements are inserted several times and count them as // shuffle candidates. DenseSet ShuffledElements; DenseSet UniqueElements; // Iterate in reverse order to consider insert elements with the high cost. for (unsigned I = VL.size(); I > 0; --I) { unsigned Idx = I - 1; if (!UniqueElements.insert(VL[Idx]).second) ShuffledElements.insert(Idx); } return getGatherCost(VecTy, ShuffledElements); } // Perform operand reordering on the instructions in VL and return the reordered // operands in Left and Right. void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef VL, SmallVectorImpl &Left, SmallVectorImpl &Right, const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) { if (VL.empty()) return; VLOperands Ops(VL, DL, SE, R); // Reorder the operands in place. Ops.reorder(); Left = Ops.getVL(0); Right = Ops.getVL(1); } void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { // Get the basic block this bundle is in. All instructions in the bundle // should be in this block. auto *Front = E->getMainOp(); auto *BB = Front->getParent(); assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { auto *I = cast(V); return !E->isOpcodeOrAlt(I) || I->getParent() == BB; })); // The last instruction in the bundle in program order. Instruction *LastInst = nullptr; // Find the last instruction. The common case should be that BB has been // scheduled, and the last instruction is VL.back(). So we start with // VL.back() and iterate over schedule data until we reach the end of the // bundle. The end of the bundle is marked by null ScheduleData. if (BlocksSchedules.count(BB)) { auto *Bundle = BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); if (Bundle && Bundle->isPartOfBundle()) for (; Bundle; Bundle = Bundle->NextInBundle) if (Bundle->OpValue == Bundle->Inst) LastInst = Bundle->Inst; } // LastInst can still be null at this point if there's either not an entry // for BB in BlocksSchedules or there's no ScheduleData available for // VL.back(). This can be the case if buildTree_rec aborts for various // reasons (e.g., the maximum recursion depth is reached, the maximum region // size is reached, etc.). ScheduleData is initialized in the scheduling // "dry-run". // // If this happens, we can still find the last instruction by brute force. We // iterate forwards from Front (inclusive) until we either see all // instructions in the bundle or reach the end of the block. If Front is the // last instruction in program order, LastInst will be set to Front, and we // will visit all the remaining instructions in the block. // // One of the reasons we exit early from buildTree_rec is to place an upper // bound on compile-time. Thus, taking an additional compile-time hit here is // not ideal. However, this should be exceedingly rare since it requires that // we both exit early from buildTree_rec and that the bundle be out-of-order // (causing us to iterate all the way to the end of the block). if (!LastInst) { SmallPtrSet Bundle(E->Scalars.begin(), E->Scalars.end()); for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) LastInst = &I; if (Bundle.empty()) break; } } assert(LastInst && "Failed to find last instruction in bundle"); // Set the insertion point after the last instruction in the bundle. Set the // debug location to Front. Builder.SetInsertPoint(BB, ++LastInst->getIterator()); Builder.SetCurrentDebugLocation(Front->getDebugLoc()); } Value *BoUpSLP::gather(ArrayRef VL) { Value *Val0 = isa(VL[0]) ? cast(VL[0])->getValueOperand() : VL[0]; FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); Value *Vec = PoisonValue::get(VecTy); unsigned InsIndex = 0; for (Value *Val : VL) { Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); auto *InsElt = dyn_cast(Vec); if (!InsElt) continue; GatherSeq.insert(InsElt); CSEBlocks.insert(InsElt->getParent()); // Add to our 'need-to-extract' list. if (TreeEntry *Entry = getTreeEntry(Val)) { // Find which lane we need to extract. unsigned FoundLane = std::distance(Entry->Scalars.begin(), find(Entry->Scalars, Val)); assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); if (!Entry->ReuseShuffleIndices.empty()) { FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), find(Entry->ReuseShuffleIndices, FoundLane)); } ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); } } return Vec; } Value *BoUpSLP::vectorizeTree(ArrayRef VL) { InstructionsState S = getSameOpcode(VL); if (S.getOpcode()) { if (TreeEntry *E = getTreeEntry(S.OpValue)) { if (E->isSame(VL)) { Value *V = vectorizeTree(E); if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { // We need to get the vectorized value but without shuffle. if (auto *SV = dyn_cast(V)) { V = SV->getOperand(0); } else { // Reshuffle to get only unique values. SmallVector UniqueIdxs; SmallSet UsedIdxs; for (int Idx : E->ReuseShuffleIndices) if (UsedIdxs.insert(Idx).second) UniqueIdxs.emplace_back(Idx); V = Builder.CreateShuffleVector(V, UniqueIdxs); } } return V; } } } // Check that every instruction appears once in this bundle. SmallVector ReuseShuffleIndicies; SmallVector UniqueValues; if (VL.size() > 2) { DenseMap UniquePositions; for (Value *V : VL) { auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); ReuseShuffleIndicies.emplace_back(Res.first->second); if (Res.second || isa(V)) UniqueValues.emplace_back(V); } // Do not shuffle single element or if number of unique values is not power // of 2. if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) ReuseShuffleIndicies.clear(); else VL = UniqueValues; } Value *Vec = gather(VL); if (!ReuseShuffleIndicies.empty()) { Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); if (auto *I = dyn_cast(Vec)) { GatherSeq.insert(I); CSEBlocks.insert(I->getParent()); } } return Vec; } Value *BoUpSLP::vectorizeTree(TreeEntry *E) { IRBuilder<>::InsertPointGuard Guard(Builder); if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); return E->VectorizedValue; } bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); if (E->State == TreeEntry::NeedToGather) { setInsertPointAfterBundle(E); Value *Vec = gather(E->Scalars); if (NeedToShuffleReuses) { Vec = Builder.CreateShuffleVector(Vec, E->ReuseShuffleIndices, "shuffle"); if (auto *I = dyn_cast(Vec)) { GatherSeq.insert(I); CSEBlocks.insert(I->getParent()); } } E->VectorizedValue = Vec; return Vec; } assert((E->State == TreeEntry::Vectorize || E->State == TreeEntry::ScatterVectorize) && "Unhandled state"); unsigned ShuffleOrOp = E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); Instruction *VL0 = E->getMainOp(); Type *ScalarTy = VL0->getType(); if (auto *Store = dyn_cast(VL0)) ScalarTy = Store->getValueOperand()->getType(); auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); switch (ShuffleOrOp) { case Instruction::PHI: { auto *PH = cast(VL0); Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); Builder.SetCurrentDebugLocation(PH->getDebugLoc()); PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); Value *V = NewPhi; if (NeedToShuffleReuses) V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); E->VectorizedValue = V; // PHINodes may have multiple entries from the same block. We want to // visit every block once. SmallPtrSet VisitedBBs; for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { ValueList Operands; BasicBlock *IBB = PH->getIncomingBlock(i); if (!VisitedBBs.insert(IBB).second) { NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); continue; } Builder.SetInsertPoint(IBB->getTerminator()); Builder.SetCurrentDebugLocation(PH->getDebugLoc()); Value *Vec = vectorizeTree(E->getOperand(i)); NewPhi->addIncoming(Vec, IBB); } assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && "Invalid number of incoming values"); return V; } case Instruction::ExtractElement: { Value *V = E->getSingleOperand(0); if (!E->ReorderIndices.empty()) { SmallVector Mask; inversePermutation(E->ReorderIndices, Mask); Builder.SetInsertPoint(VL0); V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); } if (NeedToShuffleReuses) { // TODO: Merge this shuffle with the ReorderShuffleMask. if (E->ReorderIndices.empty()) Builder.SetInsertPoint(VL0); V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; return V; } case Instruction::ExtractValue: { auto *LI = cast(E->getSingleOperand(0)); Builder.SetInsertPoint(LI); auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); Value *NewV = propagateMetadata(V, E->Scalars); if (!E->ReorderIndices.empty()) { SmallVector Mask; inversePermutation(E->ReorderIndices, Mask); NewV = Builder.CreateShuffleVector(NewV, Mask, "reorder_shuffle"); } if (NeedToShuffleReuses) { // TODO: Merge this shuffle with the ReorderShuffleMask. NewV = Builder.CreateShuffleVector(NewV, E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = NewV; return NewV; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { setInsertPointAfterBundle(E); Value *InVec = vectorizeTree(E->getOperand(0)); if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); return E->VectorizedValue; } auto *CI = cast(VL0); Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); if (NeedToShuffleReuses) V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::FCmp: case Instruction::ICmp: { setInsertPointAfterBundle(E); Value *L = vectorizeTree(E->getOperand(0)); Value *R = vectorizeTree(E->getOperand(1)); if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); return E->VectorizedValue; } CmpInst::Predicate P0 = cast(VL0)->getPredicate(); Value *V = Builder.CreateCmp(P0, L, R); propagateIRFlags(V, E->Scalars, VL0); if (NeedToShuffleReuses) V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Select: { setInsertPointAfterBundle(E); Value *Cond = vectorizeTree(E->getOperand(0)); Value *True = vectorizeTree(E->getOperand(1)); Value *False = vectorizeTree(E->getOperand(2)); if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); return E->VectorizedValue; } Value *V = Builder.CreateSelect(Cond, True, False); if (NeedToShuffleReuses) V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::FNeg: { setInsertPointAfterBundle(E); Value *Op = vectorizeTree(E->getOperand(0)); if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); return E->VectorizedValue; } Value *V = Builder.CreateUnOp( static_cast(E->getOpcode()), Op); propagateIRFlags(V, E->Scalars, VL0); if (auto *I = dyn_cast(V)) V = propagateMetadata(I, E->Scalars); if (NeedToShuffleReuses) V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { setInsertPointAfterBundle(E); Value *LHS = vectorizeTree(E->getOperand(0)); Value *RHS = vectorizeTree(E->getOperand(1)); if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); return E->VectorizedValue; } Value *V = Builder.CreateBinOp( static_cast(E->getOpcode()), LHS, RHS); propagateIRFlags(V, E->Scalars, VL0); if (auto *I = dyn_cast(V)) V = propagateMetadata(I, E->Scalars); if (NeedToShuffleReuses) V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Load: { // Loads are inserted at the head of the tree because we don't want to // sink them all the way down past store instructions. bool IsReorder = E->updateStateIfReorder(); if (IsReorder) VL0 = E->getMainOp(); setInsertPointAfterBundle(E); LoadInst *LI = cast(VL0); Instruction *NewLI; unsigned AS = LI->getPointerAddressSpace(); Value *PO = LI->getPointerOperand(); if (E->State == TreeEntry::Vectorize) { Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); // The pointer operand uses an in-tree scalar so we add the new BitCast // to ExternalUses list to make sure that an extract will be generated // in the future. if (getTreeEntry(PO)) ExternalUses.emplace_back(PO, cast(VecPtr), 0); NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); } else { assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); Value *VecPtr = vectorizeTree(E->getOperand(0)); // Use the minimum alignment of the gathered loads. Align CommonAlignment = LI->getAlign(); for (Value *V : E->Scalars) CommonAlignment = commonAlignment(CommonAlignment, cast(V)->getAlign()); NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); } Value *V = propagateMetadata(NewLI, E->Scalars); if (IsReorder) { SmallVector Mask; inversePermutation(E->ReorderIndices, Mask); V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); } if (NeedToShuffleReuses) { // TODO: Merge this shuffle with the ReorderShuffleMask. V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); } E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Store: { bool IsReorder = !E->ReorderIndices.empty(); auto *SI = cast( IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); unsigned AS = SI->getPointerAddressSpace(); setInsertPointAfterBundle(E); Value *VecValue = vectorizeTree(E->getOperand(0)); if (IsReorder) { SmallVector Mask(E->ReorderIndices.begin(), E->ReorderIndices.end()); VecValue = Builder.CreateShuffleVector(VecValue, Mask, "reorder_shuf"); } Value *ScalarPtr = SI->getPointerOperand(); Value *VecPtr = Builder.CreateBitCast( ScalarPtr, VecValue->getType()->getPointerTo(AS)); StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); // The pointer operand uses an in-tree scalar, so add the new BitCast to // ExternalUses to make sure that an extract will be generated in the // future. if (getTreeEntry(ScalarPtr)) ExternalUses.push_back(ExternalUser(ScalarPtr, cast(VecPtr), 0)); Value *V = propagateMetadata(ST, E->Scalars); if (NeedToShuffleReuses) V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::GetElementPtr: { setInsertPointAfterBundle(E); Value *Op0 = vectorizeTree(E->getOperand(0)); std::vector OpVecs; for (int j = 1, e = cast(VL0)->getNumOperands(); j < e; ++j) { ValueList &VL = E->getOperand(j); // Need to cast all elements to the same type before vectorization to // avoid crash. Type *VL0Ty = VL0->getOperand(j)->getType(); Type *Ty = llvm::all_of( VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) ? VL0Ty : DL->getIndexType(cast(VL0) ->getPointerOperandType() ->getScalarType()); for (Value *&V : VL) { auto *CI = cast(V); V = ConstantExpr::getIntegerCast(CI, Ty, CI->getValue().isSignBitSet()); } Value *OpVec = vectorizeTree(VL); OpVecs.push_back(OpVec); } Value *V = Builder.CreateGEP( cast(VL0)->getSourceElementType(), Op0, OpVecs); if (Instruction *I = dyn_cast(V)) V = propagateMetadata(I, E->Scalars); if (NeedToShuffleReuses) V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Call: { CallInst *CI = cast(VL0); setInsertPointAfterBundle(E); Intrinsic::ID IID = Intrinsic::not_intrinsic; if (Function *FI = CI->getCalledFunction()) IID = FI->getIntrinsicID(); Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); bool UseIntrinsic = ID != Intrinsic::not_intrinsic && VecCallCosts.first <= VecCallCosts.second; Value *ScalarArg = nullptr; std::vector OpVecs; for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { ValueList OpVL; // Some intrinsics have scalar arguments. This argument should not be // vectorized. if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { CallInst *CEI = cast(VL0); ScalarArg = CEI->getArgOperand(j); OpVecs.push_back(CEI->getArgOperand(j)); continue; } Value *OpVec = vectorizeTree(E->getOperand(j)); LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); OpVecs.push_back(OpVec); } Function *CF; if (!UseIntrinsic) { VFShape Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast( VecTy->getNumElements())), false /*HasGlobalPred*/); CF = VFDatabase(*CI).getVectorizedFunction(Shape); } else { Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); } SmallVector OpBundles; CI->getOperandBundlesAsDefs(OpBundles); Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); // The scalar argument uses an in-tree scalar so we add the new vectorized // call to ExternalUses list to make sure that an extract will be // generated in the future. if (ScalarArg && getTreeEntry(ScalarArg)) ExternalUses.push_back(ExternalUser(ScalarArg, cast(V), 0)); propagateIRFlags(V, E->Scalars, VL0); if (NeedToShuffleReuses) V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::ShuffleVector: { assert(E->isAltShuffle() && ((Instruction::isBinaryOp(E->getOpcode()) && Instruction::isBinaryOp(E->getAltOpcode())) || (Instruction::isCast(E->getOpcode()) && Instruction::isCast(E->getAltOpcode()))) && "Invalid Shuffle Vector Operand"); Value *LHS = nullptr, *RHS = nullptr; if (Instruction::isBinaryOp(E->getOpcode())) { setInsertPointAfterBundle(E); LHS = vectorizeTree(E->getOperand(0)); RHS = vectorizeTree(E->getOperand(1)); } else { setInsertPointAfterBundle(E); LHS = vectorizeTree(E->getOperand(0)); } if (E->VectorizedValue) { LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); return E->VectorizedValue; } Value *V0, *V1; if (Instruction::isBinaryOp(E->getOpcode())) { V0 = Builder.CreateBinOp( static_cast(E->getOpcode()), LHS, RHS); V1 = Builder.CreateBinOp( static_cast(E->getAltOpcode()), LHS, RHS); } else { V0 = Builder.CreateCast( static_cast(E->getOpcode()), LHS, VecTy); V1 = Builder.CreateCast( static_cast(E->getAltOpcode()), LHS, VecTy); } // Create shuffle to take alternate operations from the vector. // Also, gather up main and alt scalar ops to propagate IR flags to // each vector operation. ValueList OpScalars, AltScalars; unsigned e = E->Scalars.size(); SmallVector Mask(e); for (unsigned i = 0; i < e; ++i) { auto *OpInst = cast(E->Scalars[i]); assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); if (OpInst->getOpcode() == E->getAltOpcode()) { Mask[i] = e + i; AltScalars.push_back(E->Scalars[i]); } else { Mask[i] = i; OpScalars.push_back(E->Scalars[i]); } } propagateIRFlags(V0, OpScalars); propagateIRFlags(V1, AltScalars); Value *V = Builder.CreateShuffleVector(V0, V1, Mask); if (Instruction *I = dyn_cast(V)) V = propagateMetadata(I, E->Scalars); if (NeedToShuffleReuses) V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); E->VectorizedValue = V; ++NumVectorInstructions; return V; } default: llvm_unreachable("unknown inst"); } return nullptr; } Value *BoUpSLP::vectorizeTree() { ExtraValueToDebugLocsMap ExternallyUsedValues; return vectorizeTree(ExternallyUsedValues); } Value * BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { // All blocks must be scheduled before any instructions are inserted. for (auto &BSIter : BlocksSchedules) { scheduleBlock(BSIter.second.get()); } Builder.SetInsertPoint(&F->getEntryBlock().front()); auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); // If the vectorized tree can be rewritten in a smaller type, we truncate the // vectorized root. InstCombine will then rewrite the entire expression. We // sign extend the extracted values below. auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; if (MinBWs.count(ScalarRoot)) { if (auto *I = dyn_cast(VectorRoot)) Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); auto BundleWidth = VectorizableTree[0]->Scalars.size(); auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); VectorizableTree[0]->VectorizedValue = Trunc; } LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); // If necessary, sign-extend or zero-extend ScalarRoot to the larger type // specified by ScalarType. auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { if (!MinBWs.count(ScalarRoot)) return Ex; if (MinBWs[ScalarRoot].second) return Builder.CreateSExt(Ex, ScalarType); return Builder.CreateZExt(Ex, ScalarType); }; // Extract all of the elements with the external uses. for (const auto &ExternalUse : ExternalUses) { Value *Scalar = ExternalUse.Scalar; llvm::User *User = ExternalUse.User; // Skip users that we already RAUW. This happens when one instruction // has multiple uses of the same value. if (User && !is_contained(Scalar->users(), User)) continue; TreeEntry *E = getTreeEntry(Scalar); assert(E && "Invalid scalar"); assert(E->State != TreeEntry::NeedToGather && "Extracting from a gather list"); Value *Vec = E->VectorizedValue; assert(Vec && "Can't find vectorizable value"); Value *Lane = Builder.getInt32(ExternalUse.Lane); // If User == nullptr, the Scalar is used as extra arg. Generate // ExtractElement instruction and update the record for this scalar in // ExternallyUsedValues. if (!User) { assert(ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in " "ExternallyUsedValues map"); if (auto *VecI = dyn_cast(Vec)) { Builder.SetInsertPoint(VecI->getParent(), std::next(VecI->getIterator())); } else { Builder.SetInsertPoint(&F->getEntryBlock().front()); } Value *Ex = Builder.CreateExtractElement(Vec, Lane); Ex = extend(ScalarRoot, Ex, Scalar->getType()); CSEBlocks.insert(cast(Scalar)->getParent()); auto &Locs = ExternallyUsedValues[Scalar]; ExternallyUsedValues.insert({Ex, Locs}); ExternallyUsedValues.erase(Scalar); // Required to update internally referenced instructions. Scalar->replaceAllUsesWith(Ex); continue; } // Generate extracts for out-of-tree users. // Find the insertion point for the extractelement lane. if (auto *VecI = dyn_cast(Vec)) { if (PHINode *PH = dyn_cast(User)) { for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { if (PH->getIncomingValue(i) == Scalar) { Instruction *IncomingTerminator = PH->getIncomingBlock(i)->getTerminator(); if (isa(IncomingTerminator)) { Builder.SetInsertPoint(VecI->getParent(), std::next(VecI->getIterator())); } else { Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); } Value *Ex = Builder.CreateExtractElement(Vec, Lane); Ex = extend(ScalarRoot, Ex, Scalar->getType()); CSEBlocks.insert(PH->getIncomingBlock(i)); PH->setOperand(i, Ex); } } } else { Builder.SetInsertPoint(cast(User)); Value *Ex = Builder.CreateExtractElement(Vec, Lane); Ex = extend(ScalarRoot, Ex, Scalar->getType()); CSEBlocks.insert(cast(User)->getParent()); User->replaceUsesOfWith(Scalar, Ex); } } else { Builder.SetInsertPoint(&F->getEntryBlock().front()); Value *Ex = Builder.CreateExtractElement(Vec, Lane); Ex = extend(ScalarRoot, Ex, Scalar->getType()); CSEBlocks.insert(&F->getEntryBlock()); User->replaceUsesOfWith(Scalar, Ex); } LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); } // For each vectorized value: for (auto &TEPtr : VectorizableTree) { TreeEntry *Entry = TEPtr.get(); // No need to handle users of gathered values. if (Entry->State == TreeEntry::NeedToGather) continue; assert(Entry->VectorizedValue && "Can't find vectorizable value"); // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; #ifndef NDEBUG Type *Ty = Scalar->getType(); if (!Ty->isVoidTy()) { for (User *U : Scalar->users()) { LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); // It is legal to delete users in the ignorelist. assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && "Deleting out-of-tree value"); } } #endif LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); eraseInstruction(cast(Scalar)); } } Builder.ClearInsertionPoint(); InstrElementSize.clear(); return VectorizableTree[0]->VectorizedValue; } void BoUpSLP::optimizeGatherSequence() { LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() << " gather sequences instructions.\n"); // LICM InsertElementInst sequences. for (Instruction *I : GatherSeq) { if (isDeleted(I)) continue; // Check if this block is inside a loop. Loop *L = LI->getLoopFor(I->getParent()); if (!L) continue; // Check if it has a preheader. BasicBlock *PreHeader = L->getLoopPreheader(); if (!PreHeader) continue; // If the vector or the element that we insert into it are // instructions that are defined in this basic block then we can't // hoist this instruction. auto *Op0 = dyn_cast(I->getOperand(0)); auto *Op1 = dyn_cast(I->getOperand(1)); if (Op0 && L->contains(Op0)) continue; if (Op1 && L->contains(Op1)) continue; // We can hoist this instruction. Move it to the pre-header. I->moveBefore(PreHeader->getTerminator()); } // Make a list of all reachable blocks in our CSE queue. SmallVector CSEWorkList; CSEWorkList.reserve(CSEBlocks.size()); for (BasicBlock *BB : CSEBlocks) if (DomTreeNode *N = DT->getNode(BB)) { assert(DT->isReachableFromEntry(N)); CSEWorkList.push_back(N); } // Sort blocks by domination. This ensures we visit a block after all blocks // dominating it are visited. llvm::stable_sort(CSEWorkList, [this](const DomTreeNode *A, const DomTreeNode *B) { return DT->properlyDominates(A, B); }); // Perform O(N^2) search over the gather sequences and merge identical // instructions. TODO: We can further optimize this scan if we split the // instructions into different buckets based on the insert lane. SmallVector Visited; for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { assert(*I && (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"); BasicBlock *BB = (*I)->getBlock(); // For all instructions in blocks containing gather sequences: for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { Instruction *In = &*it++; if (isDeleted(In)) continue; if (!isa(In) && !isa(In)) continue; // Check if we can replace this instruction with any of the // visited instructions. for (Instruction *v : Visited) { if (In->isIdenticalTo(v) && DT->dominates(v->getParent(), In->getParent())) { In->replaceAllUsesWith(v); eraseInstruction(In); In = nullptr; break; } } if (In) { assert(!is_contained(Visited, In)); Visited.push_back(In); } } } CSEBlocks.clear(); GatherSeq.clear(); } // Groups the instructions to a bundle (which is then a single scheduling entity) // and schedules instructions until the bundle gets ready. Optional BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef VL, BoUpSLP *SLP, const InstructionsState &S) { if (isa(S.OpValue)) return nullptr; // Initialize the instruction bundle. Instruction *OldScheduleEnd = ScheduleEnd; ScheduleData *PrevInBundle = nullptr; ScheduleData *Bundle = nullptr; bool ReSchedule = false; LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); // Make sure that the scheduling region contains all // instructions of the bundle. for (Value *V : VL) { if (!extendSchedulingRegion(V, S)) return None; } for (Value *V : VL) { ScheduleData *BundleMember = getScheduleData(V); assert(BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"); if (BundleMember->IsScheduled) { // A bundle member was scheduled as single instruction before and now // needs to be scheduled as part of the bundle. We just get rid of the // existing schedule. LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember << " was already scheduled\n"); ReSchedule = true; } assert(BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"); if (PrevInBundle) { PrevInBundle->NextInBundle = BundleMember; } else { Bundle = BundleMember; } BundleMember->UnscheduledDepsInBundle = 0; Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; // Group the instructions to a bundle. BundleMember->FirstInBundle = Bundle; PrevInBundle = BundleMember; } if (ScheduleEnd != OldScheduleEnd) { // The scheduling region got new instructions at the lower end (or it is a // new region for the first bundle). This makes it necessary to // recalculate all dependencies. // It is seldom that this needs to be done a second time after adding the // initial bundle to the region. for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); } ReSchedule = true; } if (ReSchedule) { resetSchedule(); initialFillReadyList(ReadyInsts); } assert(Bundle && "Failed to find schedule bundle"); LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " << BB->getName() << "\n"); calculateDependencies(Bundle, true, SLP); // Now try to schedule the new bundle. As soon as the bundle is "ready" it // means that there are no cyclic dependencies and we can schedule it. // Note that's important that we don't "schedule" the bundle yet (see // cancelScheduling). while (!Bundle->isReady() && !ReadyInsts.empty()) { ScheduleData *pickedSD = ReadyInsts.pop_back_val(); if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { schedule(pickedSD, ReadyInsts); } } if (!Bundle->isReady()) { cancelScheduling(VL, S.OpValue); return None; } return Bundle; } void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef VL, Value *OpValue) { if (isa(OpValue)) return; ScheduleData *Bundle = getScheduleData(OpValue); LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); assert(!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"); assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && "tried to unbundle something which is not a bundle"); // Un-bundle: make single instructions out of the bundle. ScheduleData *BundleMember = Bundle; while (BundleMember) { assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); BundleMember->FirstInBundle = BundleMember; ScheduleData *Next = BundleMember->NextInBundle; BundleMember->NextInBundle = nullptr; BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; if (BundleMember->UnscheduledDepsInBundle == 0) { ReadyInsts.insert(BundleMember); } BundleMember = Next; } } BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { // Allocate a new ScheduleData for the instruction. if (ChunkPos >= ChunkSize) { ScheduleDataChunks.push_back(std::make_unique(ChunkSize)); ChunkPos = 0; } return &(ScheduleDataChunks.back()[ChunkPos++]); } bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, const InstructionsState &S) { if (getScheduleData(V, isOneOf(S, V))) return true; Instruction *I = dyn_cast(V); assert(I && "bundle member must be an instruction"); assert(!isa(I) && "phi nodes don't need to be scheduled"); auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { ScheduleData *ISD = getScheduleData(I); if (!ISD) return false; assert(isInSchedulingRegion(ISD) && "ScheduleData not in scheduling region"); ScheduleData *SD = allocateScheduleDataChunks(); SD->Inst = I; SD->init(SchedulingRegionID, S.OpValue); ExtraScheduleDataMap[I][S.OpValue] = SD; return true; }; if (CheckSheduleForI(I)) return true; if (!ScheduleStart) { // It's the first instruction in the new region. initScheduleData(I, I->getNextNode(), nullptr, nullptr); ScheduleStart = I; ScheduleEnd = I->getNextNode(); if (isOneOf(S, I) != I) CheckSheduleForI(I); assert(ScheduleEnd && "tried to vectorize a terminator?"); LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); return true; } // Search up and down at the same time, because we don't know if the new // instruction is above or below the existing scheduling region. BasicBlock::reverse_iterator UpIter = ++ScheduleStart->getIterator().getReverse(); BasicBlock::reverse_iterator UpperEnd = BB->rend(); BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); BasicBlock::iterator LowerEnd = BB->end(); while (true) { if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); return false; } if (UpIter != UpperEnd) { if (&*UpIter == I) { initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); ScheduleStart = I; if (isOneOf(S, I) != I) CheckSheduleForI(I); LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); return true; } ++UpIter; } if (DownIter != LowerEnd) { if (&*DownIter == I) { initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, nullptr); ScheduleEnd = I->getNextNode(); if (isOneOf(S, I) != I) CheckSheduleForI(I); assert(ScheduleEnd && "tried to vectorize a terminator?"); LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); return true; } ++DownIter; } assert((UpIter != UpperEnd || DownIter != LowerEnd) && "instruction not found in block"); } return true; } void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, Instruction *ToI, ScheduleData *PrevLoadStore, ScheduleData *NextLoadStore) { ScheduleData *CurrentLoadStore = PrevLoadStore; for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { ScheduleData *SD = ScheduleDataMap[I]; if (!SD) { SD = allocateScheduleDataChunks(); ScheduleDataMap[I] = SD; SD->Inst = I; } assert(!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"); SD->init(SchedulingRegionID, I); if (I->mayReadOrWriteMemory() && (!isa(I) || (cast(I)->getIntrinsicID() != Intrinsic::sideeffect && cast(I)->getIntrinsicID() != Intrinsic::pseudoprobe))) { // Update the linked list of memory accessing instructions. if (CurrentLoadStore) { CurrentLoadStore->NextLoadStore = SD; } else { FirstLoadStoreInRegion = SD; } CurrentLoadStore = SD; } } if (NextLoadStore) { if (CurrentLoadStore) CurrentLoadStore->NextLoadStore = NextLoadStore; } else { LastLoadStoreInRegion = CurrentLoadStore; } } void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, bool InsertInReadyList, BoUpSLP *SLP) { assert(SD->isSchedulingEntity()); SmallVector WorkList; WorkList.push_back(SD); while (!WorkList.empty()) { ScheduleData *SD = WorkList.pop_back_val(); ScheduleData *BundleMember = SD; while (BundleMember) { assert(isInSchedulingRegion(BundleMember)); if (!BundleMember->hasValidDependencies()) { LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); BundleMember->Dependencies = 0; BundleMember->resetUnscheduledDeps(); // Handle def-use chain dependencies. if (BundleMember->OpValue != BundleMember->Inst) { ScheduleData *UseSD = getScheduleData(BundleMember->Inst); if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { BundleMember->Dependencies++; ScheduleData *DestBundle = UseSD->FirstInBundle; if (!DestBundle->IsScheduled) BundleMember->incrementUnscheduledDeps(1); if (!DestBundle->hasValidDependencies()) WorkList.push_back(DestBundle); } } else { for (User *U : BundleMember->Inst->users()) { if (isa(U)) { ScheduleData *UseSD = getScheduleData(U); if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { BundleMember->Dependencies++; ScheduleData *DestBundle = UseSD->FirstInBundle; if (!DestBundle->IsScheduled) BundleMember->incrementUnscheduledDeps(1); if (!DestBundle->hasValidDependencies()) WorkList.push_back(DestBundle); } } else { // I'm not sure if this can ever happen. But we need to be safe. // This lets the instruction/bundle never be scheduled and // eventually disable vectorization. BundleMember->Dependencies++; BundleMember->incrementUnscheduledDeps(1); } } } // Handle the memory dependencies. ScheduleData *DepDest = BundleMember->NextLoadStore; if (DepDest) { Instruction *SrcInst = BundleMember->Inst; MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); unsigned numAliased = 0; unsigned DistToSrc = 1; while (DepDest) { assert(isInSchedulingRegion(DepDest)); // We have two limits to reduce the complexity: // 1) AliasedCheckLimit: It's a small limit to reduce calls to // SLP->isAliased (which is the expensive part in this loop). // 2) MaxMemDepDistance: It's for very large blocks and it aborts // the whole loop (even if the loop is fast, it's quadratic). // It's important for the loop break condition (see below) to // check this limit even between two read-only instructions. if (DistToSrc >= MaxMemDepDistance || ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && (numAliased >= AliasedCheckLimit || SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { // We increment the counter only if the locations are aliased // (instead of counting all alias checks). This gives a better // balance between reduced runtime and accurate dependencies. numAliased++; DepDest->MemoryDependencies.push_back(BundleMember); BundleMember->Dependencies++; ScheduleData *DestBundle = DepDest->FirstInBundle; if (!DestBundle->IsScheduled) { BundleMember->incrementUnscheduledDeps(1); } if (!DestBundle->hasValidDependencies()) { WorkList.push_back(DestBundle); } } DepDest = DepDest->NextLoadStore; // Example, explaining the loop break condition: Let's assume our // starting instruction is i0 and MaxMemDepDistance = 3. // // +--------v--v--v // i0,i1,i2,i3,i4,i5,i6,i7,i8 // +--------^--^--^ // // MaxMemDepDistance let us stop alias-checking at i3 and we add // dependencies from i0 to i3,i4,.. (even if they are not aliased). // Previously we already added dependencies from i3 to i6,i7,i8 // (because of MaxMemDepDistance). As we added a dependency from // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 // and we can abort this loop at i6. if (DistToSrc >= 2 * MaxMemDepDistance) break; DistToSrc++; } } } BundleMember = BundleMember->NextInBundle; } if (InsertInReadyList && SD->isReady()) { ReadyInsts.push_back(SD); LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); } } } void BoUpSLP::BlockScheduling::resetSchedule() { assert(ScheduleStart && "tried to reset schedule on block which has not been scheduled"); for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { doForAllOpcodes(I, [&](ScheduleData *SD) { assert(isInSchedulingRegion(SD) && "ScheduleData not in scheduling region"); SD->IsScheduled = false; SD->resetUnscheduledDeps(); }); } ReadyInsts.clear(); } void BoUpSLP::scheduleBlock(BlockScheduling *BS) { if (!BS->ScheduleStart) return; LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); BS->resetSchedule(); // For the real scheduling we use a more sophisticated ready-list: it is // sorted by the original instruction location. This lets the final schedule // be as close as possible to the original instruction order. struct ScheduleDataCompare { bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { return SD2->SchedulingPriority < SD1->SchedulingPriority; } }; std::set ReadyInsts; // Ensure that all dependency data is updated and fill the ready-list with // initial instructions. int Idx = 0; int NumToSchedule = 0; for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { assert(SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr) && "scheduler and vectorizer bundle mismatch"); SD->FirstInBundle->SchedulingPriority = Idx++; if (SD->isSchedulingEntity()) { BS->calculateDependencies(SD, false, this); NumToSchedule++; } }); } BS->initialFillReadyList(ReadyInsts); Instruction *LastScheduledInst = BS->ScheduleEnd; // Do the "real" scheduling. while (!ReadyInsts.empty()) { ScheduleData *picked = *ReadyInsts.begin(); ReadyInsts.erase(ReadyInsts.begin()); // Move the scheduled instruction(s) to their dedicated places, if not // there yet. ScheduleData *BundleMember = picked; while (BundleMember) { Instruction *pickedInst = BundleMember->Inst; if (LastScheduledInst->getNextNode() != pickedInst) { BS->BB->getInstList().remove(pickedInst); BS->BB->getInstList().insert(LastScheduledInst->getIterator(), pickedInst); } LastScheduledInst = pickedInst; BundleMember = BundleMember->NextInBundle; } BS->schedule(picked, ReadyInsts); NumToSchedule--; } assert(NumToSchedule == 0 && "could not schedule all instructions"); // Avoid duplicate scheduling of the block. BS->ScheduleStart = nullptr; } unsigned BoUpSLP::getVectorElementSize(Value *V) { // If V is a store, just return the width of the stored value (or value // truncated just before storing) without traversing the expression tree. // This is the common case. if (auto *Store = dyn_cast(V)) { if (auto *Trunc = dyn_cast(Store->getValueOperand())) return DL->getTypeSizeInBits(Trunc->getSrcTy()); else return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); } auto E = InstrElementSize.find(V); if (E != InstrElementSize.end()) return E->second; // If V is not a store, we can traverse the expression tree to find loads // that feed it. The type of the loaded value may indicate a more suitable // width than V's type. We want to base the vector element size on the width // of memory operations where possible. SmallVector Worklist; SmallPtrSet Visited; if (auto *I = dyn_cast(V)) { Worklist.push_back(I); Visited.insert(I); } // Traverse the expression tree in bottom-up order looking for loads. If we // encounter an instruction we don't yet handle, we give up. auto MaxWidth = 0u; auto FoundUnknownInst = false; while (!Worklist.empty() && !FoundUnknownInst) { auto *I = Worklist.pop_back_val(); // We should only be looking at scalar instructions here. If the current // instruction has a vector type, give up. auto *Ty = I->getType(); if (isa(Ty)) FoundUnknownInst = true; // If the current instruction is a load, update MaxWidth to reflect the // width of the loaded value. else if (isa(I)) MaxWidth = std::max(MaxWidth, DL->getTypeSizeInBits(Ty)); // Otherwise, we need to visit the operands of the instruction. We only // handle the interesting cases from buildTree here. If an operand is an // instruction we haven't yet visited, we add it to the worklist. else if (isa(I) || isa(I) || isa(I) || isa(I) || isa(I) || isa(I)) { for (Use &U : I->operands()) if (auto *J = dyn_cast(U.get())) if (Visited.insert(J).second) Worklist.push_back(J); } // If we don't yet handle the instruction, give up. else FoundUnknownInst = true; } int Width = MaxWidth; // If we didn't encounter a memory access in the expression tree, or if we // gave up for some reason, just return the width of V. Otherwise, return the // maximum width we found. if (!MaxWidth || FoundUnknownInst) Width = DL->getTypeSizeInBits(V->getType()); for (Instruction *I : Visited) InstrElementSize[I] = Width; return Width; } // Determine if a value V in a vectorizable expression Expr can be demoted to a // smaller type with a truncation. We collect the values that will be demoted // in ToDemote and additional roots that require investigating in Roots. static bool collectValuesToDemote(Value *V, SmallPtrSetImpl &Expr, SmallVectorImpl &ToDemote, SmallVectorImpl &Roots) { // We can always demote constants. if (isa(V)) { ToDemote.push_back(V); return true; } // If the value is not an instruction in the expression with only one use, it // cannot be demoted. auto *I = dyn_cast(V); if (!I || !I->hasOneUse() || !Expr.count(I)) return false; switch (I->getOpcode()) { // We can always demote truncations and extensions. Since truncations can // seed additional demotion, we save the truncated value. case Instruction::Trunc: Roots.push_back(I->getOperand(0)); break; case Instruction::ZExt: case Instruction::SExt: break; // We can demote certain binary operations if we can demote both of their // operands. case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) return false; break; // We can demote selects if we can demote their true and false values. case Instruction::Select: { SelectInst *SI = cast(I); if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) return false; break; } // We can demote phis if we can demote all their incoming operands. Note that // we don't need to worry about cycles since we ensure single use above. case Instruction::PHI: { PHINode *PN = cast(I); for (Value *IncValue : PN->incoming_values()) if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) return false; break; } // Otherwise, conservatively give up. default: return false; } // Record the value that we can demote. ToDemote.push_back(V); return true; } void BoUpSLP::computeMinimumValueSizes() { // If there are no external uses, the expression tree must be rooted by a // store. We can't demote in-memory values, so there is nothing to do here. if (ExternalUses.empty()) return; // We only attempt to truncate integer expressions. auto &TreeRoot = VectorizableTree[0]->Scalars; auto *TreeRootIT = dyn_cast(TreeRoot[0]->getType()); if (!TreeRootIT) return; // If the expression is not rooted by a store, these roots should have // external uses. We will rely on InstCombine to rewrite the expression in // the narrower type. However, InstCombine only rewrites single-use values. // This means that if a tree entry other than a root is used externally, it // must have multiple uses and InstCombine will not rewrite it. The code // below ensures that only the roots are used externally. SmallPtrSet Expr(TreeRoot.begin(), TreeRoot.end()); for (auto &EU : ExternalUses) if (!Expr.erase(EU.Scalar)) return; if (!Expr.empty()) return; // Collect the scalar values of the vectorizable expression. We will use this // context to determine which values can be demoted. If we see a truncation, // we mark it as seeding another demotion. for (auto &EntryPtr : VectorizableTree) Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); // Ensure the roots of the vectorizable tree don't form a cycle. They must // have a single external user that is not in the vectorizable tree. for (auto *Root : TreeRoot) if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) return; // Conservatively determine if we can actually truncate the roots of the // expression. Collect the values that can be demoted in ToDemote and // additional roots that require investigating in Roots. SmallVector ToDemote; SmallVector Roots; for (auto *Root : TreeRoot) if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) return; // The maximum bit width required to represent all the values that can be // demoted without loss of precision. It would be safe to truncate the roots // of the expression to this width. auto MaxBitWidth = 8u; // We first check if all the bits of the roots are demanded. If they're not, // we can truncate the roots to this narrower type. for (auto *Root : TreeRoot) { auto Mask = DB->getDemandedBits(cast(Root)); MaxBitWidth = std::max( Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); } // True if the roots can be zero-extended back to their original type, rather // than sign-extended. We know that if the leading bits are not demanded, we // can safely zero-extend. So we initialize IsKnownPositive to True. bool IsKnownPositive = true; // If all the bits of the roots are demanded, we can try a little harder to // compute a narrower type. This can happen, for example, if the roots are // getelementptr indices. InstCombine promotes these indices to the pointer // width. Thus, all their bits are technically demanded even though the // address computation might be vectorized in a smaller type. // // We start by looking at each entry that can be demoted. We compute the // maximum bit width required to store the scalar by using ValueTracking to // compute the number of high-order bits we can truncate. if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && llvm::all_of(TreeRoot, [](Value *R) { assert(R->hasOneUse() && "Root should have only one use!"); return isa(R->user_back()); })) { MaxBitWidth = 8u; // Determine if the sign bit of all the roots is known to be zero. If not, // IsKnownPositive is set to False. IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { KnownBits Known = computeKnownBits(R, *DL); return Known.isNonNegative(); }); // Determine the maximum number of bits required to store the scalar // values. for (auto *Scalar : ToDemote) { auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); MaxBitWidth = std::max(NumTypeBits - NumSignBits, MaxBitWidth); } // If we can't prove that the sign bit is zero, we must add one to the // maximum bit width to account for the unknown sign bit. This preserves // the existing sign bit so we can safely sign-extend the root back to the // original type. Otherwise, if we know the sign bit is zero, we will // zero-extend the root instead. // // FIXME: This is somewhat suboptimal, as there will be cases where adding // one to the maximum bit width will yield a larger-than-necessary // type. In general, we need to add an extra bit only if we can't // prove that the upper bit of the original type is equal to the // upper bit of the proposed smaller type. If these two bits are the // same (either zero or one) we know that sign-extending from the // smaller type will result in the same value. Here, since we can't // yet prove this, we are just making the proposed smaller type // larger to ensure correctness. if (!IsKnownPositive) ++MaxBitWidth; } // Round MaxBitWidth up to the next power-of-two. if (!isPowerOf2_64(MaxBitWidth)) MaxBitWidth = NextPowerOf2(MaxBitWidth); // If the maximum bit width we compute is less than the with of the roots' // type, we can proceed with the narrowing. Otherwise, do nothing. if (MaxBitWidth >= TreeRootIT->getBitWidth()) return; // If we can truncate the root, we must collect additional values that might // be demoted as a result. That is, those seeded by truncations we will // modify. while (!Roots.empty()) collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); // Finally, map the values we can demote to the maximum bit with we computed. for (auto *Scalar : ToDemote) MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); } namespace { /// The SLPVectorizer Pass. struct SLPVectorizer : public FunctionPass { SLPVectorizerPass Impl; /// Pass identification, replacement for typeid static char ID; explicit SLPVectorizer() : FunctionPass(ID) { initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); } bool doInitialization(Module &M) override { return false; } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto *SE = &getAnalysis().getSE(); auto *TTI = &getAnalysis().getTTI(F); auto *TLIP = getAnalysisIfAvailable(); auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; auto *AA = &getAnalysis().getAAResults(); auto *LI = &getAnalysis().getLoopInfo(); auto *DT = &getAnalysis().getDomTree(); auto *AC = &getAnalysis().getAssumptionCache(F); auto *DB = &getAnalysis().getDemandedBits(); auto *ORE = &getAnalysis().getORE(); return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); } void getAnalysisUsage(AnalysisUsage &AU) const override { FunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.setPreservesCFG(); } }; } // end anonymous namespace PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { auto *SE = &AM.getResult(F); auto *TTI = &AM.getResult(F); auto *TLI = AM.getCachedResult(F); auto *AA = &AM.getResult(F); auto *LI = &AM.getResult(F); auto *DT = &AM.getResult(F); auto *AC = &AM.getResult(F); auto *DB = &AM.getResult(F); auto *ORE = &AM.getResult(F); bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); PA.preserve(); return PA; } bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, TargetTransformInfo *TTI_, TargetLibraryInfo *TLI_, AAResults *AA_, LoopInfo *LI_, DominatorTree *DT_, AssumptionCache *AC_, DemandedBits *DB_, OptimizationRemarkEmitter *ORE_) { if (!RunSLPVectorization) return false; SE = SE_; TTI = TTI_; TLI = TLI_; AA = AA_; LI = LI_; DT = DT_; AC = AC_; DB = DB_; DL = &F.getParent()->getDataLayout(); Stores.clear(); GEPs.clear(); bool Changed = false; // If the target claims to have no vector registers don't attempt // vectorization. if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) return false; // Don't vectorize when the attribute NoImplicitFloat is used. if (F.hasFnAttribute(Attribute::NoImplicitFloat)) return false; LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); // Use the bottom up slp vectorizer to construct chains that start with // store instructions. BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to // delete instructions. // Scan the blocks in the function in post order. for (auto BB : post_order(&F.getEntryBlock())) { collectSeedInstructions(BB); // Vectorize trees that end at stores. if (!Stores.empty()) { LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() << " underlying objects.\n"); Changed |= vectorizeStoreChains(R); } // Vectorize trees that end at reductions. Changed |= vectorizeChainsInBlock(BB, R); // Vectorize the index computations of getelementptr instructions. This // is primarily intended to catch gather-like idioms ending at // non-consecutive loads. if (!GEPs.empty()) { LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() << " underlying objects.\n"); Changed |= vectorizeGEPIndices(BB, R); } } if (Changed) { R.optimizeGatherSequence(); LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); } return Changed; } bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef Chain, BoUpSLP &R, unsigned Idx) { LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() << "\n"); const unsigned Sz = R.getVectorElementSize(Chain[0]); const unsigned MinVF = R.getMinVecRegSize() / Sz; unsigned VF = Chain.size(); if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) return false; LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx << "\n"); R.buildTree(Chain); Optional> Order = R.bestOrder(); // TODO: Handle orders of size less than number of elements in the vector. if (Order && Order->size() == Chain.size()) { // TODO: reorder tree nodes without tree rebuilding. SmallVector ReorderedOps(Chain.rbegin(), Chain.rend()); llvm::transform(*Order, ReorderedOps.begin(), [Chain](const unsigned Idx) { return Chain[Idx]; }); R.buildTree(ReorderedOps); } if (R.isTreeTinyAndNotFullyVectorizable()) return false; if (R.isLoadCombineCandidate()) return false; R.computeMinimumValueSizes(); InstructionCost Cost = R.getTreeCost(); LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); if (Cost < -SLPCostThreshold) { LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); using namespace ore; R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", cast(Chain[0])) << "Stores SLP vectorized with cost " << NV("Cost", Cost) << " and with tree size " << NV("TreeSize", R.getTreeSize())); R.vectorizeTree(); return true; } return false; } bool SLPVectorizerPass::vectorizeStores(ArrayRef Stores, BoUpSLP &R) { // We may run into multiple chains that merge into a single chain. We mark the // stores that we vectorized so that we don't visit the same store twice. BoUpSLP::ValueSet VectorizedStores; bool Changed = false; int E = Stores.size(); SmallBitVector Tails(E, false); SmallVector ConsecutiveChain(E, E + 1); int MaxIter = MaxStoreLookup.getValue(); int IterCnt; auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, &ConsecutiveChain](int K, int Idx) { if (IterCnt >= MaxIter) return true; ++IterCnt; if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) return false; Tails.set(Idx); ConsecutiveChain[K] = Idx; return true; }; // Do a quadratic search on all of the given stores in reverse order and find // all of the pairs of stores that follow each other. for (int Idx = E - 1; Idx >= 0; --Idx) { // If a store has multiple consecutive store candidates, search according // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... // This is because usually pairing with immediate succeeding or preceding // candidate create the best chance to find slp vectorization opportunity. const int MaxLookDepth = std::max(E - Idx, Idx + 1); IterCnt = 0; for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) break; } // For stores that start but don't end a link in the chain: for (int Cnt = E; Cnt > 0; --Cnt) { int I = Cnt - 1; if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) continue; // We found a store instr that starts a chain. Now follow the chain and try // to vectorize it. BoUpSLP::ValueList Operands; // Collect the chain into a list. while (I != E + 1 && !VectorizedStores.count(Stores[I])) { Operands.push_back(Stores[I]); // Move to the next value in the chain. I = ConsecutiveChain[I]; } // If a vector register can't hold 1 element, we are done. unsigned MaxVecRegSize = R.getMaxVecRegSize(); unsigned EltSize = R.getVectorElementSize(Operands[0]); if (MaxVecRegSize % EltSize != 0) continue; unsigned MaxElts = MaxVecRegSize / EltSize; // FIXME: Is division-by-2 the correct step? Should we assert that the // register size is a power-of-2? unsigned StartIdx = 0; for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { ArrayRef Slice = makeArrayRef(Operands).slice(Cnt, Size); if (!VectorizedStores.count(Slice.front()) && !VectorizedStores.count(Slice.back()) && vectorizeStoreChain(Slice, R, Cnt)) { // Mark the vectorized stores so that we don't vectorize them again. VectorizedStores.insert(Slice.begin(), Slice.end()); Changed = true; // If we vectorized initial block, no need to try to vectorize it // again. if (Cnt == StartIdx) StartIdx += Size; Cnt += Size; continue; } ++Cnt; } // Check if the whole array was vectorized already - exit. if (StartIdx >= Operands.size()) break; } } return Changed; } void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { // Initialize the collections. We will make a single pass over the block. Stores.clear(); GEPs.clear(); // Visit the store and getelementptr instructions in BB and organize them in // Stores and GEPs according to the underlying objects of their pointer // operands. for (Instruction &I : *BB) { // Ignore store instructions that are volatile or have a pointer operand // that doesn't point to a scalar type. if (auto *SI = dyn_cast(&I)) { if (!SI->isSimple()) continue; if (!isValidElementType(SI->getValueOperand()->getType())) continue; Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); } // Ignore getelementptr instructions that have more than one index, a // constant index, or a pointer operand that doesn't point to a scalar // type. else if (auto *GEP = dyn_cast(&I)) { auto Idx = GEP->idx_begin()->get(); if (GEP->getNumIndices() > 1 || isa(Idx)) continue; if (!isValidElementType(Idx->getType())) continue; if (GEP->getType()->isVectorTy()) continue; GEPs[GEP->getPointerOperand()].push_back(GEP); } } } bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { if (!A || !B) return false; Value *VL[] = {A, B}; return tryToVectorizeList(VL, R, /*AllowReorder=*/true); } bool SLPVectorizerPass::tryToVectorizeList(ArrayRef VL, BoUpSLP &R, bool AllowReorder, ArrayRef InsertUses) { if (VL.size() < 2) return false; LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() << ".\n"); // Check that all of the parts are instructions of the same type, // we permit an alternate opcode via InstructionsState. InstructionsState S = getSameOpcode(VL); if (!S.getOpcode()) return false; Instruction *I0 = cast(S.OpValue); // Make sure invalid types (including vector type) are rejected before // determining vectorization factor for scalar instructions. for (Value *V : VL) { Type *Ty = V->getType(); if (!isValidElementType(Ty)) { // NOTE: the following will give user internal llvm type name, which may // not be useful. R.getORE()->emit([&]() { std::string type_str; llvm::raw_string_ostream rso(type_str); Ty->print(rso); return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) << "Cannot SLP vectorize list: type " << rso.str() + " is unsupported by vectorizer"; }); return false; } } unsigned Sz = R.getVectorElementSize(I0); unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); unsigned MaxVF = std::max(PowerOf2Floor(VL.size()), MinVF); MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); if (MaxVF < 2) { R.getORE()->emit([&]() { return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) << "Cannot SLP vectorize list: vectorization factor " << "less than 2 is not supported"; }); return false; } bool Changed = false; bool CandidateFound = false; InstructionCost MinCost = SLPCostThreshold.getValue(); bool CompensateUseCost = !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { return V && isa(V); }); assert((!CompensateUseCost || InsertUses.size() == VL.size()) && "Each scalar expected to have an associated InsertElement user."); unsigned NextInst = 0, MaxInst = VL.size(); for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { // No actual vectorization should happen, if number of parts is the same as // provided vectorization factor (i.e. the scalar type is used for vector // code during codegen). auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); if (TTI->getNumberOfParts(VecTy) == VF) continue; for (unsigned I = NextInst; I < MaxInst; ++I) { unsigned OpsWidth = 0; if (I + VF > MaxInst) OpsWidth = MaxInst - I; else OpsWidth = VF; if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) break; ArrayRef Ops = VL.slice(I, OpsWidth); // Check that a previous iteration of this loop did not delete the Value. if (llvm::any_of(Ops, [&R](Value *V) { auto *I = dyn_cast(V); return I && R.isDeleted(I); })) continue; LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " << "\n"); R.buildTree(Ops); Optional> Order = R.bestOrder(); // TODO: check if we can allow reordering for more cases. if (AllowReorder && Order) { // TODO: reorder tree nodes without tree rebuilding. // Conceptually, there is nothing actually preventing us from trying to // reorder a larger list. In fact, we do exactly this when vectorizing // reductions. However, at this point, we only expect to get here when // there are exactly two operations. assert(Ops.size() == 2); Value *ReorderedOps[] = {Ops[1], Ops[0]}; R.buildTree(ReorderedOps, None); } if (R.isTreeTinyAndNotFullyVectorizable()) continue; R.computeMinimumValueSizes(); InstructionCost Cost = R.getTreeCost(); CandidateFound = true; if (CompensateUseCost) { // TODO: Use TTI's getScalarizationOverhead for sequence of inserts // rather than sum of single inserts as the latter may overestimate // cost. This work should imply improving cost estimation for extracts // that added in for external (for vectorization tree) users,i.e. that // part should also switch to same interface. // For example, the following case is projected code after SLP: // %4 = extractelement <4 x i64> %3, i32 0 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0 // %5 = extractelement <4 x i64> %3, i32 1 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 // %6 = extractelement <4 x i64> %3, i32 2 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 // %7 = extractelement <4 x i64> %3, i32 3 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 // // Extracts here added by SLP in order to feed users (the inserts) of // original scalars and contribute to "ExtractCost" at cost evaluation. // The inserts in turn form sequence to build an aggregate that // detected by findBuildAggregate routine. // SLP makes an assumption that such sequence will be optimized away // later (instcombine) so it tries to compensate ExctractCost with // cost of insert sequence. // Current per element cost calculation approach is not quite accurate // and tends to create bias toward favoring vectorization. // Switching to the TTI interface might help a bit. // Alternative solution could be pattern-match to detect a no-op or // shuffle. InstructionCost UserCost = 0; for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { auto *IE = cast(InsertUses[I + Lane]); if (auto *CI = dyn_cast(IE->getOperand(2))) UserCost += TTI->getVectorInstrCost( Instruction::InsertElement, IE->getType(), CI->getZExtValue()); } LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost << ".\n"); Cost -= UserCost; } MinCost = std::min(MinCost, Cost); if (Cost < -SLPCostThreshold) { LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", cast(Ops[0])) << "SLP vectorized with cost " << ore::NV("Cost", Cost) << " and with tree size " << ore::NV("TreeSize", R.getTreeSize())); R.vectorizeTree(); // Move to the next bundle. I += VF - 1; NextInst = I + 1; Changed = true; } } } if (!Changed && CandidateFound) { R.getORE()->emit([&]() { return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) << "List vectorization was possible but not beneficial with cost " << ore::NV("Cost", MinCost) << " >= " << ore::NV("Treshold", -SLPCostThreshold); }); } else if (!Changed) { R.getORE()->emit([&]() { return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) << "Cannot SLP vectorize list: vectorization was impossible" << " with available vectorization factors"; }); } return Changed; } bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { if (!I) return false; if (!isa(I) && !isa(I)) return false; Value *P = I->getParent(); // Vectorize in current basic block only. auto *Op0 = dyn_cast(I->getOperand(0)); auto *Op1 = dyn_cast(I->getOperand(1)); if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) return false; // Try to vectorize V. if (tryToVectorizePair(Op0, Op1, R)) return true; auto *A = dyn_cast(Op0); auto *B = dyn_cast(Op1); // Try to skip B. if (B && B->hasOneUse()) { auto *B0 = dyn_cast(B->getOperand(0)); auto *B1 = dyn_cast(B->getOperand(1)); if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) return true; if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) return true; } // Try to skip A. if (A && A->hasOneUse()) { auto *A0 = dyn_cast(A->getOperand(0)); auto *A1 = dyn_cast(A->getOperand(1)); if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) return true; if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) return true; } return false; } namespace { /// Model horizontal reductions. /// /// A horizontal reduction is a tree of reduction instructions that has values /// that can be put into a vector as its leaves. For example: /// /// mul mul mul mul /// \ / \ / /// + + /// \ / /// + /// This tree has "mul" as its leaf values and "+" as its reduction /// instructions. A reduction can feed into a store or a binary operation /// feeding a phi. /// ... /// \ / /// + /// | /// phi += /// /// Or: /// ... /// \ / /// + /// | /// *p = /// class HorizontalReduction { using ReductionOpsType = SmallVector; using ReductionOpsListType = SmallVector; ReductionOpsListType ReductionOps; SmallVector ReducedVals; // Use map vector to make stable output. MapVector ExtraArgs; WeakTrackingVH ReductionRoot; /// The type of reduction operation. RecurKind RdxKind; /// Checks if instruction is associative and can be vectorized. static bool isVectorizable(RecurKind Kind, Instruction *I) { if (Kind == RecurKind::None) return false; if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) return true; if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { // FP min/max are associative except for NaN and -0.0. We do not // have to rule out -0.0 here because the intrinsic semantics do not // specify a fixed result for it. return I->getFastMathFlags().noNaNs(); } return I->isAssociative(); } /// Checks if the ParentStackElem.first should be marked as a reduction /// operation with an extra argument or as extra argument itself. void markExtraArg(std::pair &ParentStackElem, Value *ExtraArg) { if (ExtraArgs.count(ParentStackElem.first)) { ExtraArgs[ParentStackElem.first] = nullptr; // We ran into something like: // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. // The whole ParentStackElem.first should be considered as an extra value // in this case. // Do not perform analysis of remaining operands of ParentStackElem.first // instruction, this whole instruction is an extra argument. RecurKind ParentRdxKind = getRdxKind(ParentStackElem.first); ParentStackElem.second = getNumberOfOperands(ParentRdxKind); } else { // We ran into something like: // ParentStackElem.first += ... + ExtraArg + ... ExtraArgs[ParentStackElem.first] = ExtraArg; } } /// Creates reduction operation with the current opcode. static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, Value *RHS, const Twine &Name) { unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); switch (Kind) { case RecurKind::Add: case RecurKind::Mul: case RecurKind::Or: case RecurKind::And: case RecurKind::Xor: case RecurKind::FAdd: case RecurKind::FMul: return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, Name); case RecurKind::FMax: return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); case RecurKind::FMin: return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); case RecurKind::SMax: { Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); return Builder.CreateSelect(Cmp, LHS, RHS, Name); } case RecurKind::SMin: { Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); return Builder.CreateSelect(Cmp, LHS, RHS, Name); } case RecurKind::UMax: { Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); return Builder.CreateSelect(Cmp, LHS, RHS, Name); } case RecurKind::UMin: { Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); return Builder.CreateSelect(Cmp, LHS, RHS, Name); } default: llvm_unreachable("Unknown reduction operation."); } } /// Creates reduction operation with the current opcode with the IR flags /// from \p ReductionOps. static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, Value *RHS, const Twine &Name, const ReductionOpsListType &ReductionOps) { Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name); if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { if (auto *Sel = dyn_cast(Op)) propagateIRFlags(Sel->getCondition(), ReductionOps[0]); propagateIRFlags(Op, ReductionOps[1]); return Op; } propagateIRFlags(Op, ReductionOps[0]); return Op; } /// Creates reduction operation with the current opcode with the IR flags /// from \p I. static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, Value *RHS, const Twine &Name, Instruction *I) { Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name); if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { if (auto *Sel = dyn_cast(Op)) { propagateIRFlags(Sel->getCondition(), cast(I)->getCondition()); } } propagateIRFlags(Op, I); return Op; } static RecurKind getRdxKind(Instruction *I) { assert(I && "Expected instruction for reduction matching"); TargetTransformInfo::ReductionFlags RdxFlags; if (match(I, m_Add(m_Value(), m_Value()))) return RecurKind::Add; if (match(I, m_Mul(m_Value(), m_Value()))) return RecurKind::Mul; if (match(I, m_And(m_Value(), m_Value()))) return RecurKind::And; if (match(I, m_Or(m_Value(), m_Value()))) return RecurKind::Or; if (match(I, m_Xor(m_Value(), m_Value()))) return RecurKind::Xor; if (match(I, m_FAdd(m_Value(), m_Value()))) return RecurKind::FAdd; if (match(I, m_FMul(m_Value(), m_Value()))) return RecurKind::FMul; if (match(I, m_Intrinsic(m_Value(), m_Value()))) return RecurKind::FMax; if (match(I, m_Intrinsic(m_Value(), m_Value()))) return RecurKind::FMin; if (match(I, m_SMax(m_Value(), m_Value()))) return RecurKind::SMax; if (match(I, m_SMin(m_Value(), m_Value()))) return RecurKind::SMin; if (match(I, m_UMax(m_Value(), m_Value()))) return RecurKind::UMax; if (match(I, m_UMin(m_Value(), m_Value()))) return RecurKind::UMin; if (auto *Select = dyn_cast(I)) { // Try harder: look for min/max pattern based on instructions producing // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). // During the intermediate stages of SLP, it's very common to have // pattern like this (since optimizeGatherSequence is run only once // at the end): // %1 = extractelement <2 x i32> %a, i32 0 // %2 = extractelement <2 x i32> %a, i32 1 // %cond = icmp sgt i32 %1, %2 // %3 = extractelement <2 x i32> %a, i32 0 // %4 = extractelement <2 x i32> %a, i32 1 // %select = select i1 %cond, i32 %3, i32 %4 CmpInst::Predicate Pred; Instruction *L1; Instruction *L2; Value *LHS = Select->getTrueValue(); Value *RHS = Select->getFalseValue(); Value *Cond = Select->getCondition(); // TODO: Support inverse predicates. if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { if (!isa(RHS) || !L2->isIdenticalTo(cast(RHS))) return RecurKind::None; } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { if (!isa(LHS) || !L1->isIdenticalTo(cast(LHS))) return RecurKind::None; } else { if (!isa(LHS) || !isa(RHS)) return RecurKind::None; if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || !L1->isIdenticalTo(cast(LHS)) || !L2->isIdenticalTo(cast(RHS))) return RecurKind::None; } TargetTransformInfo::ReductionFlags RdxFlags; switch (Pred) { default: return RecurKind::None; case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: return RecurKind::SMax; case CmpInst::ICMP_SLT: case CmpInst::ICMP_SLE: return RecurKind::SMin; case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: return RecurKind::UMax; case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: return RecurKind::UMin; } } return RecurKind::None; } /// Return true if this operation is a cmp+select idiom. static bool isCmpSel(RecurKind Kind) { return RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind); } /// Get the index of the first operand. static unsigned getFirstOperandIndex(RecurKind Kind) { // We allow calling this before 'Kind' is set, so handle that specially. if (Kind == RecurKind::None) return 0; return isCmpSel(Kind) ? 1 : 0; } /// Total number of operands in the reduction operation. static unsigned getNumberOfOperands(RecurKind Kind) { return isCmpSel(Kind) ? 3 : 2; } /// Checks if the instruction is in basic block \p BB. /// For a min/max reduction check that both compare and select are in \p BB. static bool hasSameParent(RecurKind Kind, Instruction *I, BasicBlock *BB, bool IsRedOp) { if (IsRedOp && isCmpSel(Kind)) { auto *Cmp = cast(cast(I)->getCondition()); return I->getParent() == BB && Cmp && Cmp->getParent() == BB; } return I->getParent() == BB; } /// Expected number of uses for reduction operations/reduced values. static bool hasRequiredNumberOfUses(RecurKind Kind, Instruction *I, bool IsReductionOp) { // SelectInst must be used twice while the condition op must have single // use only. if (isCmpSel(Kind)) return I->hasNUses(2) && (!IsReductionOp || cast(I)->getCondition()->hasOneUse()); // Arithmetic reduction operation must be used once only. return I->hasOneUse(); } /// Initializes the list of reduction operations. void initReductionOps(RecurKind Kind) { if (isCmpSel(Kind)) ReductionOps.assign(2, ReductionOpsType()); else ReductionOps.assign(1, ReductionOpsType()); } /// Add all reduction operations for the reduction instruction \p I. void addReductionOps(RecurKind Kind, Instruction *I) { assert(Kind != RecurKind::None && "Expected reduction operation."); if (isCmpSel(Kind)) { ReductionOps[0].emplace_back(cast(I)->getCondition()); ReductionOps[1].emplace_back(I); } else { ReductionOps[0].emplace_back(I); } } static Value *getLHS(RecurKind Kind, Instruction *I) { if (Kind == RecurKind::None) return nullptr; return I->getOperand(getFirstOperandIndex(Kind)); } static Value *getRHS(RecurKind Kind, Instruction *I) { if (Kind == RecurKind::None) return nullptr; return I->getOperand(getFirstOperandIndex(Kind) + 1); } public: HorizontalReduction() = default; /// Try to find a reduction tree. bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { assert((!Phi || is_contained(Phi->operands(), B)) && "Phi needs to use the binary operator"); RdxKind = getRdxKind(B); // We could have a initial reductions that is not an add. // r *= v1 + v2 + v3 + v4 // In such a case start looking for a tree rooted in the first '+'. if (Phi) { if (getLHS(RdxKind, B) == Phi) { Phi = nullptr; B = dyn_cast(getRHS(RdxKind, B)); if (!B) return false; RdxKind = getRdxKind(B); } else if (getRHS(RdxKind, B) == Phi) { Phi = nullptr; B = dyn_cast(getLHS(RdxKind, B)); if (!B) return false; RdxKind = getRdxKind(B); } } if (!isVectorizable(RdxKind, B)) return false; // Analyze "regular" integer/FP types for reductions - no target-specific // types or pointers. Type *Ty = B->getType(); if (!isValidElementType(Ty) || Ty->isPointerTy()) return false; ReductionRoot = B; // The opcode for leaf values that we perform a reduction on. // For example: load(x) + load(y) + load(z) + fptoui(w) // The leaf opcode for 'w' does not match, so we don't include it as a // potential candidate for the reduction. unsigned LeafOpcode = 0; // Post order traverse the reduction tree starting at B. We only handle true // trees containing only binary operators. SmallVector, 32> Stack; Stack.push_back(std::make_pair(B, getFirstOperandIndex(RdxKind))); initReductionOps(RdxKind); while (!Stack.empty()) { Instruction *TreeN = Stack.back().first; unsigned EdgeToVisit = Stack.back().second++; const RecurKind TreeRdxKind = getRdxKind(TreeN); bool IsReducedValue = TreeRdxKind != RdxKind; // Postorder visit. if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeRdxKind)) { if (IsReducedValue) ReducedVals.push_back(TreeN); else { auto I = ExtraArgs.find(TreeN); if (I != ExtraArgs.end() && !I->second) { // Check if TreeN is an extra argument of its parent operation. if (Stack.size() <= 1) { // TreeN can't be an extra argument as it is a root reduction // operation. return false; } // Yes, TreeN is an extra argument, do not add it to a list of // reduction operations. // Stack[Stack.size() - 2] always points to the parent operation. markExtraArg(Stack[Stack.size() - 2], TreeN); ExtraArgs.erase(TreeN); } else addReductionOps(RdxKind, TreeN); } // Retract. Stack.pop_back(); continue; } // Visit left or right. Value *EdgeVal = TreeN->getOperand(EdgeToVisit); auto *I = dyn_cast(EdgeVal); if (!I) { // Edge value is not a reduction instruction or a leaf instruction. // (It may be a constant, function argument, or something else.) markExtraArg(Stack.back(), EdgeVal); continue; } RecurKind EdgeRdxKind = getRdxKind(I); // Continue analysis if the next operand is a reduction operation or // (possibly) a leaf value. If the leaf value opcode is not set, // the first met operation != reduction operation is considered as the // leaf opcode. // Only handle trees in the current basic block. // Each tree node needs to have minimal number of users except for the // ultimate reduction. const bool IsRdxInst = EdgeRdxKind == RdxKind; if (I != Phi && I != B && hasSameParent(RdxKind, I, B->getParent(), IsRdxInst) && hasRequiredNumberOfUses(RdxKind, I, IsRdxInst) && (!LeafOpcode || LeafOpcode == I->getOpcode() || IsRdxInst)) { if (IsRdxInst) { // We need to be able to reassociate the reduction operations. if (!isVectorizable(EdgeRdxKind, I)) { // I is an extra argument for TreeN (its parent operation). markExtraArg(Stack.back(), I); continue; } } else if (!LeafOpcode) { LeafOpcode = I->getOpcode(); } Stack.push_back(std::make_pair(I, getFirstOperandIndex(EdgeRdxKind))); continue; } // I is an extra argument for TreeN (its parent operation). markExtraArg(Stack.back(), I); } return true; } /// Attempt to vectorize the tree found by matchAssociativeReduction. bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { // If there are a sufficient number of reduction values, reduce // to a nearby power-of-2. We can safely generate oversized // vectors and rely on the backend to split them to legal sizes. unsigned NumReducedVals = ReducedVals.size(); if (NumReducedVals < 4) return false; // Intersect the fast-math-flags from all reduction operations. FastMathFlags RdxFMF; RdxFMF.set(); for (ReductionOpsType &RdxOp : ReductionOps) { for (Value *RdxVal : RdxOp) { if (auto *FPMO = dyn_cast(RdxVal)) RdxFMF &= FPMO->getFastMathFlags(); } } IRBuilder<> Builder(cast(ReductionRoot)); Builder.setFastMathFlags(RdxFMF); BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; // The same extra argument may be used several times, so log each attempt // to use it. for (const std::pair &Pair : ExtraArgs) { assert(Pair.first && "DebugLoc must be set."); ExternallyUsedValues[Pair.second].push_back(Pair.first); } // The compare instruction of a min/max is the insertion point for new // instructions and may be replaced with a new compare instruction. auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { assert(isa(RdxRootInst) && "Expected min/max reduction to have select root instruction"); Value *ScalarCond = cast(RdxRootInst)->getCondition(); assert(isa(ScalarCond) && "Expected min/max reduction to have compare condition"); return cast(ScalarCond); }; // The reduction root is used as the insertion point for new instructions, // so set it as externally used to prevent it from being deleted. ExternallyUsedValues[ReductionRoot]; SmallVector IgnoreList; for (ReductionOpsType &RdxOp : ReductionOps) IgnoreList.append(RdxOp.begin(), RdxOp.end()); unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); if (NumReducedVals > ReduxWidth) { // In the loop below, we are building a tree based on a window of // 'ReduxWidth' values. // If the operands of those values have common traits (compare predicate, // constant operand, etc), then we want to group those together to // minimize the cost of the reduction. // TODO: This should be extended to count common operands for // compares and binops. // Step 1: Count the number of times each compare predicate occurs. SmallDenseMap PredCountMap; for (Value *RdxVal : ReducedVals) { CmpInst::Predicate Pred; if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) ++PredCountMap[Pred]; } // Step 2: Sort the values so the most common predicates come first. stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { CmpInst::Predicate PredA, PredB; if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && match(B, m_Cmp(PredB, m_Value(), m_Value()))) { return PredCountMap[PredA] > PredCountMap[PredB]; } return false; }); } Value *VectorizedTree = nullptr; unsigned i = 0; while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { ArrayRef VL(&ReducedVals[i], ReduxWidth); V.buildTree(VL, ExternallyUsedValues, IgnoreList); Optional> Order = V.bestOrder(); if (Order) { assert(Order->size() == VL.size() && "Order size must be the same as number of vectorized " "instructions."); // TODO: reorder tree nodes without tree rebuilding. SmallVector ReorderedOps(VL.size()); llvm::transform(*Order, ReorderedOps.begin(), [VL](const unsigned Idx) { return VL[Idx]; }); V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); } if (V.isTreeTinyAndNotFullyVectorizable()) break; if (V.isLoadCombineReductionCandidate(RdxKind)) break; V.computeMinimumValueSizes(); // Estimate cost. InstructionCost TreeCost = V.getTreeCost(); InstructionCost ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); InstructionCost Cost = TreeCost + ReductionCost; if (!Cost.isValid()) { LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); return false; } if (Cost >= -SLPCostThreshold) { V.getORE()->emit([&]() { return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", cast(VL[0])) << "Vectorizing horizontal reduction is possible" << "but not beneficial with cost " << ore::NV("Cost", Cost) << " and threshold " << ore::NV("Threshold", -SLPCostThreshold); }); break; } LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost << ". (HorRdx)\n"); V.getORE()->emit([&]() { return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", cast(VL[0])) << "Vectorized horizontal reduction with cost " << ore::NV("Cost", Cost) << " and with tree size " << ore::NV("TreeSize", V.getTreeSize()); }); // Vectorize a tree. DebugLoc Loc = cast(ReducedVals[i])->getDebugLoc(); Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); // Emit a reduction. If the root is a select (min/max idiom), the insert // point is the compare condition of that select. Instruction *RdxRootInst = cast(ReductionRoot); if (isCmpSel(RdxKind)) Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); else Builder.SetInsertPoint(RdxRootInst); Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); if (!VectorizedTree) { // Initialize the final value in the reduction. VectorizedTree = ReducedSubTree; } else { // Update the final value in the reduction. Builder.SetCurrentDebugLocation(Loc); VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); } i += ReduxWidth; ReduxWidth = PowerOf2Floor(NumReducedVals - i); } if (VectorizedTree) { // Finish the reduction. for (; i < NumReducedVals; ++i) { auto *I = cast(ReducedVals[i]); Builder.SetCurrentDebugLocation(I->getDebugLoc()); VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); } for (auto &Pair : ExternallyUsedValues) { // Add each externally used value to the final reduction. for (auto *I : Pair.second) { Builder.SetCurrentDebugLocation(I->getDebugLoc()); VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, Pair.first, "op.extra", I); } } // Update users. For a min/max reduction that ends with a compare and // select, we also have to RAUW for the compare instruction feeding the // reduction root. That's because the original compare may have extra uses // besides the final select of the reduction. if (isCmpSel(RdxKind)) { if (auto *VecSelect = dyn_cast(VectorizedTree)) { Instruction *ScalarCmp = getCmpForMinMaxReduction(cast(ReductionRoot)); ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); } } ReductionRoot->replaceAllUsesWith(VectorizedTree); // Mark all scalar reduction ops for deletion, they are replaced by the // vector reductions. V.eraseInstructions(IgnoreList); } return VectorizedTree != nullptr; } unsigned numReductionValues() const { return ReducedVals.size(); } private: /// Calculate the cost of a reduction. InstructionCost getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, unsigned ReduxWidth) { Type *ScalarTy = FirstReducedVal->getType(); FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); InstructionCost VectorCost, ScalarCost; switch (RdxKind) { case RecurKind::Add: case RecurKind::Mul: case RecurKind::Or: case RecurKind::And: case RecurKind::Xor: case RecurKind::FAdd: case RecurKind::FMul: { unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, /*IsPairwiseForm=*/false); ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); break; } case RecurKind::FMax: case RecurKind::FMin: { auto *VecCondTy = cast(CmpInst::makeCmpResultType(VectorTy)); VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, /*pairwise=*/false, /*unsigned=*/false); ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, CmpInst::makeCmpResultType(ScalarTy)); break; } case RecurKind::SMax: case RecurKind::SMin: case RecurKind::UMax: case RecurKind::UMin: { auto *VecCondTy = cast(CmpInst::makeCmpResultType(VectorTy)); bool IsUnsigned = RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, /*IsPairwiseForm=*/false, IsUnsigned); ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, CmpInst::makeCmpResultType(ScalarTy)); break; } default: llvm_unreachable("Expected arithmetic or min/max reduction operation"); } // Scalar cost is repeated for N-1 elements. ScalarCost *= (ReduxWidth - 1); LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost << " for reduction that starts with " << *FirstReducedVal << " (It is a splitting reduction)\n"); return VectorCost - ScalarCost; } /// Emit a horizontal reduction of the vectorized value. Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, unsigned ReduxWidth, const TargetTransformInfo *TTI) { assert(VectorizedValue && "Need to have a vectorized tree node"); assert(isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"); return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, ReductionOps.back()); } }; } // end anonymous namespace static Optional getAggregateSize(Instruction *InsertInst) { if (auto *IE = dyn_cast(InsertInst)) return cast(IE->getType())->getNumElements(); unsigned AggregateSize = 1; auto *IV = cast(InsertInst); Type *CurrentType = IV->getType(); do { if (auto *ST = dyn_cast(CurrentType)) { for (auto *Elt : ST->elements()) if (Elt != ST->getElementType(0)) // check homogeneity return None; AggregateSize *= ST->getNumElements(); CurrentType = ST->getElementType(0); } else if (auto *AT = dyn_cast(CurrentType)) { AggregateSize *= AT->getNumElements(); CurrentType = AT->getElementType(); } else if (auto *VT = dyn_cast(CurrentType)) { AggregateSize *= VT->getNumElements(); return AggregateSize; } else if (CurrentType->isSingleValueType()) { return AggregateSize; } else { return None; } } while (true); } static Optional getOperandIndex(Instruction *InsertInst, unsigned OperandOffset) { unsigned OperandIndex = OperandOffset; if (auto *IE = dyn_cast(InsertInst)) { if (auto *CI = dyn_cast(IE->getOperand(2))) { auto *VT = cast(IE->getType()); OperandIndex *= VT->getNumElements(); OperandIndex += CI->getZExtValue(); return OperandIndex; } return None; } auto *IV = cast(InsertInst); Type *CurrentType = IV->getType(); for (unsigned int Index : IV->indices()) { if (auto *ST = dyn_cast(CurrentType)) { OperandIndex *= ST->getNumElements(); CurrentType = ST->getElementType(Index); } else if (auto *AT = dyn_cast(CurrentType)) { OperandIndex *= AT->getNumElements(); CurrentType = AT->getElementType(); } else { return None; } OperandIndex += Index; } return OperandIndex; } static bool findBuildAggregate_rec(Instruction *LastInsertInst, TargetTransformInfo *TTI, SmallVectorImpl &BuildVectorOpds, SmallVectorImpl &InsertElts, unsigned OperandOffset) { do { Value *InsertedOperand = LastInsertInst->getOperand(1); Optional OperandIndex = getOperandIndex(LastInsertInst, OperandOffset); if (!OperandIndex) return false; if (isa(InsertedOperand) || isa(InsertedOperand)) { if (!findBuildAggregate_rec(cast(InsertedOperand), TTI, BuildVectorOpds, InsertElts, *OperandIndex)) return false; } else { BuildVectorOpds[*OperandIndex] = InsertedOperand; InsertElts[*OperandIndex] = LastInsertInst; } if (isa(LastInsertInst->getOperand(0))) return true; LastInsertInst = dyn_cast(LastInsertInst->getOperand(0)); } while (LastInsertInst != nullptr && (isa(LastInsertInst) || isa(LastInsertInst)) && LastInsertInst->hasOneUse()); return false; } /// Recognize construction of vectors like /// %ra = insertelement <4 x float> poison, float %s0, i32 0 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 /// starting from the last insertelement or insertvalue instruction. /// /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. /// /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. /// /// \return true if it matches. static bool findBuildAggregate(Instruction *LastInsertInst, TargetTransformInfo *TTI, SmallVectorImpl &BuildVectorOpds, SmallVectorImpl &InsertElts) { assert((isa(LastInsertInst) || isa(LastInsertInst)) && "Expected insertelement or insertvalue instruction!"); assert((BuildVectorOpds.empty() && InsertElts.empty()) && "Expected empty result vectors!"); Optional AggregateSize = getAggregateSize(LastInsertInst); if (!AggregateSize) return false; BuildVectorOpds.resize(*AggregateSize); InsertElts.resize(*AggregateSize); if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0)) { llvm::erase_value(BuildVectorOpds, nullptr); llvm::erase_value(InsertElts, nullptr); if (BuildVectorOpds.size() >= 2) return true; } return false; } static bool PhiTypeSorterFunc(Value *V, Value *V2) { return V->getType() < V2->getType(); } /// Try and get a reduction value from a phi node. /// /// Given a phi node \p P in a block \p ParentBB, consider possible reductions /// if they come from either \p ParentBB or a containing loop latch. /// /// \returns A candidate reduction value if possible, or \code nullptr \endcode /// if not possible. static Value *getReductionValue(const DominatorTree *DT, PHINode *P, BasicBlock *ParentBB, LoopInfo *LI) { // There are situations where the reduction value is not dominated by the // reduction phi. Vectorizing such cases has been reported to cause // miscompiles. See PR25787. auto DominatedReduxValue = [&](Value *R) { return isa(R) && DT->dominates(P->getParent(), cast(R)->getParent()); }; Value *Rdx = nullptr; // Return the incoming value if it comes from the same BB as the phi node. if (P->getIncomingBlock(0) == ParentBB) { Rdx = P->getIncomingValue(0); } else if (P->getIncomingBlock(1) == ParentBB) { Rdx = P->getIncomingValue(1); } if (Rdx && DominatedReduxValue(Rdx)) return Rdx; // Otherwise, check whether we have a loop latch to look at. Loop *BBL = LI->getLoopFor(ParentBB); if (!BBL) return nullptr; BasicBlock *BBLatch = BBL->getLoopLatch(); if (!BBLatch) return nullptr; // There is a loop latch, return the incoming value if it comes from // that. This reduction pattern occasionally turns up. if (P->getIncomingBlock(0) == BBLatch) { Rdx = P->getIncomingValue(0); } else if (P->getIncomingBlock(1) == BBLatch) { Rdx = P->getIncomingValue(1); } if (Rdx && DominatedReduxValue(Rdx)) return Rdx; return nullptr; } static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) return true; if (match(I, m_Intrinsic(m_Value(V0), m_Value(V1)))) return true; if (match(I, m_Intrinsic(m_Value(V0), m_Value(V1)))) return true; return false; } /// Attempt to reduce a horizontal reduction. /// If it is legal to match a horizontal reduction feeding the phi node \a P /// with reduction operators \a Root (or one of its operands) in a basic block /// \a BB, then check if it can be done. If horizontal reduction is not found /// and root instruction is a binary operation, vectorization of the operands is /// attempted. /// \returns true if a horizontal reduction was matched and reduced or operands /// of one of the binary instruction were vectorized. /// \returns false if a horizontal reduction was not matched (or not possible) /// or no vectorization of any binary operation feeding \a Root instruction was /// performed. static bool tryToVectorizeHorReductionOrInstOperands( PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, TargetTransformInfo *TTI, const function_ref Vectorize) { if (!ShouldVectorizeHor) return false; if (!Root) return false; if (Root->getParent() != BB || isa(Root)) return false; // Start analysis starting from Root instruction. If horizontal reduction is // found, try to vectorize it. If it is not a horizontal reduction or // vectorization is not possible or not effective, and currently analyzed // instruction is a binary operation, try to vectorize the operands, using // pre-order DFS traversal order. If the operands were not vectorized, repeat // the same procedure considering each operand as a possible root of the // horizontal reduction. // Interrupt the process if the Root instruction itself was vectorized or all // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. SmallVector, 8> Stack(1, {Root, 0}); SmallPtrSet VisitedInstrs; bool Res = false; while (!Stack.empty()) { Instruction *Inst; unsigned Level; std::tie(Inst, Level) = Stack.pop_back_val(); Value *B0, *B1; bool IsBinop = matchRdxBop(Inst, B0, B1); bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); if (IsBinop || IsSelect) { HorizontalReduction HorRdx; if (HorRdx.matchAssociativeReduction(P, Inst)) { if (HorRdx.tryToReduce(R, TTI)) { Res = true; // Set P to nullptr to avoid re-analysis of phi node in // matchAssociativeReduction function unless this is the root node. P = nullptr; continue; } } if (P && IsBinop) { Inst = dyn_cast(B0); if (Inst == P) Inst = dyn_cast(B1); if (!Inst) { // Set P to nullptr to avoid re-analysis of phi node in // matchAssociativeReduction function unless this is the root node. P = nullptr; continue; } } } // Set P to nullptr to avoid re-analysis of phi node in // matchAssociativeReduction function unless this is the root node. P = nullptr; if (Vectorize(Inst, R)) { Res = true; continue; } // Try to vectorize operands. // Continue analysis for the instruction from the same basic block only to // save compile time. if (++Level < RecursionMaxDepth) for (auto *Op : Inst->operand_values()) if (VisitedInstrs.insert(Op).second) if (auto *I = dyn_cast(Op)) if (!isa(I) && !R.isDeleted(I) && I->getParent() == BB) Stack.emplace_back(I, Level); } return Res; } bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, BasicBlock *BB, BoUpSLP &R, TargetTransformInfo *TTI) { auto *I = dyn_cast_or_null(V); if (!I) return false; if (!isa(I)) P = nullptr; // Try to match and vectorize a horizontal reduction. auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { return tryToVectorize(I, R); }; return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, ExtraVectorization); } bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, BasicBlock *BB, BoUpSLP &R) { const DataLayout &DL = BB->getModule()->getDataLayout(); if (!R.canMapToVector(IVI->getType(), DL)) return false; SmallVector BuildVectorOpds; SmallVector BuildVectorInsts; if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) return false; LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); // Aggregate value is unlikely to be processed in vector register, we need to // extract scalars into scalar registers, so NeedExtraction is set true. return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, BuildVectorInsts); } bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, BasicBlock *BB, BoUpSLP &R) { SmallVector BuildVectorInsts; SmallVector BuildVectorOpds; if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || (llvm::all_of(BuildVectorOpds, [](Value *V) { return isa(V); }) && isShuffle(BuildVectorOpds))) return false; // Vectorize starting with the build vector operands ignoring the BuildVector // instructions for the purpose of scheduling and user extraction. return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, BuildVectorInsts); } bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, BoUpSLP &R) { if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) return true; bool OpsChanged = false; for (int Idx = 0; Idx < 2; ++Idx) { OpsChanged |= vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); } return OpsChanged; } bool SLPVectorizerPass::vectorizeSimpleInstructions( SmallVectorImpl &Instructions, BasicBlock *BB, BoUpSLP &R) { bool OpsChanged = false; for (auto *I : reverse(Instructions)) { if (R.isDeleted(I)) continue; if (auto *LastInsertValue = dyn_cast(I)) OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); else if (auto *LastInsertElem = dyn_cast(I)) OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); else if (auto *CI = dyn_cast(I)) OpsChanged |= vectorizeCmpInst(CI, BB, R); } Instructions.clear(); return OpsChanged; } bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { bool Changed = false; SmallVector Incoming; SmallPtrSet VisitedInstrs; bool HaveVectorizedPhiNodes = true; while (HaveVectorizedPhiNodes) { HaveVectorizedPhiNodes = false; // Collect the incoming values from the PHIs. Incoming.clear(); for (Instruction &I : *BB) { PHINode *P = dyn_cast(&I); if (!P) break; if (!VisitedInstrs.count(P) && !R.isDeleted(P)) Incoming.push_back(P); } // Sort by type. llvm::stable_sort(Incoming, PhiTypeSorterFunc); // Try to vectorize elements base on their type. for (SmallVector::iterator IncIt = Incoming.begin(), E = Incoming.end(); IncIt != E;) { // Look for the next elements with the same type. SmallVector::iterator SameTypeIt = IncIt; while (SameTypeIt != E && (*SameTypeIt)->getType() == (*IncIt)->getType()) { VisitedInstrs.insert(*SameTypeIt); ++SameTypeIt; } // Try to vectorize them. unsigned NumElts = (SameTypeIt - IncIt); LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); // The order in which the phi nodes appear in the program does not matter. // So allow tryToVectorizeList to reorder them if it is beneficial. This // is done when there are exactly two elements since tryToVectorizeList // asserts that there are only two values when AllowReorder is true. bool AllowReorder = NumElts == 2; if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { // Success start over because instructions might have been changed. HaveVectorizedPhiNodes = true; Changed = true; break; } // Start over at the next instruction of a different type (or the end). IncIt = SameTypeIt; } } VisitedInstrs.clear(); SmallVector PostProcessInstructions; SmallDenseSet KeyNodes; for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { // Skip instructions with scalable type. The num of elements is unknown at // compile-time for scalable type. if (isa(it->getType())) continue; // Skip instructions marked for the deletion. if (R.isDeleted(&*it)) continue; // We may go through BB multiple times so skip the one we have checked. if (!VisitedInstrs.insert(&*it).second) { if (it->use_empty() && KeyNodes.contains(&*it) && vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { // We would like to start over since some instructions are deleted // and the iterator may become invalid value. Changed = true; it = BB->begin(); e = BB->end(); } continue; } if (isa(it)) continue; // Try to vectorize reductions that use PHINodes. if (PHINode *P = dyn_cast(it)) { // Check that the PHI is a reduction PHI. if (P->getNumIncomingValues() == 2) { // Try to match and vectorize a horizontal reduction. if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, TTI)) { Changed = true; it = BB->begin(); e = BB->end(); continue; } } // Try to vectorize the incoming values of the PHI, to catch reductions // that feed into PHIs. for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { // Skip if the incoming block is the current BB for now. Also, bypass // unreachable IR for efficiency and to avoid crashing. // TODO: Collect the skipped incoming values and try to vectorize them // after processing BB. if (BB == P->getIncomingBlock(I) || !DT->isReachableFromEntry(P->getIncomingBlock(I))) continue; Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), P->getIncomingBlock(I), R, TTI); } continue; } // Ran into an instruction without users, like terminator, or function call // with ignored return value, store. Ignore unused instructions (basing on // instruction type, except for CallInst and InvokeInst). if (it->use_empty() && (it->getType()->isVoidTy() || isa(it) || isa(it))) { KeyNodes.insert(&*it); bool OpsChanged = false; if (ShouldStartVectorizeHorAtStore || !isa(it)) { for (auto *V : it->operand_values()) { // Try to match and vectorize a horizontal reduction. OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); } } // Start vectorization of post-process list of instructions from the // top-tree instructions to try to vectorize as many instructions as // possible. OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); if (OpsChanged) { // We would like to start over since some instructions are deleted // and the iterator may become invalid value. Changed = true; it = BB->begin(); e = BB->end(); continue; } } if (isa(it) || isa(it) || isa(it)) PostProcessInstructions.push_back(&*it); } return Changed; } bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { auto Changed = false; for (auto &Entry : GEPs) { // If the getelementptr list has fewer than two elements, there's nothing // to do. if (Entry.second.size() < 2) continue; LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " << Entry.second.size() << ".\n"); // Process the GEP list in chunks suitable for the target's supported // vector size. If a vector register can't hold 1 element, we are done. We // are trying to vectorize the index computations, so the maximum number of // elements is based on the size of the index expression, rather than the // size of the GEP itself (the target's pointer size). unsigned MaxVecRegSize = R.getMaxVecRegSize(); unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); if (MaxVecRegSize < EltSize) continue; unsigned MaxElts = MaxVecRegSize / EltSize; for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { auto Len = std::min(BE - BI, MaxElts); ArrayRef GEPList(&Entry.second[BI], Len); // Initialize a set a candidate getelementptrs. Note that we use a // SetVector here to preserve program order. If the index computations // are vectorizable and begin with loads, we want to minimize the chance // of having to reorder them later. SetVector Candidates(GEPList.begin(), GEPList.end()); // Some of the candidates may have already been vectorized after we // initially collected them. If so, they are marked as deleted, so remove // them from the set of candidates. Candidates.remove_if( [&R](Value *I) { return R.isDeleted(cast(I)); }); // Remove from the set of candidates all pairs of getelementptrs with // constant differences. Such getelementptrs are likely not good // candidates for vectorization in a bottom-up phase since one can be // computed from the other. We also ensure all candidate getelementptr // indices are unique. for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { auto *GEPI = GEPList[I]; if (!Candidates.count(GEPI)) continue; auto *SCEVI = SE->getSCEV(GEPList[I]); for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { auto *GEPJ = GEPList[J]; auto *SCEVJ = SE->getSCEV(GEPList[J]); if (isa(SE->getMinusSCEV(SCEVI, SCEVJ))) { Candidates.remove(GEPI); Candidates.remove(GEPJ); } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { Candidates.remove(GEPJ); } } } // We break out of the above computation as soon as we know there are // fewer than two candidates remaining. if (Candidates.size() < 2) continue; // Add the single, non-constant index of each candidate to the bundle. We // ensured the indices met these constraints when we originally collected // the getelementptrs. SmallVector Bundle(Candidates.size()); auto BundleIndex = 0u; for (auto *V : Candidates) { auto *GEP = cast(V); auto *GEPIdx = GEP->idx_begin()->get(); assert(GEP->getNumIndices() == 1 || !isa(GEPIdx)); Bundle[BundleIndex++] = GEPIdx; } // Try and vectorize the indices. We are currently only interested in // gather-like cases of the form: // // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... // // where the loads of "a", the loads of "b", and the subtractions can be // performed in parallel. It's likely that detecting this pattern in a // bottom-up phase will be simpler and less costly than building a // full-blown top-down phase beginning at the consecutive loads. Changed |= tryToVectorizeList(Bundle, R); } } return Changed; } bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { bool Changed = false; // Attempt to sort and vectorize each of the store-groups. for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; ++it) { if (it->second.size() < 2) continue; LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << it->second.size() << ".\n"); Changed |= vectorizeStores(it->second, R); } return Changed; } char SLPVectorizer::ID = 0; static const char lv_name[] = "SLP Vectorizer"; INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }